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SUMMARY

Synthetic biology, relying on Design-Build-Test-Learn (DBTL) cycle, aims to solve
medicine, manufacturing, and agriculture problems. However, the DBTL cycle’s
Learn (L) step lacks predictive power for the behavior of biological systems, re-
sulting from the incompatibility between sparse testing data and chaotic meta-
bolic networks. Herein, we develop a method, ‘‘RespectM,’’ based on mass spec-
trometry imaging, which is able to detect metabolites at a rate of 500 cells per
hour with high efficiency. In this study, 4,321 single cell level metabolomics
data were acquired, representing metabolic heterogeneity. An optimizable
deep neural network was applied to learn from metabolic heterogeneity and a
‘‘heterogeneity-powered learning (HPL)’’ based model was trained as well. By
testing the HPL based model, we suggest minimal operations to achieve high tri-
glyceride production for engineering. The HPL strategy could revolutionize
rational design and reshape the DBTL cycle.

INTRODUCTION

Synthetic biology, relying on the Design-Build-Test-Learn (DBTL) cycle, provides engineering principles

that allow the design and build of biological systems with new or enhanced functions.1,2 Accelerating

the DBTL cycle can achieve rapid and facile bioengineering of organisms for the production.3 Therefore,

researchers endeavor to accelerate DBTL through the integration of robotics and informatics.4,5 The

DBTL cycle’s Learn (L) step leverages the data previously generated to inform the next design step and

is fundamentally important for design section.6 However, the L phase of the DBTL cycle has traditionally

been the most weakly supported and developed, despite its critical importance to accelerate the full cy-

cle.7 Arguably, the main factors of the lack of emphasis on the L phase are: the lack of predictive power

for biological system behavior,8 resulted by the extreme asymmetry between the sparse learning data

and the chaotic metabolic network.

Heterogeneity widely exists in natural cells.9 This phenomenon can be found in multiple aspects of ge-

nomes,10,11 transcriptomes,12,13 proteomes,14 and metabolomes.15,16 In microbial studies, heterogeneity

is generally considered to be a crucial factor in the evolution and stability of cell populations.17,18 Recent

studies have extended the appreciation of heterogeneity effects in several dimensions, beyond including

bioprocess robustness,19 and casted light on its roles in drug resistance,20 quorum sensing,21 symbiosis,17

and adaptive evolution.22 Besides, heterogeneity, specifying to the fluctuation of nucleic acids, proteins,

and metabolites at single-cell levels,23,24 can be used to generate big data at the status with or without

external stimulation. Microbial heterogeneity encompasses massivemetabolic associations among billions

of cells, which implies that big data would be directly generated from heterogeneity exploring. These big

data can be utilized to power the learning step of DBTL cycle and make deep learning algorithms appli-

cable. Thus, there is an urgent demand for practicable single-cell tools to investigate cellular

heterogeneity.

Single-cell analysis has emerged as a promising discovery direction and research hotspot in recent years.

This cutting-edge technology enables the measurement of metabolic activity in individual cells, revealing

heterogeneity and complexity of cellular metabolism.14 With the ability to identify cellular subpopulations,

track metabolic changes, and explore metabolic pathways, single-cell metabolism analysis holds great po-

tential for advancing our understanding of cellular physiology and disease. To date, there are few single-

cell microbial research methods unlike those for mammals, which restrains the intuitive access to the un-

derlying mechanism of microbial heterogeneity. The development of single-cell methods for proteins
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and metabolites may enhance the understanding of direct protein-protein interaction (PPI) networks and

metabolite reaction networks (MRN) to counteract the cognition of cellular heterogeneity. In the past

decade, several studies have been conducted applying Matrix Associated Laser Desorption Ionization

(MALDI) mass spectrometry to characterize metabolites at single-cell levels.15,16,25–27 However, few studies

have been performed to address the defects of poor reproducibility among chemical matrix backgrounds

and inadequacy of analytical solution for microbial single-cell data analysis, which are the primary obstacles

for establishing reliable microbial single-cell metabolomics methods.

In this study, we develop a new method, namely ‘‘RespectM,’’ to perform single-cell metabolomics for mi-

croorganisms. In this method, the collection of single-cell data is precisely achieved by discontinuous mass

spectrometry imaging (MSI). A sublimation method was applied for the MSI experiment.28 Standard soft-

ware SCiLS Lab (Bruker, USA) and open access R packages sclmpute, MetNormalizer, and Stream were in-

tegrated into the analytical system to form the pipeline.29–31 These software packages aided in standard-

ization of the method and readability for the data processing. To ensure the accuracy of data acquisition,

we used microscopy-guided cell ablation coupled with in situ micron-level precise positioning.

Researchers revealed that cells can predictably respond to energy limitations in an artificially constructed

microbial population, which likely contributes to the stability and robustness of microbial life.32 Inspired by

this work, we conducted a single-cell metabolomics analysis of a Chlamydomonas reinhardtii cell popula-

tion to explore microbial metabolic heterogeneity. We established different C. reinhardtii cell groups in

three aspects: temperature, cell wall-deficiency, and photosynthesis diversity within the total cell popula-

tions. RespectM provided a dataset of 4,321 cells with more than 600metabolites. All metabolite identifiers

conform to RespectM standards, which consist of lipids and metabolites with Kyoto Encyclopedia of Genes

andGenomes (KEGG) annotations. The identified series of features includes neutral glycerolipids (DG, TG),

protective lipids (PE), signal transduction lipids (PIP), nucleotides (GMP), pigments (porphyrin), and metab-

olites belonging to the central metabolic pathway (such as oxaloacetate). Finally, 36 features (metabolites)

were selected from dysregulated pathways for downstream single-cell analysis. The principle of choosing

36 features is described in the supporting information.

Our results show that RespectM can distinguish single microbial cells from the blank matrix with an accu-

racy between 95.3% and 98.3% using the Area Under the ROC (AUC) calculation, proving its capability to

avoid matrix interference in the single-cell data acquisition process. We also applied the PLS-DA and sup-

port vector machine (SVM) method to classify two allelic C. reinhardtii mutants at a single-cell level.30,33 In

allelic strains, we achieved 91.9% classification accuracy. Then we applied a uniform manifold approxima-

tion and projection (UMAP) for dimension reduction chart to display the basal metabolic status of cells and

introduced pseudo-time analysis to illustrate the cell trajectory.34–36 Ultimately, we captured the cell trajec-

tory and the dysregulated metabolite accumulation-induced cell grouping (DMACG) phenomena by the

stream algorithm.

Based on RespectM, we obtained the information about accumulation of metabolites in total 4,321 cells.

We learned single-cell metabolomics data, representing metabolic heterogeneity, by deep neural network

(DNN). The heterogeneity-powered learning (HPL) based model was established by DNN with high accu-

racy (Training MSE: 0.0009546, Test MSE: 0.0009198). In the optimal model, it is discussed that synthesis-

related genes of diglycerides (DG), phosphatidylserines (PS) and cobyrinate should be overexpressed first

beside the variation of 17 metabolites to ensure the high triglycerides (TG) yield(s). High TG values corre-

sponded pattern that can be achieved with minimal operation were suggested as the optimal pattern to

realize high TG production.
RESULTS

The RespectM method

We established a microbial metabolomics method at the single-cell level, named ‘‘RespectM’’. Including

sample preprocessing, data acquisition, and data processing (Figures 1A–1C and S1).

Themain challenges of MALDI-based single-cell metabolomics include precise single-cell data acquisition,

and enough peak generation for identification. We applied cell dilution strategy, combined with laser

etching guided droplet microarray (LEM), matrix sublimation,37 and sparse data matrix generation to

meet these challenges.
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Figure 1. Workflow and validation of the RespectM method

(A) The workflow construction of RespectM. (i) Cell dilution from original density to 105 cells/mL. Corresponding pictures

calculated by Cellometer Auto T4 can be found in Figure S3. (ii) Feature selection for distinguishing cell from the blank

matrix. 1. Feature intensity in cells > Feature intensity in matrix and 2. Feature intensity in cells < Feature intensity in

matrix. The latter is removed in feature selection. Scale bar: 200 mm. Bar color: From red to blue, intensity reduces. (iii)

Matrix versus sample classification test based on Quadric SVM and reached 98.3% accuracy. A classifier with a larger AUC

works better.

(B) Heatmap of dysregulated features based on LC-MS/MS identification, from left to right, we numbered 1–36.

(C) Validation of RespectM method among allelic strains. (i) UMAP visualization of strains CC-124 and CC-125 at three-

time points. (ii) Dysregulate feature filtration among allelic strains by volcano plot. Fold change >1.2, p < 0.05. (iii) Allelic

strain classification test based on Quadric SVM and reached 91.9% accuracy.
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The most vital part of the experiment is to figure out an appropriate cell density to do single-cell level me-

tabolomics data acquisition. To validate the cell size of nine algae, Cellometer Auto T4 (Nexcelom, USA) is

applied to calculate the diameter of nine algae cell populations. The statistical analysis summarized that

the majority scale of nine algae cells is around 10 mm as in the previous report (Figure S2). Before experi-

ment, we diluted the original cell density of 106 to about 105 cells/mL level according to the Cellometer

calculation (Figures 1A(i) and S3). Under the diluted cell density, after MALDI data acquisition, the spacing

between cells is larger than MALDI laser ablation diameters (About 50 mm). Therefore, a single-cell level

data acquisition could be achieved. The flow chart of MALDI mass spectrometry data acquisition is shown

as Figure S4.

A lowMALDI laser raster co-sampling rate is the prerequisite of single-cell level data acquisition. Generally,

a higher cell density should improve the co-sampling rate. However, a lower cell density should reduce data

acquisition efficiency. Under the diluted cell density (about 100 cells/mL), the co-sampling rate wasmanually

calculated to 9.1% (Figure S5, 44 cells/0.5mL). It is unlikely that co-sampling would happen while the cell

density is less than 90 cells/mL (Figure S5, 19 cells/0.5mL and 11 cells/0.5mL). To balance the efficiency

and co-sampling rate, we chose around 100 cells/mL to perform 4,321 single cell level data acquisition.
iScience 26, 107069, July 21, 2023 3
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To prove this method has single cell level sensitivity, we further tested the mass spectrum intensity among

one, two, and three cells. It was revealed that the mass spectrum signal intensity was increased from one to

three cells. The result shows that our method has enough sensitivity to detect metabolites from a single cell

(Figures S6 and S7).

Through laser etching on the ITO slide, we printed multiple cross patterns arranged on the surface of the ITO

glass slides. Therefore, to ensure that different droplets would not contaminate each other. We named it laser

etchingguideddropletmicroarray (LEM). After the cells were dropped at thedesignated location, a fine needle

was used to draw three cross marks around the droplet for instrument positioning (Figures S4 and S8A). Finally,

ten blank matrix points were collected as quality control (QC) samples at the end of each dripped spot

sequence to reduce the batch effect (Figure 1A(ii)). This attempt is the first time that a QC-based correction

strategy was integrated with MALDI single-cell level metabolomics has been proposed. We applied the Tissue

Profiling model (flexImaging, Bruker) to perform data acquisition, a kind of discontinuous mass spectrometry

imagingmodel that can be easily achieved by traditional three-point positioning (Figures S4 and S8B).38 Based

on the Tissue Profiling model, it is easy and free to choose the cell spot on the microscope picture (Figure S4).

Finally, RespectM could provide a single-cell level data matrix corresponding to the in situ MSI acquisition

sequence through SciLS Lab software (Bruker, USA). The reads included the data acquisition sequence, the

cells in situ position in the corresponding series, and the peak annotation results (Figure S6, Table S1).

RespectM distinguishes allelic strains in single cell levels

In MSI studies, it is necessary for chemical matrix to associate the desorption of biological samples, but it is

also complicated because of the background in theMSI data. Many studies have neglected the signal inter-

ference of the chemical matrix on biological samples. In this study, we propose a new solution to retain the

feature (m/z) intensity in cells > feature (m/z) intensity in matrix. The feature signal response in the sample is

higher than the feature in the blank chemical matrix (Figure 1A(ii)).

The sample data need to be distinguished from the blank matrix to ensure the accuracy of downstream sin-

gle-cell analysis (Figure 1A(iii)). Dysregulated features were chosen to correspond to LC-MS/MS metabo-

lomics and lipidomics for classification (Figures 1B, S8C and S9). On this basis, 29 classification strategies

were applied to distinguish samples from the blank matrix. The results showed that these methods could

achieve as high as 98.3% classification accuracy in the receiver operating characteristic curve (ROC curve)

(Figures 1A(iii) and S8C).

Furthermore, we conducted Seurat (R package, open access) to perform analysis on strains CC-124 and CC-

125 (Figure 1C(i)).Weobserved somedifferent betweenCC-124, CC-125 (Figure 1C(ii)) and tested the ability of

ourmethod to distinguish allelic strains CC-124 fromCC-125. Through the support vectormachine (SVM) strat-

egy, 91.9% classification accuracy of the two strains was achieved (Figure 1C(iii)). Because the reproduction

time ofC. reinhardtii is 24 h, themixed cell state at the three timepoints needs to undergo significant changes.

According to the instruction of R package, Seurat, the principal component analysis (PCA) reduction should be

advanced before uniform manifold approximation and projection for dimension reduction (UMAP).39 The

UMAP chart showed that the distance of single-cell data between three timepoints was significant. We visu-

alized themarker features used for automatic grouping and applied theWilcoxson algorithm to calculate all 12

markers in auto-clusters (Figure S10). Results showed that the abundance of these markers were dysregulated

in the auto-clusters.We found that the relative intensity ofmarker features was consistent under the premise of

wild-typeC. reinhardtiiwithout external stimulation. In parallel, someparts of cells clustered at each timepoint,

indicating the variability of single-cell metabolic adaptation.

RespectM is applied to visualize the heterogeneity in cell populations

The metabolic heterogeneity of microorganisms lacks an effective visualization method. This situation also

limits the characterization of themetabolic status of different microbial populations at single-cell levels. For

example, the metabolism of C. reinhardtii cells within the population is highly variable, which complicates

the single-cell metabolic status collection. In addition, the cells sampled at different time points are in

mixed states. However, traditional analysis methods are limited to find more information among single-

cell level. Therefore, we conducted multiple strategies including UMAP and pseudo-time analysis to reveal

the complex cell metabolism (Figures S10–S29). In addition, to analysis the single-cell dataset, we visual-

ized total lipid accumulation among three time-points (Figure S29A). We found that lipids were dysregu-

lated at different time-points in PCA analysis (Figure S29C).
4 iScience 26, 107069, July 21, 2023
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First, we visualize the cell population based on UMAP to cope with this obstacle (Figure 2A). We visualized

the data among time points (Figures S11–S13). Our results showed that there was no apparent clustering of

cells observed at Days 3 and 9 (Figures 2B, S11, and S13). However, two obvious clusters occurred in the cell

population at Day 6 (Figures 2B and S12). Combined with 3 group analysis (Figure 2C), it was found that the

three different groups of C. reinhardtii had significant metabolic changes at Day 6, which is correspond to

the algae morphology (Figure 2B).40 In the temperature group (strains CC-124, CC-4414, and CC-5164),

there was also no apparent clustering of cells at Days 3 and 9. Two clusters occurred in Day 6 (Figure S26).

Here we focused on the joint clusters of strains CC-4414 and CC-5164, where the accumulation of metab-

olites helped explain the reasons for clustering. Therefore, we visualized the markers used to distinguish

different clusters of temperature cell groups in the entire cell population (Figure S14).

By visualizing the highly variable features, the Seurat package was conducted to do marker feature se-

lection (Figures 2D(i–iii) and 2E(i–iii)). In the temperature diversity group (CC-124, CC-4414, CC-5164),

we found two lipids TG (53:8), DGDG (34:7) gradually increased with time (Figures S15 and S26), whereas

MGDG (36:7) decreased. In the photosynthetic group (strains CC-124, CC-4909, CC-4910, and CC-4346),

we found 12 marker features with high variables for analysis and visualization (Figures 2E(i) and S16). We

focused on the two cell groups generated at Day 6. One group consisted of strains CC-4909 and CC-124,

and the other group had strains CC-4910 and CC-4346. The two groups at Day 6 were independent

(Figures S16 and S26). With respect to the distribution of metabolite abundance at Day 6, we found

that TG (51:7) had high abundance in strains CC-4346 and CC-4910 of the cell groups (Figures 2C,

S16 and S26). Over time, the abundance of PS (35:3), MGDG (36:7) and Cobyrinate decreased. In

contrast, the abundance of TG (53:8) increased (Figures S17 and S26). In the final cell wall defect popu-

lation, the 6-day cell population did not generate an obvious cluster (Figures S18, S19, and S26). Never-

theless, in both of temperature and photosynthetic groups, the abundance of MGDG (36:7) accumulated

with time is contrary to that of TG (53:8) (Figures S15 and S17). In this section, we visualized the metabolic

heterogeneity of C. reinhardtii at single-cell levels. However, UMAP analysis could not reveal the detailed

microbial cell trajectory.
Identification of C. reinhardtii DMACG by RespectM

RespectMmay provide a more intuitive representation of the heterogeneity of single-cell metabolism. The

above results mainly showed the heterogeneity of C. reinhardtii in the two dimensions of timepoint and

category. However, because of the complex cell mixing state at each timepoint, more heterogeneity infor-

mation was hidden in the cell population (Figure 3A). Owing to the rapid reproduction of microorganisms,

the metabolic state is unstable compared to higher organisms. This phenomenon complicated the capture

of the metabolic state. Therefore, we applied a matured pseudo-time method Stream (http://stream.

pinellolab.org/) to explore further microbial heterogeneity in the cell trajectory (Figures 3B–3D).41

Strains CC-124, CC-4414, and CC-5164 at the S3 node have different dysregulated metabolite accumula-

tion-induced cell grouping (DMACG) phenomena in the temperature group (Figures 3B and S20). Strain

CC-124 independently generated an S3-S5 branch, whereas strains CC-4414 and CC-5164 formed an S3-

S4 branch (Figure S20). The results show that the intensity of MGTS, PG, and DGTS and PIP in the S3-S4

branch was higher than that of S3-S5, and the abundance of DG and DGDG in the S3-S5 branch was higher

than that of S3-S4 in parallel (Figure S21). This phenomenon shows that strains CC-4414 and CC-5164 pro-

duce more PE under normal temperature conditions to adapt to the environment (Figure S21). Meanwhile,

the high abundance of phytic acid and PIP lipids confirmed a difference in the phosphatidylinositol meta-

bolism pathway in strains CC-4414, and CC-5164 at single-cell levels (Figure S21).

In the photosynthetic group, the inheritance of strains CC-124, CC-4909, and CC-4910 was continuous. This

relationship was reflected in the S0-S1 and S0-S2 branches (Figures 3C and S22). Strains CC-4909 and CC-

124 share the same branch, which is consistent with CC-124 being the background strain of CC-4909. This

figure was also in line with strain CC-4910 and CC-4346 having a dysregulated metabolic capacity in lipid

synthesis (Figure S22 and S23). In parallel, strain CC-4346 shares the same branch with the other threeChla-

mydomonas at S3-S4 (Figure S22). However, S3-S4 shows a higher lipid abundance than S0-S2 branches

(Figure S23). This phenomenon implies that the CAO deficiency demands CC-4346 (an insertional mutation

in the CAO gene encoding a chlorophyll(ide) oxygenase) to enhance metabolism to compensate for its

photosynthetic defects.42
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Figure 2. Visualization of microbial single-cell metabolomics data

(A) UMAP visualization of single-cell metabolic profiles of 4,321 singe cells.

(B) UMAP visualization of cells from Days 3, 6, 9.

(C) UMAP visualization of cells from groups 1, 2, 3 (Group 1: four Chlamydomonas reinhardtii strains with differences in

photosynthetic capacity: strains CC-124, CC-4909, CC-4910, and CC-4346; Group 2: three Chlamydomonas reinhardtii

strains with differences in temperature adaptability: strains CC-124, CC-4414, and CC-5164; Group 3: three

Chlamydomonas reinhardtii strains with differences in cell structure: strains CC-125, CC-425, and CC-503).

(D) Violin Plot is used to display the distribution state and probability density of multiple time-point datasets. (i)

Abundance of Day 3 marker features. (ii) Abundance of Day 6 marker features. (ii) Abundance of Day 9 marker features.

(E) Violin Plot displays multiple cell group datasets’ distribution states and probability density. (i) Abundance of group1

marker features. (ii) Abundance of group 2 marker features. (ii) Abundance of group 3 marker features.
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Figure 3. Pseudo-time analysis of microbial single-cell metabolomics data

(A) The Pseudotime trajectory among 4,321 cells of Chlamydomonas reinhardtii based on dysregulated metabolites.

(B) Three Chlamydomonas reinhardtii strains with differences in temperature adaptability: strains CC-124, CC-4414, and

CC-5164. Stream plot shows a Pseudotime trajectory from homeostatic, intermediate, and metabolic variation among

strains CC-124, CC-4414, and CC-5164.

(C) Four Chlamydomonas reinhardtii strains with differences in photosynthetic capacity: strains CC-124, CC-4909, CC-

4910, and CC-4346. Pseudo-time analysis reveals the trajectory of three lines that have a coherent genetic relationship.

(D) Three Chlamydomonas reinhardtii strains with differences in cell structure: strains CC-125, CC-425, and CC-503.

Stream plot shows a Pseudotime trajectory among wild type CC-125, and cell wall-deficiency strains CC-425 and CC-503.
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Strains CC-425 and CC-503 are wall-deficient types belonging to the S0-S1 branch (Figures 3D and S24).

The cells of the wild-type of strain CC-124 (with cell walls) were mainly distributed in the S0-S2 branch

(Figure S24). The abundance of N-carbamoyl-L-aspartate in the wall-deficient type of strains CC-425

and CC-503 was higher than that of the wild type of strain CC-124, which implies that the wall-deficient

type needs stronger primary metabolism to resist the defect of the wall. In the S0-S1 branch, MGDG,

DGDG,43 LPE, and PS abundances were higher than S0-S2 (Figure S25). It is also worth noting that

when the nine strains of C. reinhardtii were analyzed in a pseudo-time series without comparison, the

basal status of C. reinhardtii still produced the DMACG phenomenon in the cell trajectory. This result

suggests that the RespectM method could be used to reveal basal metabolic heterogeneity by reorder-

ing cells (Figure S27).

Deep learning of big data generated by heterogeneity resolving

The information of metabolic heterogeneity could be revealed by analyzing C. reinhardtii single-cell me-

tabolomics data. Generally, heterogeneity is mainly specified to the fluctuation of nucleic acids, proteins,

and metabolites at single-cell levels,23,24 which could generate massive data at the status with or without

external stimulation. To learn from the information provided by metabolic heterogeneity, we established a

metabolic model of triglycerides (TG) target metabolites by deep learning (Figures 4A–4F).

The data used for training are experimental measured single-cell level metabolomics data. After normal-

izing the original data to the 0–1 interval, we proceeded to downstream large-scale data analysis. The

output TG data used for training are continuous actual measurement values rather than qualitative la-

bels. An optimizable neural network (MATLAB, 2021b, Regression Learner) was applied to establish

the relations between input and output nodes. All lipid data were processed by summation. Taking

TG as an example, the TG related fatty acids are summing to form the total TG. After the summing pro-

cess, the 36 features were reformed to 23 features. A correlation test was conducted to test the corre-

lation among 23 features. We found that all features were correlated with TG (Figure 4F). Therefore,

22 features were chosen as predictors, and TG was selected to be the response. Before training
iScience 26, 107069, July 21, 2023 7



Figure 4. The construction of metabolic model at single-cell level

(A) Hyperparameter selection of optimizable neural network.

(B) The scatterplot of the predicted versus the validation data.

(C) Error between actual data and predicted data.

(D) The scatterplot of the predicted versus the test data.

(E) The structure of the optimized neural network. Includes 22 input nodes, 1 output node, and 2 hidden layers: 12 nodes in

first layer, 10 nodes in second layer.

(F) Correlation result among metabolites at the single-cell levels. The false symbol represents insignificant. Red

represents positive correlation; Blue represents negative correlation. The shape of the circle represents the correlation

level. The larger circle represents a stronger correlation.
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operation, five folder cross-validation was conducted to protect against overfitting by partitioning the

dataset into folds and estimating accuracy on each fold. We used random search method to find the

best parameters. Before dividing the two dataset of training and testing, we performed the shuffle oper-

ation on 4,321 cells. An optimized deep neural network (DNN) was established by training single-cell me-

tabolomics data (The nodes of first hidden layer: 12; The nodes of the second layer: 10; R2: 0.8312,

Training MSE: 0.0009267; Test MSE: 0.0009198) (Figures 4A–4E).
8 iScience 26, 107069, July 21, 2023
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Furthermore, to verify the model’s generalization ability, 200 maximum and 200 minimum TG responses

were extracted to be testing data. It was found that the model was well adapted to the fitting of the gener-

alized data (R = 0.96575) (Figure S28). In summary, we established a TG metabolic model based on micro-

bial heterogeneity. Because the model was learned from the 4,321 single-cell metabolomics data, repre-

senting the metabolic heterogeneity, we named it as ‘‘Heterogeneity-powered learning (HPL)’’ model.

The training result and preliminary testing of the HPL model demonstrate that single-cell metabolic

data could be well learned.
Rational design based on the HPL metabolic model

Triglycerides (TG) occur widely in animals, plants, and microbial organisms and have been used as raw

materials for biofuel production.44 To achieve the high yield(s) of TG in C. reinhardtii, we intend to find

the high TG values corresponding metabolic pattern by designing and verifying a model based on HPL.

In the macroscopic dimension, metabolic patterns are generally presented by the average of all cells.

Therefore, we set the original state of the 22 features as their average values. To test the model, first,

the value of each feature from 0 to twice of its own maximum value (2 max) is increased, respectively,

whereas maintaining the average values of the rest features. We hope to find the feature whose value

increase has the most significant effect on TG. When the values of nine lipids (diglycerides (DG), diga-

lactosyl diglyceride (DGDG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidyl-

serine (PS), and lyso-phosphatidylethanolamine (LPE) are increased, the value of TG increases as well

(Figure 5A). In parallel, when the values of eight metabolites (GMP, cobyrinate, N-carbamoyl-L-aspartate,

Red chlorophyll catabolite, phytic acid, sedoheptulose, uroporphyrin III, 3-oxalomate, 3-vinybactcrio-

chlorophylide a) are increased, TG’s values increase as well (Figure 5B). On the contrary, when the values

of three lipids diglycero-3-phospho-O-serine (DGTS), monoglycero-3-phospho-O-serine (MGTS), Mo-

nogalactosyldiacylglycerol (MGDG) are increased, the value of TG decreases (Figure 5C). Also, when

the values of five metabolites (coproporphyrin, tryptamine, (3Z)-phycocyanobilin, adenosine) are

increased, the value of TG decreases (Figure 5D).

Second, 100,000 patterns of 22 features (Figure 5E) were randomly generated. The principles of data

generation are (1) each feature independently generates data in the range of 0–2 max; (2) the randomly

generated data are in average distribution rather than the normal distribution; (3) total data randomly

consist of 23 features generated data. Then all generated data were predicted by the trained HPL based

model. To display the high TG value corresponding metabolic pattern, a polar chart was conducted to

visualize the pattern of the highest 1,000 TG values. We found that the glycerophospholipid and glycer-

olipid metabolism ensembled most of the highest TG value patterns (Figure 5E). Furthermore, when the

values of DG, PS and cobyrinate are increased, the TG value increases the most. This result indicates that

DG, PS, and cobyrinate could significantly affect TG accumulation. To validate the result, we conducted

genetic algorithm and simulate annealing algorithm to approximate the global optimum (Fig-

ure S29D).45,46 By SHAP explainer analysis,47 we found that DG, PS are the most important lipids

contribute to the TG output (Figure S29D); also, the metabolite is the most important metabolite

contribute to the TG output. To validate our biological finding that DG, PS and cobyrinate increase

should promote the TG, we also predicted our generated data using genetic algorithm and simulate an-

nealing algorithm. Result shows that DG, PS and cobyrinate increase still improved TG. We also have

plans to find the global optimum in theory by optimize the current model. We can use brute-force algo-

rithms to exhaustively enumerate all combinations of inputs and outputs so that each value can be

trained, and the global optimal solution of low-dimensional data can be approximated.48 Also, we can

use convex optimization methods to accurately find the global optimum of two-layer ReLU neural net-

works according to the previous reports and quantitative the output.49,50 Plans can be found in Github

repository (dawnmengsjtu/RespectM).

To find the closest path corresponding to the minimal operations to achieve a high TG yield(s) in engineer-

ing (Figure 6A), we first define a ‘‘high TG value’’ as follows: the TG value predicted after 22 random feature

variation/average TG value in the 4,321 cells >1.6 (Figure 6B). Therefore, the highest 100 TG values corre-

sponding patterns were chosen to be tested by three distance calculation algorithms (Euclidean, Manhat-

tan, and Harmonic means). We found that pattern 94 is the closest pattern to the original 22 feature pattern

(Figure 6C). More precisely, pattern 94 is closest to basal status among the three algorithms and is the most

uncomplicated engineering strategy to achieve a high TG value. In this pattern, 3 metabolites should be

knocked down, 17 metabolites should be overexpressed (Figure 6D).
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Figure 5. Visualization of metabolic results by using model prediction

The original state of the 22 features is set as their average value. To test the model, first, the value of each feature from 0 to

twice of its ownmaximum value (2 max) is increased, respectively, while maintaining the average value of the rest features.

(A–B) represents the increase of TG values during the increase of lipids and metabolites values, respectively; (C–D)

represents the decrease of TG values during the increase of lipids and metabolites values, respectively.

(E) 100,000 patterns of 22 features are randomly generated, each feature independently generates data in the range of

0–2 max 100,000 data were generated randomly. The highest 1,000 TG intensity data distributes on the polar chart. Color

bar: Dark colors represent the high TG intensities; light colors represent the low TG intensities.
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Figure 6. Optimal model selection corresponds to high TG values

(A) The value distribution of 100,000 random generated data prediction results.

(B) Data distribution of all features includes TG. Low: 0–0.333; Medium: 0.333–0.666; High: 0.666–1. All values were

normalized in columns.

(C) Visualization of the distance between highest 100 TG values belonging model and original 4,321 cells trained model.

Pattern 94 is the closest pattern to the original in 3 algorithm calculations.

(D) The visualization of the optimal model–pattern 94. Blue bar represents that these metabolites need to be knocked

down; Red bar represents that these metabolites need to be overexpressed; X symbol represents that these metabolites

are no need to be changed.
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DISCUSSION

Single-cell metabolic analysis is at the forefront of current technological advancements and holds signifi-

cant importance for microbial research.15,16 With the ability to analyze metabolic activity at the individual

cell level, researchers can uncover metabolic heterogeneity and identify novel metabolic pathways in mi-

crobial populations. Single-cell metabolic analysis also enables researchers to investigate the impact of

environmental factors on microbial metabolism, providing insights into microbial behavior and their

ecological roles.15,16 This technology has the potential to advance our understanding of microbial physi-

ology and inform the development of new treatments for microbial diseases.

Because previous DBTL testing data offer to learn is few compared to the complex metabolic network, the

development of rational design is limited. Especially the yields for biological chemical production in micro-

organisms approach their traditional theoretical maximum; therefore, metabolic engineering and synthetic

biology require new tools and approaches for improvements beyond what traditional strategies could

achieve.51 Herein, we propose the ‘‘heterogeneity-powered learning (HPL)’’ strategy to promote the devel-

opment process of rational design. To explore the heterogeneity of cells, researchers have collected many

data in mammals.52–54 However, fewer microbial single-cell metabolic fingerprints constrain the visualiza-

tion of microbial metabolic heterogeneity. Our study aims to improve the research on microbial single-cell
iScience 26, 107069, July 21, 2023 11
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metabolomics by the developed RespectM method. The advantages of RespectM include several dimen-

sions. First, the LEM cell chip strategy simplified the preprocessing steps before MSI data collection and

optimized the single cell in situ positioning accuracy during MSI data collection. Second, a confidence

grading system including the MS and MS/MS identification strategies was developed for single-cell meta-

bolic identification. Third, the QC-based MSI calibration method was developed in MALDI-based single-

cell metabolomics (Figure S1). Altogether, these factors underscore the unique advantages of RespectM

in convenience, accuracy, and throughput. By establishing the RespectM methodology, we detect more

than 600 metabolites at a rate of 500 cells per hour.

In single-cell MSI data acquisition, the cleanliness of the matrix background and accurate cell positioning is

the basis. Currently, spray coating and sublimation are the standard matrix application methods.37,55 On

the one hand, the optimized matrix auto-sprayer could achieve a high ion intensity reproducibility across

samples.37 On the other hand, it is reported that the matrix application of the sublimation strategy could

retain the in situmetabolic information with a high spatial resolution and the lowest de-localization effect.28

Sublimation also has good reproducibility and eliminates the potential for spreading analytes from solvent

deposition during matrix application.56 Furthermore, the DHB sublimation performs well on MSI while us-

ing Solarix FT-ICR instrument.57 Therefore, we chose the matrix sublimation method for RespectM.

Several factors currently restrict the application of MSI in microbial single-cell studies. For instance, the size

of a singlemicrobial cell is only 1–10 mm, whereas the raster ablation size is usually around 50 mm. Therefore,

optical figure splicing operation is inappropriate for microbial single-cell data acquisition. Taking ultra-

fleXtreme (Bruker, USA) as an example, the physical movement accuracy of the mechanical stage is

5 mm; optical image stitching will also generate micron-level errors. This phenomenon indicates that posi-

tioning errors also increase when MSI in situ range is expanded. Rappez et al. proposed a set of machine

learning-based localization strategies and achieved sub-micron accuracy. Our strategy is still based on the

traditional microscopic guided three-point localization method.38 However, the convenience of this

method is still remarkable in our experiments.

To ascertain the cleanliness of single-cell data, we first compared RespectM with methods requiring cell

staining and fixation.55 First, RespectM has a shorter preprocessing time, and the cell sample is obtained

through regular cultivations. Both cell-bulk metabolomics and single-cell metabolomics are directly

sampled from culturing cells simultaneously. Second, we applied the discontinuous MSI method (tissue

profiling) in RespectM to prevent cross-contamination between adjacent data points in data collection.

The accuracy distinguishing cells from blank matrix reached 98.3%, which yields strong confidence in mi-

crobial single-cell acquisition. Thirdly, there is no method for batch correction between MSI internal

data points. Therefore, MALDI-based single-cell data collection needs to cope with a new batch correction

strategy. We introduced matrix background points as QC to correct batch effects between multiple data

acquisitions. This strategy differs from the batch correction method of single-cell transcription, and mature

metabolomics algorithms MetNormalizer aids in more confidence to RespectM.30

In exploring microbial cell heterogeneity, only a few studies on single-cell transcriptomics were attemp-

ted.58,59 In addition to the omics level, fluorescence-based flow cytometry and mass spectrometry flow cy-

tometry can detect a few features at single-cell levels for heterogeneity analysis.60,61 However, heteroge-

neity analysis has not been established before. In this study, RespectM can complete an omics analysis of

4,000+ cells within a few hours and reach the number of metabolic identifiers to the omics level. Further-

more, we analyzed microbial single-cell metabolomics data by the UMAP algorithm. Based on the meta-

bolic heterogeneity visualization through UMAP, in the timepoint aspect, a clear grouping was revealed

at Day 6 (Figure 2B); in the species aspect, more cell groups were generated (Figure 2C). The cognition

of heterogeneity will likely change depending on the observation angle.

All cells of C. reinhardtii were reordered through pseudo-time analysis. The microbial metabolic pseudo-

time analysis is more diverse than the mammalian metabolic pseudo-time analysis. Our results show a re-

ordered dysregulated metabolite accumulation-induced cell grouping (DMACG) phenomenon consistent

with the biochemical and genetic relationships among the three cell populations. Without external stimu-

lation, the metabolic heterogeneity of C. reinhardtii produced DMACG in different dimensions. The dys-

regulated-accumulated metabolites in various cells allow us to analyze the joint clustering of cells from

different species, combined with the ‘‘cell age’’ from the pseudo-time analysis.
12 iScience 26, 107069, July 21, 2023
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After obtaining the 4,321 single-cell metabolomics data, we conducted a deep learning network (DNN) to

learn the single-cell metabolomics data and then screened the metabolic model corresponding to a high

TG value. Generally, the traditional metabolic model also contains the relation among metabolites; how-

ever, it cannot predict a pattern with a high yield of the target product. Through the HPL strategy, we built

an HPL-based model and predicted a high TG yield(s) metabolic pattern with minimal engineering oper-

ations, resulting in the deep learning of 4,321 single microbial metabolic statuses. Combined with the re-

sults concluded by the loglog chart and polar chart above (Figure 5), the accumulation DG, PS, and cobyri-

nate should be necessary to achieve high TG values. Phospholipid diacylglycerol acyltransferases (PDATs)

synthesize TG by transferring a phospholipid donor’s fatty acid to DG.62 As a result, the increase of DG

value significantly improves TG.

Meanwhile, the phosphorylation of lipid metabolic enzymes by protein kinase C requires the coordination

of phosphatidylserines and diglycerides, implying that the rationale of increasing PS value improves TG as

well.63 Surprisingly, cobyrinate could significantly affect the TG accumulation, belonging to porphyrin

metabolism. Porphyrin, a macrocyclic tetrapyrrole, and metal-containing derivatives play essential roles

in many biological systems, especially chlorophyll (Mg, Zn), for photosynthesis in microbes.64 Therefore,

improving porphyrin metabolism should promote the photosynthesis ability of C. reinhardtii and realize

a high TG accumulation under the premise of normal conditions.

To accurately understand the complex relationships between triacylglycerols (TG) and other metabolites, it is

essential to find and approximate the global optimal solution, as the current HPL model only provides a local

optimal solution to increase TG output. In this study, we used multiple deep learning algorithms to approxi-

mate a global optimum, developed plans to optimize current models, and quantitatively predict the TG

output. We applied the genetic algorithm and simulated annealing algorithm to constrain the existing neural

network models.45,46 It is suggested that the results of both algorithms are consistent with the results gener-

ated by the previous HPL model, indicating that we approximated a global optimal solution. We also pre-

sented plans for using the brute force algorithm and convex optimization methods to optimize the HPL

model.48–50 Therefore, to better obtain the global optimal solution, we propose combining the HPL strategy

with well-established quantitative methods such as metabolic flux analysis or metabolic kinetic analysis.65

These methods can help researchers determine the quantitative effects of metabolic changes, optimize the

efficiency and stability of the modeling process, and gain a better understanding of the complex relationships

between TG and other metabolites, leading to insights into optimizing TG output.

In summary, the HPL strategy should promote studies on microbiology. The feasibility of this method is

demonstrated by characterizing the DMACG phenomenon in C. reinhardtii. The established protocol

and high compatibility combined with microbiology and bioinformatics may enhance further studies in sin-

gle-cell microbial metabolomics, greatly contributing to synthetic biology.

All abbreviations in this manuscript are summarized in Table S2 as a glossary.
Limitations of the study

RespectM method has limitations. The 50 mmMALDI laser raster inevitably causes a 9.1% co-sampling rate

in the cell density of 100–200 cells/mL, while acquiring microbial single cell level metabolomics data.

Although the RespectM method is easy to operate, it’s hard to acquire single cell level data in a high mi-

crobial cell density. In the future, the applications of ‘‘MicroMS’’ and ‘‘SpaceM’’ methods could be em-

ployed in the pre- and post-MALDI session to do automated cell filtering under a high cell density.55,66
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Chlamydomonas reinhardtii All strains used in this study

were listed in Table S3

CC124, CC-125, CC-425, CC-503, CC-4346,

CC-4414, CC-4909, CC-4910, CC-5164

Chemicals, peptides, and recombinant proteins

Methanol Sigma-Aldrich Cat# 900688-1L

Acetonitrile Thermo Fisher Cat#A955-4

Dichloromethane Macklin Cat#D960496-10L

Chloroform Sigma-Aldrich Cat#366919-1L

Isopropanol Aladdin Cat#I573164-2.5L

Ammonium formate Sigma-Aldrich Cat#V900127-500G

Formic acid Sigma-Aldrich Cat#695076-100ML

2,5-Dihydroxybenzoic acid (DHB) Aladdin Cat#D119198-5g

Deposited data and code

Metabolomics data This study, MetaboLights MTBLS3830

Source code This study, Github https://github.com/dawnmengsjtu/RespectM

Software and algorithms

Matlab (v2021b) Matlab software https://www.mathworks.com/products/

matlab.html

Seurat R package (v3.1.5) cran.r-project.org https://github.com/satijalab/seurat

scImpute R package (v0.0.8) cran.r-project.org https://github.com/Vivianstats/scImpute

MetNormalizer R package (v1.3.2) cran.r-project.org https://github.com/jaspershen/

MetNormalizer

Stream Bioconda package (v1.1) pinellolab.partners.org https://github.com/pinellolab/STREAM
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Fei Tao (taofei@sjtu.edu.cn).

Materials availability

All the requests for the generated plasmids and strains should be directed to the lead contact and will be

made available on request after completion of a Materials Transfer Agreement.

Data and code availability

d Metabolomics data is publicly available as of the date after publication. Accession numbers are listed in

the key resources table.

d All original code and any additional information required to reanalyze the data reported in this paper are

available from the lead contact upon reasonable request.

d All data generated during this study are available from the lead contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains, and growth conditions

Chlamydomonas reinhardtii strains were obtained from Chlamydomonas Resource Center University of

Minnesota (http://www.chlamycollection.org) and Freshwater Algae Culture Collection at the Institute of
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Hydrobiology (FACHB) (http://algae.ihb.ac.cn/) (Table S3). All species of algae were grown up on a solid

TAPmedium. Single clones were then transferred to a liquid TAPmedium for three replicates, respectively.

Cells were cultured in a shaker under �100 mEinstein m�2 s�2 at 100 rpm.
METHOD DETAILS

Sample preprocessing and microarray preparation

For microarray preparation, the preprocessing part of this method is quite simple. We designed patterns

on the surface of the ITO slide and used lasers for pattern-based etching. Since the endogenous single-cell

status is different at each timepoint, we choose Days 3, 6, 9 for cell harvesting. When sampling for LC-MS/

MS metabolomics and lipidomics, a small amount of cell fluid was taken to centrifuge and washed with de-

ionized water. 10 mL Chlamydomonas reinhardtii cell culture was taken from Days 3, 6, 9. Samples were

centrifuged at 2,0003 g for 5 minutes and resuspended two times in deionized water to reduce the remain-

ing TAP medium among cells. Cells were then dilute to an appropriate density to balance the low co-sam-

pling rate and acquisition efficiency. After dripping around 0.5ul cell suspension to the designated area of

laser etching guidedmicroarray (LEM), the chips were placed on the clean bench and waited 15–20minutes

for the blow-dry. Before matrix sublimation, it is necessary to take bright field optical graphs by stereomi-

croscope (Olympus &MVX10, Japan) of each cell droplet unit on the prefabricated cell chip. The purpose of

this step is to recognize cells in optical images.
Matrix application and cell localization

After preparing microarrays, we used DHB as a matrix because it is suitable to analyze small molecules. Ma-

trix was applied by sublimation on LEM. The parameter of sublimation was 181�C, 12 minutes (iMLayer,

SHIMADZU, Japan). Since high-purity DHB is unstable in the air, we completed the downstream prepara-

tions within 20 minutes (https://www.aladdin-e.com/zh_cn/d119198.html).

To localize cells on microarrays, we used a stereomicroscope to take optical images. Needles were applied

to mark the original laser-etched pattern on the LEM surface. Hence the micron level positioning was

achieved. Meanwhile, the calculation of laser spot offset is the prerequisite to collect the data of single

cell level metabolomics automatically. Generally, the laser does not bombard at the absolute central in

flexcontrol (Bruker, USA), demanding that the relative offset from the experiment strike position was calcu-

lated to the absolute central position. Based on the calculation, the cells were marked on the adjusted po-

sitions in tissue profiling mode, fleximaging (Bruker, USA). Optical images were taken after matrix applica-

tion for MSI in situ data acquisition. Cells were recognized combined with original optical images.
Data acquisition of single cell level metabolomics by MALDI-MRMS

Throughout the experiments, MALDI-TOF (UltrafleXtreme, Bruker) was applied to do pretest and MALDI-

MRMS (SolariX 7.0T, Bruker) was used for high-resolution MSI acquisition. The temperature in the mass

spectrometer room was set to 18�C, and the humidity is maintained between 50% and 60%. The instrument

parameter settings are as follows. Funnel RF amplitude: 150 V; time of flight = 0.9 ms; transfer optic freq = 4

MHz; Q1 mass: 300 m/z; RF amplitude = 450 Vpp; funnel RF amplitude = 150 Vpp. The laser offset calcu-

lation should be performed before the experiments. The acquisition point is then marked in the correct po-

sition on the fleximaging software. After data acquisition, optical images were taken to compare before

laser ablation to ensure the accuracy of laser bombardment position. We collected ten blank matrix spots

in each sequence for the quality control. In parallel, 20 standards were selected due to their biological func-

tion and m/z. The m/z values of A, B, C, D, and E were 100, 300, 500, 700, and 900, respectively. The selec-

tion of 5 m/z can ensure the confidence of calibration between 60–1,500 m/z. After the acquisition, data is

processed by Root Mean Square (RMS) algorithm in SCiLS Lab software (Bruker, USA).
Sample preparation for acquisition of LC-MS/MS data

For the extraction of metabolites, we used 80% methanol as the solvent, sonicate and centrifuge at

3,000 rpm for 15 minutes. The supernatant is then taken out for centrifugation at 12,000 rpm for 30 minutes.

The extracted metabolites were lyophilized, and then reconstituted in 80%methanol.; Folch reagent (chlo-

roform: methanol = 2:1) was used for lipid extraction, then freeze-dried, and re-dissolved in a solvent (chlo-

roform: methanol = 1:1). The extracted lipid were lyophilized, and then reconstituted inmethanol: dichloro-

methane = 1:1.
18 iScience 26, 107069, July 21, 2023
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LC-MS/MS methods for metabolomics

This study applied Thermo UPLCQ-Extractive plus (QE) coupled with ESI ion source for metabolomics data

acquisition. Acquity UPLC BEH C18 column (1.7 mm, 2.1 3 100 mm) was chosen for positive and negative

mode analysis. In the mobile phase selection, we used 0.1% formic acid in diluted water as aqueous phase

A and 0.1% formic acid in pure acetonitrile as organic phase B.67,68 The LC gradient elution program was as

follows: t = 0.0 min, 99% A; t = 5.0 min, 99% A; t = 5.5 min, 70% A; t = 9 min, 100% B; t = 11 min, 100% B; and

t = 12.1 min, 99% A, respectively.

The MS parameters of C18–ESIMS in the analysis of positive and negative ionization mode were as follows:

the mass range was set fromm/z 80 to 1,000, with a spectra collection rate of 2.0 Hz and capillary voltage of

4,500 V; the gas flow rate of the nebulizer was 1.6 bar; the velocity of dry gas at 220�Cwas 6.0 L/min; funnel 1

and 2 radio frequencies (RFs) were set as 150 Vpp and 200 Vpp; collision-induced dissociation (CID) energy

was set as 0 eV; quadrupole ion energy was 5 eV; collision cell energy was 7.0 eV; pre-pulse storage was

5.0 ms; collision RF ramp was from 400 Vpp to 800 Vpp; transfer time ramp was from 50 ms to 100 ms.

QE plus with ESI ion source was also applied for metabolomics data acquisition. Acquity UPLC BEH C18

column (1.7 mm, 2.1 3 mm) was also chosen for positive and negative mode analysis. The data acquisitions

of metabolomics and lipidomics were performed on Xcalibur (ThermoFisher, USA). The following param-

eters were set to correspond to Meng et al.68
LC-MS/MS methods for lipidomics

This study also applied Thermo UPLCQ-Extractive plus (QE) coupled with ESI ion source for lipidomic data

acquisition. Acquity UPLC BEH C18 column (1.7 mm, 2.1 3 100 mm) was chosen for positive and negative

mode analysis. In the mobile phase selection, we used Acetonitrile/water (60:40) with 10 mM ammonium

formate and 0.1% formic acid as phase A, and Isopropanol/acetonitrile (90:10) with 10 mM ammonium

formate and 0.1% formic acid as phase B. The LC gradient elution program was as follows: t = 0.0 min,

99% A; t = 5.0 min, 99% A; t = 5.5 min, 70% A; t = 9 min, 100% B; t = 11 min, 100% B; and t = 12.1 min,

99% A, respectively.

We chose the scan mode as follow: DDA mode, 1 full scan followed by 10 MS/MS scans. Collision energy is

NEC 20, 45 to fragment the ions. Nitrogen (99.999%) was used as collision-induced dissociation gas. Full

scan range: 150 to 2000 amu; Full scan resolution: 70000, AGC: 1e6, IT: 100ms; dd-MS/MS resolution:

17500, AGC:5e5, IT: 50ms; spray voltage 3.8 kV (positive mode); 3.0 kV (negative mode); capillary temper-

ature: 320�C; s-lens RF level: 50 V.
RespectM pipeline of single cell metabolite-lipid identification

Compound Discover, commercial software was applied to identify metabolites. Identification results can

be found in supporting information. In brief, we have classified the identification results of MALDI sin-

gle-cell metabolomics with different confidence levels. The metabolites and lipids that bulk omics can

directly annotate were classified into Level 1 and 2, and the MS1 peaks identified by the metID algorithm

were classified as Level 3 according to adduct annotation. MS spectra of metabolites have been provided

for validation.68

Commercial softwares LipidSearch and TraceFinder were applied to identify lipids. To determine the if the

lipids belong to Chlamydomonas reinhardtii species or not, we consulted the expert in algae research. We

set the parameter to identify lipids as follow: m/z delta = G5 ppm; PQ (the "highest quality" parameter

calculated by LipidSearch software) > 0.85; CV (the standard deviation of the peak area for three replicates

of a biological sample divided by the mean peak area) < 0.3; R (the linear correlation of a three-point dilu-

tion series of a biological sample) > 0.9; m-score (the degree of matching between identified substance and

its fragmentation pattern) > 2.0; Rej (the "Reject" parameter calculated by LipidSearch) = 0. According to

the advice and references, we kept 48-54 carbon chain TG for single cell analysis and modeling. We kept

the most lipid identified by LipidSearch with the grade of A and B, finally 8 class of lipids remains. After the

parameters set above, we checked the lipidion according to the annotation of LipidSearch and retained the

identified lipids as the principle above. The DGTS and MGTS is not included in the LipidSearch software,69

therefore, we applied the TraceFinder to do identification. Based on the calculation of the isotope internal

standard, we obtained an average recovery rate of 94.01%.
iScience 26, 107069, July 21, 2023 19
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QUANTIFICATION AND STATISTICAL ANALYSIS

At least three biological replicates were performed for each experiment. Data are given as the means G

standard deviation (SD). All comparisons to determine differences were performed by applying Student’s

t test. R statistical software (R Core Team, Vienna, Austria) was used for data processing and analysis. Mean

values were regarded as significantly different at p < 0.05.
20 iScience 26, 107069, July 21, 2023
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