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Abstract: The SARS-CoV-2 pandemic has impacted public health systems all over the world. The
Delta variant seems to possess enhanced transmissibility, but no clear evidence suggests it has
increased virulence. Our data show that pre-exposed individuals had similar neutralizing activity
against the authentic COVID-19 strain and the Delta and Epsilon variants. After only one vaccine
dose, the neutralization capacity expanded to all tested variants in pre-exposed individuals. Healthy
vaccinated individuals showed a limited breadth of neutralization. One vaccine dose did induce
similar neutralizing antibodies against the Delta as against the authentic strain. However, even after
two doses, this capacity only expanded to the Epsilon variant.

Keywords: SARS-CoV-2; COVID-19 vaccine; neutralization; serology; protection

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), is responsible for the most recent global pandemic,
declared by the World Health Organization (WHO) on 11 March 2020 [1]. COVID-19 is a
serious illness that has had a significant impact on public health due to its high morbidity
and mortality rates [2]. At the beginning of the pandemic, most countries around the world
underwent a strict lockdown that had serious social, economic and health service effects.
As a consequence, many non-COVID-19 diseases, such as tuberculosis [3] and cancer [4],
suffered delays in diagnosis and treatment, leading to more severe illness and outcomes.

According to a WHO report, as of 22 November 2021, there had been 256,637,065
confirmed cases of COVID-19 worldwide, including 5,148,221 deaths [5] (https://covid19.
who.int/, accessed on 22 November 2021). As of 22 November 2021, a total of 7,370,902,499
vaccine doses had been administered worldwide [2]. Despite the tremendous milestones
achieved in vaccine approval and administration, SARS-CoV-2, being an RNA virus, has
genetically evolved over time, leading to the emergence of several variants from different
geographic regions [6,7]. The variant strains have developed characteristics which grant
them advantages in maintaining viral circulation, such as higher transmissibility and in-
fectivity [8]. Most of these genetic differences are observed in the spike protein (S) region,
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specifically in the receptor-binding domain (RBD) and the N-terminal domain (NTD). The
RBD and, to some extent, the NTD, as suggested by some evidence, are immunodominant,
serving as the main neutralization targets for natural and vaccine-elicited antibodies [6,9].
The Delta variant was first reported in the Indian state of Maharashtra in December 2020
and harbors ten mutations (T19R, G142D, 156del, 157del, R158G, L452R, T478K, D614G,
P681R, D950N) in the S protein [6]. Of note, the Delta variant lacks E484Q, a significant
mutation associated with antibody neutralization resistance [10]. After successfully spread-
ing globally, the prevalence of the Delta variant in the USA increased from 1.3% to 94.4%
by 31 July 2021, while the Alpha variant decreased from 70% to 2.4% [7]. Perhaps of most
serious concern, the Delta variant has been associated with breakthrough infections in
vaccinated individuals [7]. The recent surge in cases despite extensive vaccination cam-
paigns supports the concern about low vaccine effectiveness against variants. Studies are
at odds regarding this topic, with some claiming that breakthrough infections are more
likely to occur due to viral escape from antibodies [11,12]; others have demonstrated that
mRNA vaccines remain effective through limiting COVID-19 severity, hospitalization and
deaths [13–21]. Recently, more studies are exploring the efficacy of the natural immune
response to SARS-CoV-2 vs. the mRNA vaccine-elicited response [22–25]. Our most recent
work confirmed that following a natural infection, neutralizing antibody (nAbs) titers
generated during infection accompanied by vaccination are significantly better in function
than those generated by vaccination alone [26]. To this end, in this study, we compared
the neutralization capacity of previously infected individuals and healthy previously
unexposed individuals before and after vaccination against several variants of concern
(VOCs) using a surrogate viral neutralization assay [27]. Our results from a Latino-origin
population indicate that, compared with vaccination, natural infection induces a broader
humoral response offering a wider range of protection against a rapidly evolving virus.
These findings have pivotal implications in the understanding of the immune response to
COVID-19 induced by vaccination amid emerging variants in the setting of a vaccinated
population, and may contribute to future vaccine designs and booster schedules.

2. Materials and Methods
2.1. Study Samples

We selected individuals infected with SARS-CoV-2 at any time between March 2020
and February 2021. From 59 subjects followed for months, a subgroup of 10 vaccinated
subjects previously exposed to SARS-CoV-2 and a subgroup of 21 healthy vaccinated
volunteers who were never exposed to SARS-CoV-2 were followed for six to eight months.
Vaccinated subjects received either the Pfizer-BioNTech or Moderna vaccine formulation. In
the exposed group, all individuals tested positive for SARS-CoV-2 infection by quantitative
PCR with reverse transcription (qRT–PCR) or serology tests (IgM and/or IgG). Serum
samples from both groups were collected before vaccination (baseline), and after the first
and second vaccine doses (Supplementary Tables S1 and S2). Samples used in this study
were obtained from adult volunteers (>21 years old) participating in the IRB- approved
clinical protocol “Molecular basis and epidemiology of viral infections circulating in Puerto
Rico”, Pro0004333. The protocol was submitted to, and ethical approval was given by,
Advarra IRB on 21 April 2020. Participating volunteers were recruited before most of the
SARS-CoV-2 variants were reported as circulating in Puerto Rico. More specifically, the
Delta variant was first detected on 15 June 2021 [28].

2.2. cPass SARS-CoV-2 Neutralization Antibody Detection Assay

To determine the neutralizing activity of antibodies against SARS-CoV-2, we used a
surrogate viral neutralization test (C-Pass GenScript sVNT, Piscataway, NJ, USA) according
to the manufacturer’s instructions [13,26,27]. Briefly, serum samples were diluted accord-
ing to the manufacturer’s instructions and incubated with soluble SARS-CoV-2 receptor-
binding domain (RBD-HRP; S-RBD-HRP Wild Type (WT), Genscript Cat no. Z03594)
antigen for 30 min at 37 ◦C, mimicking a neutralization reaction. Six different S-RBD-
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HRP-labeled mutants from Genscript (UK, B.1.1.7-Alpha, Cat no. Z03595; South Africa,
B.1.351-Beta, Cat no. Z03596; Brazil P.1- Gamma, Cat no. Z03601; US, California, B.1.429/7-
Epsilon, Cat no. Z03605; India B.1.617, Cat no. Z03608; India B.1.617.2 -Delta, Cat no.
Z03614) were used in the assay, replacing the S-RBD-HRP WT component as variants of
interest or concern to be assayed. Afterwards, samples were added to a 96-well plate coated
with human ACE-2 protein. Following a 15 min incubation at 37 ◦C, RBD-HRP complexed
with antibodies was removed in a wash step. The reaction was developed with tetram-
ethylbenzidine (TMB) followed by a stop solution allowing the visualization of RBD-HRP
bound to ACE2. Since this is an inhibition assay, color intensity was inversely proportional
to the number of neutralizing antibodies present in the samples. Data were interpreted by
calculating the percentage of inhibition of RBD-HRP binding. Samples with neutralization
activity of ≥30% indicated the presence of SARS CoV-2 RBD-interacting antibodies capable
of blocking the RBD–ACE2 interaction, thus inhibiting viral entry into host cells. While
this assay measures the blocking activity of those antibodies, this activity is referred to
throughout the text as “percentage of neutralization” for consistency and clarity.

2.3. Statistical Methods

Statistical analyses were performed using GraphPad Prism 7.0 software (GraphPad
Software, San Diego, CA, USA). The statistical significance between or within groups was
determined using two-way analysis of variance (ANOVA), one-way ANOVA (Tukey’s,
Sidak’s or Dunnett’s multiple comparisons test as a post hoc test), an unpaired t-test or
Wilcoxon–Mann–Whitney, to compare the means. The p values are expressed in relational
terms with the alpha values. The significance threshold for all analyses was set at 0.05.

3. Results
3.1. Natural Infection Induces an Effective Neutralization against the Delta Variant

To examine the neutralization ability of sera from naturally infected individuals
against the wild-type (WT) SARS-CoV-2, we evaluated baseline samples from 10 volunteers.
Out of the 10 subjects, 8 had neutralizing activity greater than 70%, indicating the presence
of antibodies capable of blocking the RBD-ACE2 binding (Figure 1A and Supplementary
Table S3). The other two had neutralization degrees less than 70% but greater than 30%.
To compare the neutralizing response elicited by WT SARS-CoV-2 to other virus strains,
we exposed sera from those 10 individuals to six variants (Alpha, Beta, Gamma, Epsilon,
Kappa and Delta). As expected, the highest neutralizing capacity observed was against the
WT strain (Figure 1A). In comparison to the WT strain, there was a significantly decreased
neutralizing activity against the Beta, Gamma and Kappa variants (p = 0.0041, p = 0.0003
and p = 0.0294, respectively). Surprisingly, no statistical differences were observed between
the WT strain and the Alpha, Epsilon and Delta variants (Figure 1A). These results suggest
that natural infection alone is capable of inducing a broad humoral response to various
SARS-CoV-2 strains, including the Delta variant.

3.2. Vaccination Boosts Neutralizing Capacity against Variants in Previously Infected Individuals

To assess the humoral immune response to naturally acquired SARS-CoV-2 vs. the
mRNA-based COVID-19 vaccine-elicited response, we compared the neutralizing capacity
of exposed and unexposed subjects after one vaccine dose. Nineteen out of the twenty-
one unexposed individuals (90.5%) produced nAbs (neutralization % >30) (Figure 1B and
Supplementary Table S4). Similarly, all previously infected individuals reached neutralizing
activity greater than 85% after just one vaccine dose (Figure 1C). This suggests that, in pre-
exposed individuals, a single vaccine dose may be sufficient to grant protective immune
status against WT SARS-CoV-2. When evaluating the neutralization from unexposed
vaccinated individuals against the six VOCs, we found significant differences against all
except the Delta variant, in comparison with the WT SARS-CoV-2 (p = 0.0075 for Alpha,
p < 0.001 for Beta and Gamma, p = 0.0055 for Epsilon and p = 0.0012 for Kappa) (Figure 1B).
This suggests that the Delta variant, in our population, does not escape neutralization
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by the antibodies induced by mRNA vaccination. In contrast, the neutralization activity
in all previously exposed vaccinated individuals increased against all variants with no
statistically significant differences (Figure 1C).
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Figure 1. Neutralization capacity of sera from infected and non-infected individuals against SARS-
CoV-2 variants before and after vaccination. The neutralization activity of sera from infected indi-
viduals (n = 10) and non-infected ones (n = 21) before and after vaccination was evaluated against 
the six variants of concern. Dotted lines indicate the limit of detection of the sVNT assay, where the 
percentage of signal inhibition is determined (≥30% indicates a positive result). A normality test 
(Shapiro–Wilk) was performed for all datasets in order to assess the distribution of the data. The 
significance threshold for all analyses was set at p < 0.05. (A). Neutralization activity of sera from 
infected individuals (n = 10) before vaccination. A one-way ANOVA test with Dunnett’s multiple 
comparisons test was performed between each of the variants. (B). Neutralization activity of sera 
from healthy individuals (n = 21) after receiving the 1st vaccine dose. A one-way ANOVA test with 
Dunn’s Kruskal–Wallis multiple comparisons test was performed between each of the variants. (C). 
Neutralization activity of sera from infected individuals (n = 10) after receiving the first vaccine 
dose. A one-way ANOVA test with Dunnett’s multiple comparisons test was performed between 
each of the variants. (D). Neutralization activity of sera from healthy individuals (n = 21) after re-
ceiving the 2nd vaccine dose. A one-way ANOVA test with Dunn’s Kruskal–Wallis multiple com-
parisons test was performed between each of the variants. (E). Neutralization activity of sera from 
infected individuals (n = 10) after receiving the 2nd vaccine dose. A one-way ANOVA test with 
Dunnett’s multiple comparisons test was performed between each of the variants. (F). Neutralization 
activity of sera from vaccinated individuals, pre-exposed (n = 10, depicted in circles) and healthy (n = 21, 
depicted in squares), after receiving the 2nd dose was evaluated. A one-way ANOVA test with Dunn’s 
Kruskal–Wallis multiple comparisons test was performed between each of the variants. 
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Figure 1. Neutralization capacity of sera from infected and non-infected individuals against SARS-
CoV-2 variants before and after vaccination. The neutralization activity of sera from infected indi-
viduals (n = 10) and non-infected ones (n = 21) before and after vaccination was evaluated against
the six variants of concern. Dotted lines indicate the limit of detection of the sVNT assay, where
the percentage of signal inhibition is determined (≥30% indicates a positive result). A normality
test (Shapiro–Wilk) was performed for all datasets in order to assess the distribution of the data.
The significance threshold for all analyses was set at p < 0.05. (A). Neutralization activity of sera
from infected individuals (n = 10) before vaccination. A one-way ANOVA test with Dunnett’s
multiple comparisons test was performed between each of the variants. (B). Neutralization activity
of sera from healthy individuals (n = 21) after receiving the 1st vaccine dose. A one-way ANOVA
test with Dunn’s Kruskal–Wallis multiple comparisons test was performed between each of the
variants. (C). Neutralization activity of sera from infected individuals (n = 10) after receiving the first
vaccine dose. A one-way ANOVA test with Dunnett’s multiple comparisons test was performed
between each of the variants. (D). Neutralization activity of sera from healthy individuals (n = 21)
after receiving the 2nd vaccine dose. A one-way ANOVA test with Dunn’s Kruskal–Wallis multiple
comparisons test was performed between each of the variants. (E). Neutralization activity of sera
from infected individuals (n = 10) after receiving the 2nd vaccine dose. A one-way ANOVA test with
Dunnett’s multiple comparisons test was performed between each of the variants. (F). Neutralization
activity of sera from vaccinated individuals, pre-exposed (n = 10, depicted in circles) and healthy
(n = 21, depicted in squares), after receiving the 2nd dose was evaluated. A one-way ANOVA test
with Dunn’s Kruskal–Wallis multiple comparisons test was performed between each of the variants.

3.3. Full Vaccination Induces Limited Neutralizing Activity against All Tested Variants in
Unexposed Individuals

Next, we evaluated the neutralizing capacity of antibodies after two vaccine doses in
both previously exposed and unexposed individuals. All subjects (n = 31), regardless of
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immune status before vaccination, reached neutralization levels greater that 95% against
WT SARS-CoV-2 after receiving a second vaccine dose (Figure 1D,E). This confirms that, in
most COVID-19-naïve individuals, two vaccine doses are required to attain full protection.
However, when exploring the neutralization against the variants, the unexposed individ-
uals only gained similar neutralizing activity to the WT SARS-CoV-2 against the Epsilon
and Delta variants (p = 0.0032 for Alpha, p < 0.001 for Beta and Gamma and p = 0.0035
for Kappa) (Figure 1D). Therefore, vaccination in unexposed individuals generates a neu-
tralizing response against the Epsilon and Delta variants that is similar to the response
against WT SARS-CoV-2, but only after the second dose. Highly relevant, even after the
second dose, the neutralization against the other four variants was of a significantly lower
magnitude compared to the WT.

On the other hand, we observed that the previously infected individuals maintained
neutralizing capacity against all variants, similar to the response against the WT SARS-CoV-
2 strain, denoting a key difference in the dynamics of vaccine-elicited antibodies between
exposed and unexposed individuals (Figure 1E). This difference can be better appreciated
in Figure 1F, where both vaccinated groups are compared after receiving the second dose.
Of note, neutralization against the Alpha and Gamma variants did not behave similarly
between groups, being of a higher magnitude in pre-exposed individuals (p = 0.0056 for
Alpha and p < 0.0001 for Gamma) (Figure 1F).

4. Discussion

There is growing, but still limited, information available on immunity against the
viral variants conferred by natural infection with the authentic SARS-CoV-2 strain or by
the mRNA COVID-19 vaccines. Using samples collected during the COVID-19 pandemic,
most of them before the documented introduction of the variants in the jurisdiction of
Puerto Rico [26,28], we attempted to compare the kinetics of the nAbs response in the
context of individuals with naturally acquired infection (pre-exposed) and unexposed
individuals, following vaccination, via a widely used sVNT detecting RBD-targeting
antibodies [26,29–31].

Strikingly, we found that natural infection before vaccination confers a broader neutral-
izing response against different SARS-CoV-2 strains, including the Delta variant, compared
to the first dose of the COVID-19 mRNA vaccines. Using sera from individuals infected dur-
ing wave 1 in the United Kingdom (UK), it was found that while the cross-neutralization of
different SARS-CoV-2 VOC lineages is reduced, the sera neutralize the VOCs and parental
virus to similar levels [24]. Another study found that a naturally infected individual pro-
duced uncommon genetic and structural characteristics and showed potent neutralization
against authentic SARS-CoV-2 viruses, including VOCs [32]. These results are consistent
with other reports [33–35] and highlight the need for more epidemiological data about the
contribution of previously exposed individuals with naturally-acquired immunity to herd
immunity. Overall, these issues are scarcely considered in any statistical model.

Highly relevant, our results also suggest that two vaccine doses may induce limited
protection against some of the circulating variants in naïve individuals.

Consistent with other studies [34,36,37], our data confirm that subjects previously
exposed to SARS-CoV-2 reach levels of protection against all tested variants after just one
vaccine dose. Furthermore, we found a limited contribution, if any, of a second vaccine dose
in pre-exposed individuals. Our results are also in line with a recent study characterizing
the serum antibody classes and subclasses targeting the RBD of the S protein of SARS-CoV-2.
They found that after primary vaccination, individuals with pre-existing immunity showed
higher induction of all antibodies but IgG3 compared to SARS-CoV-2-naïve subjects, and
that these antibodies targeted wild-type SARS-CoV-2 as well as its Alpha, Betta, Gamma
and Delta variants. In agreement with our results, they also reported that pre-immune
subjects did not mount a recall antibody response on receiving the second vaccine dose [25].
Together, our results and those from prior work reinforce the suggestion that individuals
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with a history of SARS-CoV-2 infection may not benefit from the second mRNA vaccine
dose with the current standard regimen.

These findings strongly suggest that humoral immunity induced by natural infection
results in higher-quality antibodies [34,35,37] and contributes to the expansion of memory
B cells producing more cross-reactive antibodies following vaccination [35]. Andreano et al.
dissected the nature of the memory B cell and antibody response at the single-cell level
using samples from five naïve and five convalescent individuals vaccinated with the
BNT162b2 mRNA vaccine. Consistent with our data, they found that the B.1.351 (Beta)
and B.1.1.248 (Gamma) variants escaped almost seventy percent of the three thousand
antibodies tested, in contrast to the B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants, of which
a much smaller portion were unaffected [22].

On the other hand, we found that in naïve subjects, a single dose of COVID-19 mRNA
vaccines induced the same magnitude of nAbs against the Delta variant as against the WT
strain. This response was improved after the second dose. However, even after a second
dose, the magnitude of neutralization against other variants was significantly lower than
against the WT strain.

A recent remarkable observational study in Puerto Rico collected hospitalization,
death and vaccination rate data for more than 100,000 laboratory-confirmed SARS-CoV-2
infections over a period of 10 months. The study found that the effectiveness of the COVID-
19 vaccines in preventing hospitalizations or death did not change after the Delta variant
became dominant [28]. While that study did not segregate data at an individual level by
the vaccination status of the SARS-CoV-2-positive individuals at the time of hospitalization
or death, our results are perfectly aligned with, and provide the immunological rationale
for, the findings of that study.

Recent studies suggested that the Delta variant may infect vaccinated individuals,
creating what are defined as breakthrough infections [38]. In vitro neutralization results
using monoclonal antibodies argue that vaccination induces a low level of nAbs against the
Delta variant [11,35,39]. However, as demonstrated by Liu and colleagues, breakthrough
infections by the Delta variant may be due to enhanced viral replication and infectivity,
and not to antibody evasion or viral immune escape [7]. This statement is reinforced by the
fact that the Delta variant lacks the E484Q mutation that seems to grant antibody resistance
to other variants [9]. Thus, it seems that the Delta variant has developed the perfect
evolutionary balance between transmissibility and virulence to become the dominant
strain in circulation. However, there are limited or no data on breakthrough infections
caused by the Delta variant in vaccinated people, comparing their prior immune status
to SARS-CoV-2.

Our findings, together with prior reports on the effectiveness of the cellular immune
response against the variants [35,40–43], warrant a revision of COVID-19 vaccine policy
implementation in subjects with prior natural immunity to SARS-CoV-2.

Since early during the pandemic, patients of older age (>65 years old) and with
comorbidities, such as diabetes, respiratory disease and coronary heart disease, have
had the worst prognosis, as these factors seem to have an impact on COVID-19 disease
outcomes [44,45]. Additionally, these individuals may have weaker immune systems
by default that could give rise to breakthrough infections, but vaccination could still
contribute to a lower mortality risk. Despite the progress achieved with the introduction of
COVID-19 vaccines, some hesitancy has emerged among the population during the last
year regarding their safety and efficacy. Vaccine acceptance has lessened due to social and
human factors, such as misinformation in social media and lack of public health impact in
communities [46]. Nonetheless, vaccination is still considered the most effective way of
preventing severe disease and mortality. Vaccination, along with natural herd immunity,
is our ticket to restoring our lives to some sense of normalcy, and it needs to advance,
along with epidemiological and genomic surveillance, as a means to counter progressing
SARS-CoV-2 fitness [38].
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We are aware of the limitations of our study, including the assay we implemented. The
presence of non-RBD antibodies possessing neutralizing capacity has been documented [47,48].
However, as documented in the literature, the RBD domain continues to be the key target
for SARS-CoV-2 neutralization [49–53]. The relevance of the RDB domain as a main
target of neutralization is also supported by a nanoparticle-based vaccine platform for the
multivalent display of the RBD. This vaccine formulation induced broadly cross-reactive
antibodies with high neutralizing properties not only against an early isolate of SARS-CoV-
2 but also against three SARS-CoV-2 variants of concern, including the Delta variant, as well
as SARS-CoV-1 [54]. We cannot rule out an exceptional contribution of some unique non-
RBD nAbs. Those antibodies may not be detected by the surrogate assay we implemented
but taking into account prior work using the same sVNT assay, we believe we are capturing
the big picture in terms of neutralization. Another limitation is the small sample size
and lack of cellular immunity characterization. The waning of natural or vaccine-elicited
immunity remains a possibility outside the follow-up period used in this study. However,
our results and those from others [21,25], despite being obtained from a population of
different genetic backgrounds, agree with the current ongoing scenario (October 2021) in
the UK where a high level of vaccine effectiveness against symptomatic diseases with the
Delta variant was found among individuals who had received two COVID-19 vaccines
doses [55]. In that country, a rampant increase in Delta variant circulation, up 35% over the
two previous weeks, was observed after all restrictions were lifted in summer 2021 [56]. In
spite of this, taking into account the high number of cases naturally exposed to the virus
and the high vaccination rate in the UK [57], as would be anticipated from our results, the
daily deaths were a tenth of what they were in the prior wave [56,58]. Considering our
findings and those from other groups [13–15,18,21], a more challenging scenario would
be a predominance of other variants such as Alpha, Beta, Gamma or Kappa, showing
limited neutralization after full vaccination with the mRNA COVID-19 vaccines. These
results warrant further follow-up by public health institutions and officials to develop a
preparedness plan in anticipation of the predominance of less effectively controlled variants.
After the largest viral pandemic thus far of modern times, the “Spanish flu” (estimated total
deaths from 50 to 100 million) [59–62], major genetic changes were needed in the influenza
virus to cause new outbreaks [63,64]. However, none of them were of the magnitude in
terms of morbidity or mortality of the 1918 pandemic. With that in mind, it is reasonable to
suggest that as of November 2021, two years after the detection of SARS-CoV-2 for the first
time, the immune system at a population level is in a better position to recognize and fight
back more effectively against any newly arising variant of this virus.

To our knowledge, this is the first study conducted in a Hispanic/Latino population
impacted by COVID-19. Our findings are a significant contribution to the still lacking
population-based studies concerning virus population dynamics in the setting of vaccina-
tion and shed light on the design of second-generation COVID-19 vaccines.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122405/s1. Table S1: Time between sample and vaccination of healthy and naturally
infected volunteers. Table S2: Time between diagnosis and vaccines for pre-exposed individuals.
Table S3: Neutralization data against SARS-CoV-2 and variants for pre-exposed individuals. Table S4:
Neutralization data against SARS-CoV-2 and variants for healthy vaccinated individuals.

Author Contributions: C.A.S. and A.M.E. conceptualized the work, supervised the studies and
secured the funds. C.S.-C. and P.P. supervised the work and supported design of the figures. E.J.O.
and L.C. executed the experiments. E.J.O., C.S.-C., D.A. and C.P.-C. coordinated and supervised the
cohort’s management and follow-up. E.J.O., C.S.-C. and P.P. organized the data for future analysis.
T.A. provided administrative and regulatory support. All authors contributed to the discussion and
analysis of results. C.A.S. and C.S.-C. wrote the initial draft, with the other authors providing insights
and concepts. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by 1U01CA260541-01 to C.A.S. (NCI/NIAID). This work was
also supported by the Puerto Rico Science, Technology and Research Trust supported the research

https://www.mdpi.com/article/10.3390/v13122405/s1
https://www.mdpi.com/article/10.3390/v13122405/s1


Viruses 2021, 13, 2405 8 of 11

reported in this work under agreement number 2020-00272 to A.M.E. and C.A.S. The University of
Puerto Rico also contributed with the UPR-COVID-19 Grant to C.A.S. and A.M.E.

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the institutional review board. All volunteers participated
under the IRB-approved clinical protocol “Molecular basis and epidemiology of viral infections
circulating in Puerto Rico”, Pro0004333. The protocol was submitted to, and ethical approval was
given by, Advarra IRB on 21 April 2020.

Informed Consent Statement: Informed consent was obtained from all participants involved in
this study.

Data Availability Statement: All data are available upon request.

Acknowledgments: The authors wish to thank the volunteers who were willing to participate and
to contribute to science.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [CrossRef]
2. Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Korompoki, E.; Fotiou, D.; Migkou, M.; Tzanninis, I.G.; Psaltopoulou, T.; Kastritis,

E.; Terpos, E.; Dimopoulos, M.A. Emerging treatment strategies for COVID-19 infection. Clin. Exp. Med. 2021, 21, 167–179.
[CrossRef]

3. Di Gennaro, F.; Gualano, G.; Timelli, L.; Vittozzi, P.; Di Bari, V.; Libertone, R.; Cerva, C.; Pinnarelli, L.; Nisii, C.; Ianniello, S.; et al.
Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease
Referral Hospital. Antibiotics 2021, 10, 272. [CrossRef]

4. Erdmann, F.; Wellbrock, M.; Trübenbach, C.; Spix, C.; Schrappe, M.; Schüz, J.; Grabow, D.; Eichinger, M. Impact of the COVID-19
pandemic on incidence, time of diagnosis and delivery of healthcare among paediatric oncology patients in Germany in 2020:
Evidence from the German Childhood Cancer Registry and a qualitative survey. Lancet Reg. Health Eur. 2021, 9, 100188. [CrossRef]

5. World Health Organization. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on
10 October 2021).

6. Aleem, A.; Akbar Samad, A.B.; Slenker, A.K. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus
(COVID-19). In StatPearls; StatPearls Publishing Copyright © 2021; StatPearls Publishing LLC: Treasure Island, FL, USA, 2021.

7. Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C.; Widen, S.G.; An, Z.; Weaver, S.C.; Menachery, V.D.; et al. Delta
spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. bioRxiv 2021. [CrossRef]

8. Gómez-Carballa, A.; Pardo-Seco, J.; Bello, X.; Martinón-Torres, F.; Salas, A. Superspreading in the emergence of COVID-19
variants. Trends Genet. 2021, 37, 1069–1080. [CrossRef] [PubMed]

9. Farinholt, T.; Doddapaneni, H.; Qin, X.; Menon, V.; Meng, Q.; Metcalf, G.; Chao, H.; Gingras, M.C.; Farinholt, P.; Agrawal, C.; et al.
Transmission event of SARS-CoV-2 Delta variant reveals multiple vaccine breakthrough infections. medRxiv 2021. [CrossRef]
[PubMed]

10. Pascarella, S.; Ciccozzi, M.; Zella, D.; Bianchi, M.; Benedetti, F.; Benvenuto, D.; Broccolo, F.; Cauda, R.; Caruso, A.; Angeletti,
S.; et al. SARS-CoV-2 B.1.617 Indian variants: Are electrostatic potential changes responsible for a higher transmission rate? J.
Med. Virol. 2021, 93, 6551–6556. [CrossRef]

11. Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech,
J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276–280. [CrossRef]

12. Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al.
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114–119. [CrossRef]

13. Lustig, Y.; Zuckerman, N.; Nemet, I.; Atari, N.; Kliker, L.; Regev-Yochay, G.; Sapir, E.; Mor, O.; Alroy-Preis, S.; Mendelson, E.; et al.
Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer)
vaccination in health care workers, Israel. Euro Surveill. 2021, 26, 2100557. [CrossRef]

14. Christensen, P.A.; Olsen, R.J.; Long, S.W.; Subedi, S.; Davis, J.J.; Hodjat, P.; Walley, D.R.; Kinskey, J.C.; Ojeda Saavedra, M.; Pruitt,
L.; et al. Delta variants of SARS-CoV-2 cause significantly increased vaccine breakthrough COVID-19 cases in Houston, Texas.
Am. J. Pathol. 2021. [CrossRef] [PubMed]

15. Tenforde, M.W.; Self, W.H.; Adams, K.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey,
J.D.; et al. Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity. JAMA 2021, 326, 2043.
[CrossRef] [PubMed]

16. Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics,
efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2021. [CrossRef]
[PubMed]

http://doi.org/10.23750/abm.v91i1.9397
http://doi.org/10.1007/s10238-020-00671-y
http://doi.org/10.3390/antibiotics10030272
http://doi.org/10.1016/j.lanepe.2021.100188
https://covid19.who.int/
http://doi.org/10.1101/2021.08.12.456173
http://doi.org/10.1016/j.tig.2021.09.003
http://www.ncbi.nlm.nih.gov/pubmed/34556337
http://doi.org/10.1186/s12916-021-02103-4
http://www.ncbi.nlm.nih.gov/pubmed/34593004
http://doi.org/10.1002/jmv.27210
http://doi.org/10.1038/s41586-021-03777-9
http://doi.org/10.1038/s41586-021-03944-y
http://doi.org/10.2807/1560-7917.ES.2021.26.26.2100557
http://doi.org/10.1016/j.ajpath.2021.10.019
http://www.ncbi.nlm.nih.gov/pubmed/34774517
http://doi.org/10.1001/jama.2021.19499
http://www.ncbi.nlm.nih.gov/pubmed/34734975
http://doi.org/10.1016/j.cmi.2021.10.005
http://www.ncbi.nlm.nih.gov/pubmed/34715347


Viruses 2021, 13, 2405 9 of 11

17. Valleriani, F.; Mancuso, E.; Vincifori, G.; Teodori, L.; Di Marcantonio, L.; Spedicato, M.; Leone, A.; Savini, G.; Morelli, D.; Bonfini,
B.; et al. Neutralization of SARS-CoV-2 Variants by Serum from BNT162b2 Vaccine Recipients. Viruses 2021, 13, 2011. [CrossRef]

18. Carreño, J.M.; Alshammary, H.; Singh, G.; Raskin, A.; Amanat, F.; Amoako, A.; Gonzalez-Reiche, A.S.; van de Guchte, A.; Study
Group, P.; Srivastava, K.; et al. Evidence for retained spike-binding and neutralizing activity against emerging SARS-CoV-2
variants in serum of COVID-19 mRNA vaccine recipients. EBioMedicine 2021, 73, 103626. [CrossRef] [PubMed]

19. Glatman-Freedman, A.; Hershkovitz, Y.; Kaufman, Z.; Dichtiar, R.; Keinan-Boker, L.; Bromberg, M. Effectiveness of BNT162b2
Vaccine in Adolescents during Outbreak of SARS-CoV-2 Delta Variant Infection, Israel, 2021. Emerg. Infect. Dis. 2021, 27,
2919–2922. [CrossRef]

20. Choi, A.; Koch, M.; Wu, K.; Dixon, G.; Oestreicher, J.; Legault, H.; Stewart-Jones, G.B.E.; Colpitts, T.; Pajon, R.; Bennett, H.; et al.
Serum Neutralizing Activity of mRNA-1273 against SARS-CoV-2 Variants. J. Virol. 2021, 95, e0131321. [CrossRef]

21. Chemaitelly, H.; Tang, P.; Hasan, M.R.; AlMukdad, S.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; Coyle, P.; Ayoub, H.H.;
Al Kanaani, Z.; et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N. Engl. J. Med. 2021.
[CrossRef]

22. Andreano, E.; Paciello, I.; Piccini, G.; Manganaro, N.; Pileri, P.; Hyseni, I.; Leonardi, M.; Pantano, E.; Abbiento, V.; Benincasa,
L.; et al. Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants. Nature 2021. [CrossRef]

23. Luczkowiak, J.; Labiod, N.; Rivas, G.; Rolo, M.; Lasala, F.; Lora-Tamayo, J.; Mancheno-Losa, M.; Rial, D.; Pérez-Rivilla, A.;
Folgueira, M.D.; et al. Prime-Boost Vaccination With BNT162b2 Induces High Neutralizing Activity Against SARS-CoV-2 Variants
in Naïve and COVID-19-Convalescent Individuals. Open Forum Infect. Dis. 2021, 8, ofab468. [CrossRef] [PubMed]

24. Dupont, L.; Snell, L.B.; Graham, C.; Seow, J.; Merrick, B.; Lechmere, T.; Maguire, T.J.A.; Hallett, S.R.; Pickering, S.; Charalampous,
T.; et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern.
Nat. Microbiol. 2021, 6, 1433–1442. [CrossRef]

25. Tejedor Vaquero, S.; de Campos-Mata, L.; Ramada, J.M.; Díaz, P.; Navarro-Barriuso, J.; Ribas-Llaurado, C.; Rodrigo Melero, N.;
Carolis, C.; Cerutti, A.; Gimeno, R.; et al. The mRNA-1273 Vaccine Induces Cross-Variant Antibody Responses to SARS-CoV-2
With Distinct Profiles in Individuals With or Without Pre-Existing Immunity. Front. Immunol. 2021, 12, 737083. [CrossRef]

26. Sariol, C.A.; Pantoja, P.; Serrano-Collazo, C.; Rosa-Arocho, T.; Armina-Rodríguez, A.; Cruz, L.; Stone, E.T.T.; Arana, T.; Climent, C.;
Latoni, G.; et al. Function Is More Reliable than Quantity to Follow Up the Humoral Response to the Receptor-Binding Domain
of SARS-CoV-2-Spike Protein after Natural Infection or COVID-19 Vaccination. Viruses 2021, 13, 1972. [CrossRef]

27. Taylor, S.C.; Hurst, B.; Charlton, C.L.; Bailey, A.; Kanji, J.N.; McCarthy, M.K.; Morrison, T.E.; Huey, L.; Annen, K.; DomBourian,
M.G.; et al. A New SARS CoV-2 Dual Purpose Serology Test: Highly Accurate Infection Tracing and Neutralizing Antibody
Response Detection. J. Clin. Microbiol. 2021, 59, e02438-20. [CrossRef]

28. Robles-Fontan, M.M.; Nieves, E.G.; Cardona-Gerena, I.; Irizarry, R.A. Time-Varying Effectiveness of Three COVID-19 Vaccines in
Puerto Rico. medRxiv 2021. [CrossRef]

29. Mariën, J.; Michiels, J.; Heyndrickx, L.; Nkuba-Ndaye, A.; Ceulemans, A.; Bartholomeeusen, K.; Madinga, J.; Mbala-Kingebeni, P.;
Vanlerberghe, V.; Ahuka-Mundeke, S.; et al. Evaluation of a surrogate virus neutralization test for high-throughput serosurveil-
lance of SARS-CoV-2. J. Virol. Methods 2021, 297, 114228. [CrossRef] [PubMed]

30. Nandakumar, V.; Profaizer, T.; Lozier, B.K.; Elgort, M.G.; Larragoite, E.T.; Williams, E.; Solis-Leal, A.; Lopez, J.B.; Berges, B.K.;
Planelles, V.; et al. Evaluation of a Surrogate ELISA- Based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
cPass Neutralization Antibody Detection Assay and Correlation with IgG Commercial Serology Assays. Arch. Pathol. Lab. Med.
2021, 145, 1212–1220. [CrossRef] [PubMed]

31. Valcourt, E.J.; Manguiat, K.; Robinson, A.; Chen, J.C.; Dimitrova, K.; Philipson, C.; Lamoureux, L.; McLachlan, E.; Schiffman,
Z.; Drebot, M.A.; et al. Evaluation of a commercially-available surrogate virus neutralization test for severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2). Diagn. Microbiol. Infect. Dis. 2021, 99, 115294. [CrossRef]

32. Kramer, K.J.; Johnson, N.V.; Shiakolas, A.R.; Suryadevara, N.; Periasamy, S.; Raju, N.; Williams, J.K.; Wrapp, D.; Zost, S.J.; Walker,
L.M.; et al. Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and
structural mode of spike recognition. Cell Rep. 2021, 37, 109784. [CrossRef] [PubMed]

33. Shrestha, L.B.; Tedla, N.; Bull, R.A. Broadly-Neutralizing Antibodies Against Emerging SARS-CoV-2 Variants. Front. Immunol.
2021, 12, 752003. [CrossRef] [PubMed]

34. Stamatatos, L.; Czartoski, J.; Wan, Y.H.; Homad, L.J.; Rubin, V.; Glantz, H.; Neradilek, M.; Seydoux, E.; Jennewein, M.F.; MacCamy,
A.J.; et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021, 372,
1413–1418. [CrossRef]

35. Wang, Z.; Muecksch, F.; Schaefer-Babajew, D.; Finkin, S.; Viant, C.; Gaebler, C.; Hoffmann, H.H.; Barnes, C.O.; Cipolla, M.;
Ramos, V.; et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021, 595, 426–431.
[CrossRef]

36. Forgacs, D.; Jang, H.; Abreu, R.B.; Hanley, H.B.; Gattiker, J.L.; Jefferson, A.M.; Ross, T.M. SARS-CoV-2 mRNA Vaccines Elicit
Different Responses in Immunologically Naïve and Pre-Immune Humans. Front. Immunol. 2021, 12, 728021. [CrossRef]

37. Gazit, S.; Shlezinger, R.; Perez, G.; Lotan, R.; Peretz, A.; Ben-Tov, A.; Cohen, D.; Muhsen, K.; Chodick, G.; Patalon, T. Comparing
SARS-CoV-2 natural immunity to vaccine-induced immunity: Reinfections versus breakthrough infections. medRxiv 2021.
[CrossRef]

http://doi.org/10.3390/v13102011
http://doi.org/10.1016/j.ebiom.2021.103626
http://www.ncbi.nlm.nih.gov/pubmed/34688034
http://doi.org/10.3201/eid2711.211886
http://doi.org/10.1128/JVI.01313-21
http://doi.org/10.1056/NEJMoa2114114
http://doi.org/10.1038/s41586-021-04117-7
http://doi.org/10.1093/ofid/ofab468
http://www.ncbi.nlm.nih.gov/pubmed/34642637
http://doi.org/10.1038/s41564-021-00974-0
http://doi.org/10.3389/fimmu.2021.737083
http://doi.org/10.3390/v13101972
http://doi.org/10.1128/JCM.02438-20
http://doi.org/10.1101/2021.10.17.21265101
http://doi.org/10.1016/j.jviromet.2021.114228
http://www.ncbi.nlm.nih.gov/pubmed/34224754
http://doi.org/10.5858/arpa.2021-0213-SA
http://www.ncbi.nlm.nih.gov/pubmed/34181714
http://doi.org/10.1016/j.diagmicrobio.2020.115294
http://doi.org/10.1016/j.celrep.2021.109784
http://www.ncbi.nlm.nih.gov/pubmed/34592170
http://doi.org/10.3389/fimmu.2021.752003
http://www.ncbi.nlm.nih.gov/pubmed/34646276
http://doi.org/10.1126/science.abg9175
http://doi.org/10.1038/s41586-021-03696-9
http://doi.org/10.3389/fimmu.2021.728021
http://doi.org/10.1101/2021.08.24.21262415


Viruses 2021, 13, 2405 10 of 11

38. Thangaraj, J.W.V.; Yadav, P.; Kumar, C.G.; Shete, A.; Nyayanit, D.A.; Rani, D.S.; Kumar, A.; Kumar, M.S.; Sabarinathan, R.;
Saravana Kumar, V.; et al. Predominance of delta variant among the COVID-19 vaccinated and unvaccinated individuals, India,
May 2021. J. Infect. 2021. [CrossRef] [PubMed]

39. Liu, C.; Ginn, H.M.; Dejnirattisai, W.; Supasa, P.; Wang, B.; Tuekprakhon, A.; Nutalai, R.; Zhou, D.; Mentzer, A.J.; Zhao, Y.; et al.
Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021, 184, 4220–4236.e4213. [CrossRef]
[PubMed]

40. Geers, D.; Shamier, M.C.; Bogers, S.; den Hartog, G.; Gommers, L.; Nieuwkoop, N.N.; Schmitz, K.S.; Rijsbergen, L.C.; van Osch,
J.A.T.; Dijkhuizen, E.; et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19
convalescent donors and vaccinees. Sci. Immunol. 2021, 6, eabj1750. [CrossRef]

41. Tarke, A.; Sidney, J.; Kidd, C.K.; Dan, J.M.; Ramirez, S.I.; Yu, E.D.; Mateus, J.; da Silva Antunes, R.; Moore, E.; Rubiro, P.; et al.
Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell
Rep. Med. 2021, 2, 100204. [CrossRef] [PubMed]

42. Tarke, A.; Sidney, J.; Methot, N.; Yu, E.D.; Zhang, Y.; Dan, J.M.; Goodwin, B.; Rubiro, P.; Sutherland, A.; Wang, E.; et al. Impact of
SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2021,
2, 100355. [CrossRef]

43. Jordan, S.C.; Shin, B.H.; Gadsden, T.M.; Chu, M.; Petrosyan, A.; Le, C.N.; Zabner, R.; Oft, J.; Pedraza, I.; Cheng, S.; et al. T cell
immune responses to SARS-CoV-2 and variants of concern (Alpha and Delta) in infected and vaccinated individuals. Cell Mol.
Immunol. 2021, 18, 2554–2556. [CrossRef]

44. Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity
and its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020, 2, 1069–1076. [CrossRef]

45. Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for
severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [CrossRef] [PubMed]

46. Di Gennaro, F.; Murri, R.; Segala, F.V.; Cerruti, L.; Abdulle, A.; Saracino, A.; Bavaro, D.F.; Fantoni, M. Attitudes towards Anti-
SARS-CoV2 Vaccination among Healthcare Workers: Results from a National Survey in Italy. Viruses 2021, 13, 371. [CrossRef]

47. Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. A neutralizing human
antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 2020, 369, 650–655. [CrossRef] [PubMed]

48. Suryadevara, N.; Shrihari, S.; Gilchuk, P.; VanBlargan, L.A.; Binshtein, E.; Zost, S.J.; Nargi, R.S.; Sutton, R.E.; Winkler, E.S.; Chen,
E.C.; et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2
spike protein. Cell 2021, 184, 2316–2331.e2315. [CrossRef]

49. Alsoussi, W.B.; Turner, J.S.; Case, J.B.; Zhao, H.; Schmitz, A.J.; Zhou, J.Q.; Chen, R.E.; Lei, T.; Rizk, A.A.; McIntire, K.M.; et al. A
Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. J. Immunol. 2020, 205, 915–922. [CrossRef] [PubMed]

50. Barnes, C.O.; West, A.P., Jr.; Huey-Tubman, K.E.; Hoffmann, M.A.G.; Sharaf, N.G.; Hoffman, P.R.; Koranda, N.; Gristick, H.B.;
Gaebler, C.; Muecksch, F.; et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and
Recurrent Features of Antibodies. Cell 2020, 182, 828–842. [CrossRef] [PubMed]

51. He, Y.; Lu, H.; Siddiqui, P.; Zhou, Y.; Jiang, S. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike
protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J. Immunol. 2005,
174, 4908–4915. [CrossRef]

52. Vabret, N.; Britton, G.J.; Gruber, C.; Hegde, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M.D.; et al.
Immunology of COVID-19: Current State of the Science. Immunity 2020, 52, 910–941. [CrossRef]

53. Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; Sutton, R.E.; Suryadevara, N.; et al.
Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. bioRxiv 2020. [CrossRef]

54. Halfmann, P.J.; Castro, A.; Loeffler, K.; Frey, S.J.; Chiba, S.; Kawaoka, Y.; Kane, R.S. Potent neutralization of SARS-CoV-2 including
variants of concern by vaccines presenting the receptor-binding domain multivalently from nanoscaffolds. Bioeng. Transl. Med.
2021, 6, e10253. [CrossRef] [PubMed]

55. Lopez Bernal, J.; Gower, C.; Andrews, N. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. Reply. N. Engl.
J. Med. 2021. [CrossRef]

56. Romano, A. Delta’s surprise U.K. comeback is a warning sign for the U.S. Yahoo News. 2021. Available online: https://
news.yahoo.com/deltas-surprise-uk-comeback-is-a-warning-sign-for-the-us-090008459.html?fr=sycsrp_catchall (accessed on
22 October 2021).

57. UHS Agency. Vaccinations in the United Kingdom. Available online: https://coronavirus.data.gov.uk/details/vaccinations
(accessed on 21 October 2021).

58. UHS Agency. Deaths in the United Kingdom. Available online: https://coronavirus.data.gov.uk/details/deaths (accessed on
21 October 2021).

59. Collins, S.D.; Lehmann, J. Excess deaths from influenza and pneumonia and from important chronic diseases during epidemic
periods, 1918–1951. Public Health Monogr. 1953, 10, 1–21. [PubMed]

60. Mac, N.A. The pandemic of influenza of 1918–1919. Med. Press 1946, 215, 100–103.
61. Shope, R.E. The incidence of neutralizing antibodies for swine influenza virus in the sera of human beings of different ages. J.

Exp. Med. 1936, 63, 669–684. [CrossRef]
62. Stuart-Harris, C.H. Virus of the 1918 influenza pandemic. Nature 1970, 225, 850–851. [CrossRef]

http://doi.org/10.1016/j.jinf.2021.08.006
http://www.ncbi.nlm.nih.gov/pubmed/34364949
http://doi.org/10.1016/j.cell.2021.06.020
http://www.ncbi.nlm.nih.gov/pubmed/34242578
http://doi.org/10.1126/sciimmunol.abj1750
http://doi.org/10.1016/j.xcrm.2021.100204
http://www.ncbi.nlm.nih.gov/pubmed/33521695
http://doi.org/10.1016/j.xcrm.2021.100355
http://doi.org/10.1038/s41423-021-00767-9
http://doi.org/10.1007/s42399-020-00363-4
http://doi.org/10.1111/all.14657
http://www.ncbi.nlm.nih.gov/pubmed/33185910
http://doi.org/10.3390/v13030371
http://doi.org/10.1126/science.abc6952
http://www.ncbi.nlm.nih.gov/pubmed/32571838
http://doi.org/10.1016/j.cell.2021.03.029
http://doi.org/10.4049/jimmunol.2000583
http://www.ncbi.nlm.nih.gov/pubmed/32591393
http://doi.org/10.1016/j.cell.2020.06.025
http://www.ncbi.nlm.nih.gov/pubmed/32645326
http://doi.org/10.4049/jimmunol.174.8.4908
http://doi.org/10.1016/j.immuni.2020.05.002
http://doi.org/10.1101/2020.05.22.111005
http://doi.org/10.1002/btm2.10253
http://www.ncbi.nlm.nih.gov/pubmed/34589610
http://doi.org/10.1056/NEJMoa2108891
https://news.yahoo.com/deltas-surprise-uk-comeback-is-a-warning-sign-for-the-us-090008459.html?fr=sycsrp_catchall
https://news.yahoo.com/deltas-surprise-uk-comeback-is-a-warning-sign-for-the-us-090008459.html?fr=sycsrp_catchall
https://coronavirus.data.gov.uk/details/vaccinations
https://coronavirus.data.gov.uk/details/deaths
http://www.ncbi.nlm.nih.gov/pubmed/13100561
http://doi.org/10.1084/jem.63.5.669
http://doi.org/10.1038/225850a0


Viruses 2021, 13, 2405 11 of 11

63. Oidtman, R.J.; Arevalo, P.; Bi, Q.; McGough, L.; Russo, C.J.; Vera Cruz, D.; Costa Vieira, M.; Gostic, K.M. Influenza immune
escape under heterogeneous host immune histories. Trends Microbiol. 2021, 29, 1072–1082. [CrossRef]

64. Rochman, N.; Wolf, Y.; E, V.K. Evolution of human respiratory virus epidemics. F1000Res 2021, 10, 447. [CrossRef]

http://doi.org/10.1016/j.tim.2021.05.009
http://doi.org/10.12688/f1000research.53392.2

	Introduction 
	Materials and Methods 
	Study Samples 
	cPass SARS-CoV-2 Neutralization Antibody Detection Assay 
	Statistical Methods 

	Results 
	Natural Infection Induces an Effective Neutralization against the Delta Variant 
	Vaccination Boosts Neutralizing Capacity against Variants in Previously Infected Individuals 
	Full Vaccination Induces Limited Neutralizing Activity against All Tested Variants in Unexposed Individuals 

	Discussion 
	References

