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Abstract: Nanoparticles based on amphiphilic copolymers with tunable physicochemical properties
can be used to encapsulate delicate pharmaceutics while at the same time improving their solubility,
stability, pharmacokinetic properties, reducing immune surveillance, or achieving tumor-targeting
ability. Those nanocarriers based on biodegradable aliphatic polycarbonates are a particularly
promising platform for drug delivery due to flexibility in the design and synthesis of appropriate
monomers and copolymers. Current studies in this field focus on the design and the synthesis of
new effective carriers of hydrophobic drugs and their release in a controlled manner by exogenous
or endogenous factors in tumor-specific regions. Reactive groups present in aliphatic carbonate
copolymers, undergo a reaction under the action of a stimulus: e.g., acidic hydrolysis, oxidation,
reduction, etc. leading to changes in the morphology of nanoparticles. This allows the release
of the drug in a highly controlled manner and induces a desired therapeutic outcome without
damaging healthy tissues. The presented review summarizes the current advances in chemistry
and methods for designing stimuli-responsive nanocarriers based on aliphatic polycarbonates for
controlled drug delivery.

Keywords: aliphatic polycarbonates; nanocarriers; stimuli-responsive; drug delivery systems

1. Introduction

Nowadays, cancer is one of the biggest health problems in modern society, remaining one of
the top three leading risk factors for global mortality [1]. Tumor cells proliferate uncontrollably
at a much faster rate compared to normal ones. Due to this, they are characterized by many
abnormalities and a combination of mutagenic stages [2]. Furthermore, tumor tissues induce resistance
to growth inhibition, apoptotic mechanism, or immune surveillance [3–6], at the same time causing
angiogenesis and metastases to other places in the body by interacting with the surrounding tissues [7,8].
Conventional chemotherapy, in combination with surgical resection or radiation, is currently one of the
main strategies for cancer treatment in clinics. However, commonly used chemotherapeutic agents have
some limitations, such as (i) poor solubility in water, (ii) high toxicity, or (iii) being rapidly metabolized
and removed by the kidneys [9,10]. For example, in the case of intravenous injections of paclitaxel,
almost 50% of the dose is removed from the body within the first 24 h, and less than 0.5% of the total
dose is locally available to treat tumors within the lung [11]. These limitations, in combination with
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the growing multi-drug resistance of cancer cells to a significant number of clinical pharmaceutics [12],
the limited stability of these drugs, their nonspecific toxicity, and lack of tumor-targeting ability
are major obstacles to obtaining effective anticancer therapy [13–16]. Therefore, new strategies for
safe and efficient anticancer therapy are urgently needed. One solution to these problems is the
concept of applying nanotechnology to obtain more effective cancer treatment while minimizing
the side-effects [17]. Nanocarriers have gained significant attention over the last decade and have
become a promising candidate for an efficient drug delivery system for highly hydrophobic anticancer
therapeutics [18,19]. Recently, various nanocarriers with different molecular architecture including
liposomes [19], inorganic nanoparticles [20] or polymer-based nanoparticles such as micelles [21] or
polymersomes [22] have become hot research topics in the last decade for applications in drug delivery
systems (DDS). Nanoparticles can carry a drug linked to the carrier via a covalent bond, thus resulting
in polymer-drug conjugates. The conjugated drug is an inactive derivative that is biotransformed
in vivo to release an active drug molecule, thereby allowing drug delivery to the disease affected area
and providing effective therapy [23,24]. The drug conjugation strategy minimizes the side effects before
the active drug derivative reaches the molecular target [25]. However, drug conjugation involves
a chemical reaction, which often changes the chemical structure, i.e., drug stereochemistry [26,27].
As a result, the biological activity of the drug is often deactivated, or drug toxicity can occur [28–30].
With this in mind, it seems to be a safer approach to encapsulate drugs inside nanocarriers through
hydrophobic interactions. Nanoparticles can be used to encapsulate delicate pharmaceutics to improve
solubility, stability, pharmacokinetic properties and a reduction in immune surveillance, or to achieve
tumor-targeting ability [31]. The use of the nanoparticle strategy as a DDS is the starting point
for research into the mechanisms that determine the interactions between nanoparticles and cell
membranes [32]. The effect of the physicochemical properties of nanoparticles, including molecular
structure [33], size, stiffness, shape, or chemical composition of the surface, on cellular uptake, has been
extensively discussed [34]. In particular, nanoparticles based on biodegradable polymers are a
promising platform for effective cancer treatment due to flexibility in design and synthesis. In addition,
there are no issues of nanoparticle accumulation in the body because, biodegradable polymers degraded
in vivo into oligomers, monomers, or low molar mass molecules, which might be removed from the body
by the normal pathways [35]. Nowadays, polymeric nanocarriers based on biodegradable PEGylated
aliphatic polyesters such as polylactide [36], poly(lactide-co-glycolide), [37], poly(ε-caprolactone) [38],
bacterial or synthetic poly(3-hydroxybutyrate) [39,40] or aliphatic polycarbonates [41,42], are widely
studied for the controlled drug release systems because they are all approved by the American Food
and Drug Administration (FDA). The widely studied strategy for prolonging the circulation of drug
carriers in the bloodstream is to coat the surface of nanoparticles with a hydrophilic polymer i.e.,
biocompatible polyethylene glycol (PEG) [43]. The PEGylation resulting in amphiphilic copolymer
enables the self-organization of such copolymers into micelles, polymersomes, etc. featuring an
outer hydrophilic PEG shell and hydrophobic polymer as the core [44]. The hydrophilic shell of the
nanocarrier prevents steric recognition by the immune systems and its removal by the reticuloendothelial
system from the bloodstream [45]. However, the non-biodegradability of PEG is the main obstacle
to in vivo application. In addition, the use of PEG with a molar mass higher than 10,000 Da is
problematic, as it cannot be filtered out by the human kidneys due to its large hydrodynamic
radius [46]. Therefore, non-biodegradable PEGylated copolymers and free PEG accumulate in the
liver with unspecified toxicological consequences [47]. Alternatively, hydrophilic polymers such
as poly(vinylpyrrolidone), poly(2-methyl-2-oxazoline), poly [N-(2-hydroxypropyl) methacrylamide],
poloxamers, chitosan, poly(N,N-dimethyl acrylamide), poly(ethyl ethylene phosphate), poly(oligo
ethylene glycol methacrylate) have also been extensively studied as an outer hydrophilic shell of
nanoparticles in combination with various hydrophobic (co)polymers [36–39]. Nevertheless, PEG is
approved by the FDA for biomedical applications. The first FDA-approved nano-prodrug Doxil®

(PEGylated liposomal-doxorubicin) for clinical use in the treatment of ovarian, breast cancers, Kaposi’s
sarcoma, or multiple myeloma achieved great success [48]. Therefore, PEGylated copolymers are
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the most widely studied in nanoparticle-based drug delivery systems. As hydrophobic copolymers
for application in biomedical fields aliphatic polycarbonates (APC) deserve special attention due to
their excellent biocompatibility, biodegradability, non-toxic degradation products, lack of autocatalytic
degradation, and broad-tuned functionality to achieve efficient tumor-targeting performance [49,50].
The synthetic approaches towards aliphatic polycarbonates consist of three major polymerization
methods [51,52]: (i) polycondensation of carbonates and diols, (ii) copolymerization of epoxides with
carbon dioxide, and (iii) ring-opening polymerization (ROP) of cyclic carbonates. Significant advances
in ROP of cyclic carbonates initiated with metal-free basic organocatalysts such as amidine (DBU),
guanidine (TBD) or phosphazene (BEMP), organic acids i.e., methanesulfonic acid, triflic acid, diphenyl
phosphate have been achieved. but also, the enzymes mediated synthesis of ACPs showed the absence
of any toxic compounds, good control of the polymerization process and high reaction yields [53].
Furthermore, the synthesis of cyclic carbonate monomers utilizing 2,2-bis(hydroxymethyl)propionic
acid, pentaerythritol, or glycerol as a scaffold provides an enormous amount of possibilities for APC
functionalization to achieve desirable properties for biomedical applications. Due to this, the aliphatic
polycarbonates have great potential as “smart” anticancer drug delivery systems with desired features
such as biodegradability, non-toxicity, and stimuli responsiveness to achieve tumor-targeting ability.

Recently, many studies have focused on the design and synthesis of novel efficient drug delivery
systems, designed for transporting the anticancer therapeutics directly to cancer tissues and releasing
the drug in a controlled manner by endogenous or exogenous factors [54–56]. To develop such
stimuli-responsive polymeric nanocarriers, various stimuli-labile groups are used. Due to incorporated
stimuli-sensitive chemical groups into the polymeric microstructure, nanoparticles can respond to
exogenous (e.g., light, electric or magnetic fields, ultrasounds) or endogenous stimulus (e.g., pH,
enzymes, temperature) by disassembling, swelling, changing nanoparticle size, shape or charge
shifting [57–59] which leads to release of the therapeutics in a controlled manner in pathologically
changed place and improving the efficacy of the chemotherapy. The microenvironment of the tumor
tissue differs considerably from healthy tissues. Compared to normal tissues, the cancer ones are
characterized by unique pathophysiological markers, i.e., lower pH in the internal and external
microenvironment, high intracellular glutathione level, a higher level of reactive oxygen species,
reducing and hypoxia conditions and various specific enzyme overexpression [60–62], which can act
as an endogenous drug release trigger to induce a desired therapeutic outcome without damaging
healthy tissues.

In fact, some of the stimuli-responsive nanocarriers based on APCs already show great potential for
providing efficient drug administration with reduced side effects. In this review, we summarize recent
advances in the development of stimuli-responsive nanoparticles based on aliphatic polycarbonates,
highlighting the versatility of PEGylated APC in the fabrication of “smart” drug delivery systems.
The synthesis and the self-assembly properties of amphiphilic APC copolymers containing various
stimuli-responsive functional groups are presented. In particular, the mechanisms of drug release in the
response to endogenous or exogenous factors are fully elucidated. Understanding these mechanisms
might help in designing more efficient stimuli-responsive drug delivery systems.

2. Application of Endogenous/Exogenous Stimulus-Responsive APC Nanocarriers

In designing new nanocarriers for anticancer drug delivery, it is vital to know and take
advantage of the differences between tumor cells and healthy tissues. As mentioned earlier, the tumor
microenvironment differs significantly from normal tissues, which can act as an endogenous stimulus
for drug release at the desired sites of action, increasing therapeutic effect. However, tumor tissues are
heterogeneous and the overexpression of various unique markers differs from cell to cell. Therefore,
the use of nanocarriers sensitive to an external stimulus, due to their accuracy and non-invasiveness,
so far, are more promising for obtaining an effective anticancer therapy [54].
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2.1. pH-Responsive APC Nanocarriers

The pH gradient in the internal and external tumor microenvironment is caused by the unique
metabolism of sugar derivatives by tumor tissues. Tumors consume an enormous amount of glucose
compared to healthy cells, due to a fast rate of glycolysis, to provide the energy needed to increase
proliferation [63]. Such a high glycolysis rate leads to the accumulated pyruvate is transformed mainly
in lactic acid fermentation, which is characteristic of hypoxic conditions [64]. The relationship between
the high glucose uptake and increased proliferation of cancer cells and acidification of the tumor
microenvironment caused by lactate production is known as the Warburg effect [65]. It is a result of
tumor’s mitochondrial metabolic abnormalities [66]. The increased glucose uptake by tumor tissues is
related to the overexpression of glucose transporters, which are specific transmembrane proteins that
facilitate glucose and galactose uptake within cancer cells [67]. Understanding the Warburg effect led
to the development of a cancer imaging technique (positron emission tomography—PET), which tracks
the radioactively labeled glucose derivate, 2-deoxy-2-[18F]fluoro-d-glucose, and is extremely useful
for diagnosis, staging and monitoring treatment of cancers [68]. Furthermore, it is a starting point for
developing tumor-targeting pH-responsive nanocarriers. In the first attempt to design and synthesize
pH-responsive nanocarriers based on APC Zhong and coworkers [69] developed biodegradable
pH-sensitive micelles based on a diblock copolymer of PEG and acetal-functionalized aliphatic
polycarbonate (poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate)). Amphiphilic copolymer
formed micelles in an aqueous solution with an average size of about 120 nm. The pH-sensitivity
of this system is caused by the presence of an acid-labile acetal bond, which is relatively stable in a
slightly basic environment (pH 7.4), while it is rapidly hydrolyzed in an acidic environment (pH 5.0).
The acetal group hydrolysis leads to the formation of two hydroxyl groups in the core of the micelles
and, as a result, the micelles swell and release the encapsulated drug. The in vitro release studies of
anticancer drugs (paclitaxel or doxorubicin) showed that the drug is released slowly at physiological
pH (7.4) and much faster at endosomal pH (5.0), due to rapid acetal hydrolysis in an acidic environment.
The same group also reported the preparation of polymersomes using the above mentioned PEGylated
APC with the acetal groups [70]. Polymersomes ranged from 100–200 nm and the mechanism of drug
release was the same as for micelles. Interestingly, in an acidic environment, polymersomes were able
to release anticancer drugs faster compared to the micelles. However, polymersomes were able to
simultaneously load two anticancer drugs (PTX and DOX). As a result, such a system can be used
successfully in combination therapy (Figure 1).
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Very recently, Domiński et al. [71] developed pH-responsive nanocarriers consisting of
poly(ethylene glycol)-acetal-functionalized APC-oligo[R]-3-hydroxybutyrate triblock copolymer
micelles loaded with 8-hydroxyquinoline glycoconjugates for Warburg effect based tumor targeting.
Remarkably, glycoconjugates-loaded micelles showed a significantly increased ability to inhibit the
proliferation of cancer cells compared to free glycoconjugates. This is due to an enhanced uptake and
pH-triggered release of glycoconjugates in the tumor microenvironment, while free glycoconjugates
only showed passive diffusion through the lipid barriers of cancer cells. Glycoconjugate-loaded
micelles selectively kill cancer cells (MCF-7 and HCT-116) and reduce the damage of the healthy
cells (NHDF-Neo). The combination of drug modification with the stimuli-responsive nanocarrier to
achieve joint action might open up novel strategies for efficient tumor therapy.

Dove and coworkers developed PEGylated poly((2-norbornene-5,5-bis(hydroxymethyl)
trimethylene carbonate) for pH-triggered drug release with norbornene group for versatile
post-polymerization modifications [72]. Norbornene groups were easily functionalized with benzyl
azide via 1,3-dipolar cycloaddition (“click” chemistry), dodecanethiol via photoinduced radical thiol-ene
addition, and tetrazine via inverse electron demand Diels–Alder reaction. The other advantage of
the prepared system was the incorporation of the acetal group for the pH-triggered release of a drug
functionalized with norbornene molecule. The ability to accurately control the amount of drug or
imaging agents grafted on the polymer backbone provides many possibilities for applications in
biomedical fields. The acetal group is commonly used in pH-responsive anticancer drug delivery
systems due to its rapid hydrolysis in the acidic tumor environment. However, obtaining stable
nanoparticles with acetal groups is not an easy task. The acetal groups hydrolyze with the formation
of two hydroxyl groups in the polymer chain, which significantly increases the hydrophilicity of the
hydrophobic core of nanoparticles. It disturbs hydrophilic/hydrophobic balance, which is a crucial
parameter for the amphiphilic copolymers to self-assemble into nanoparticles. Hence, Zhong et al. [73]
develop core-crosslinked pH-responsive micelles to improve stability and prolong circulation time.
The PEGylated poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate-co-acryloyl carbonate)
copolymer containing an acetal group for pH-triggered drug release and photo-crosslinkable acryloyl
groups was synthesized. The micelles formed using such a copolymer were photo-crosslinked,
resulting in extremely stable nanoparticles at physiological pH, while at an acidic pH they were able to
hydrolyze resulting in the release of drugs. In vitro drug release studies confirmed that crosslinking
does not influence drug release at acidic pH (4.0 and 5.0), while increased stability was observed at
pH 7.4. In addition, in vitro cellular studies showed that cross-linked and non-cross-linked micelles
exhibited similar anti-tumor activity, which may indicate that the micelles core photo-crosslinking
does not affect drug release (Figure 2).

Chemical crosslinking via thiol-acrylate Michael addition reaction [74] or oxidative self-crosslinking
of dopamine-grafted APC block [75] are also an effective method to obtain stable core-crosslinked
micelles. Recently, to increase bioavailability and give active tumor-targeting properties, PEGylated
acetal and acryloyl functionalized APC copolymer was mixed with another amphiphilic copolymer,
i.e., galactose-PEG-b-poly(ε-caprolactone). Both amphiphilic copolymers form in aqueous solutions a
type of mixed micelles with an average size around 100 nm and then are photo crosslinked utilizing
the strategy mentioned above. The in vitro and in vivo studies revealed that galactose-decorated
core-crosslinked pH-responsive micelles have excellent stability, biocompatibility, and are actively
targeting the hepatoma cells due to receptor-mediated mechanism [76]. Cross-linking using disulfide
bonding is another approach to achieving stable micelles. Zhong and coworkers synthesized
PEGylated poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate-co-pyridyl disulfide carbonate)
a copolymer that formed approximately 60 nm micelles in aqueous solutions [77]. The micelles obtained
in this way were cross-linked by the addition of dithiothreitol, which in the first step reducing the
disulfide bond. Then, free thiol groups inside the micelle core were oxidized by potassium persulfate to
form the disulfide bond with simultaneous cross-linking of the micelle core. In vitro drug release studies
showed that such micelles were stable at pH 7.4, and less than 20% of the encapsulated drug was released
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within 24 h. In contrast, the drug was released much more rapidly at pH 5.0 which was caused by the
hydrolysis of acetal groups. The addition of glutathione, which elevated levels are characteristic for
cancer cells (vide infra), significantly accelerates the drug release, as a result of de-crosslinking of micelles.
Very recently, Zhong’s group developed A6 peptide-tagged micelles with core-disulfide-crosslinked for
delivery of proteasome inhibitor (carfilzomib) for targeted therapy of CD44-overexpressing LP-1 human
multiple myeloma. A6 peptide (with the sequence: KPSSPPEE)-tagged core-crosslinked micelles
possess excellent stability [78], glutathione-triggered drug release and CD44-targeting ability. In vivo
studies revealed an increased tumor accumulation and reduction of systemic cytotoxicity compared
with clinically used carfilzomib-sulfobutylether-β-cyclodextrin complex. Another approach to provide
stable micelles via core-crosslinking was developed by Huang et al. [79,80]. The authors designed and
obtained stable micelles in an interesting way using the complementarity of the base-pairing interactions
forming DNA double helix. The PEGylated copolymers of poly(lactide-co-nucleobase-grafted-APC)
(adenine or thymine respectively) were mixed to form micelles with an average size ~100 nm.
The base-pairing interactions between nucleobases localized in hydrophobic micelles core caused
core-crosslinking due to multiple hydrogen bonds between adenine and thymine, as occurs in the
DNA double helix structure. The core-crosslinking significantly reduces the possibility of micelles
reorganizing. Therefore, core-crosslinked micelles have greater stability and a lower critical micelle
concentration value. The nucleobase core-crosslinked micelles were stable at pH 7.4 leading to a
significant decrease in drug release. However, in an acidic environment (pH 5.0) the drug was
released much faster. It is caused by the dissociation of hydrogen bonds between nucleobases in
the acidic environment. He et al. [81] developed a thymine-functionalized six-membered cyclic
carbonate monomer, which can be easily polymerized via enzymatic ROP in a controlled manner.
The presence of thymine in the amphiphilic copolymer chain allows obtaining nanoparticles with a
high-efficiency of loading with anticancer drugs e.g., methotrexate (MTX). This is because the exposed
thymine group in hydrophobic micelles core form multiple hydrogen-bonding interactions with MTX
molecules. Very recently, the same group designed and synthesized a PEGylated dual-functional APC
copolymer possessing thymine and carboxyl groups for co-delivery of multiple drugs (MTX and DOX)
using a single nanocarrier [82]. Thymine groups form a hydrogen bond with MTX, while carboxylic
acid groups form electrostatic interactions with amine groups of DOX. Thereby, a single carrier can
contribute to the simultaneous delivery of two different anticancer drugs for combination therapy.
In a slightly acidic tumor environment, the protonation of carboxyl groups in copolymer and amino
groups in doxorubicin/methotrexate reduces both hydrogen-bonding and electrostatic interactions that
accelerate the release of drugs. Preliminary in vitro cellular studies confirm that such a system has
the potential in clinical application for combination chemotherapy, which currently appears to be the
most promising way to achieve efficient cancer treatment. Amphiphilic carboxylic acid-functionalized
APC to enhance DOX loading efficiency and provide the positively charged shell of micelles were
exploited by He et al. [83]. The micelles from carboxyl-modified PEGylated APC were compared with
the micelles made of the unmodified copolymer. The carboxyl groups formed electrostatic interactions
with amine groups from doxorubicin. Whereby, much higher drug loading efficiency and drug loading
capacity of micelles were observed. Additionally, PEGylated carboxyl-functionalized APC showed a
lack of initial burst drug release and a more prolonged drug release profile. Wang et al. [84] designed a
smart drug delivery system based on two different copolymers to obtain pH-responsive mixed micelles.
PEGylated carboxylic acid-grafted carbonate copolymer was mixed with dimethylamine functionalized
polycarbonate. The dimethylamine moiety was designed as a pH-responsive trigger that causes
the disintegration of the mixed micelles, resulting in an encapsulated doxorubicin release. Recently,
Hedrick and coworkers developed a pH-responsive nanocarrier with a biomimetic doxorubicin
conjugation mechanism [85]. Catechol-functionalized APC can form covalent DOX conjugates via
a pH-sensitive p-quinoneimine bond by a mechanism that mimics the Raper-Mason pathway of
melanogenesis. Interestingly, the addition of PEGylated N-methylimidazole-functionalized APC to
catechol-functionalized APC during DOX conjugation with concomitant micelles formation results
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in higher drug loading efficiency (Figure 3). This indicates that N-methylimidazole behaves as
an organocatalyst for such DOX conjugation. In vivo studies showed excellent biocompatibility,
tumor-targeting ability, and pH-triggered drug release in tumor tissues.

Figure 2. (A) Schematic illustration of photo-crosslinkable pH-responsive micelles based
on poly(ethylene glycol)-poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate-co-acryloyl
carbonate) diblock copolymer. PTX-loaded crosslinked micelles exhibit superior extracellular stability
while “actively” release PTX under a mildly acidic condition mimicking that of the endo/lysosomal
compartments. (B) Size change of pH-sensitive crosslinked (CLM) and non-crosslinked (NCLM)
micelles at various pH and 37 ◦C determined by dynamic light scattering measurements (DLS).
(C) pH-dependent drug release from PTX-loaded crosslinked and non-crosslinked micelles at 37 ◦C.
Reprinted with permission from ref [73]. Copyright 2012 Elsevier B.V.

Organoboron functionalized copolymers offer broad possibilities to design pH-responsive
nanocarriers due to the ability to form a reversible boronate ester bond between diols and
catechol-containing molecules. Herrera-Alonso and coworkers designed and developed PEGylated
phenylboronic acid-functionalized APC for the pH-triggered release of a diol containing anticancer
drug—capecitabine [86,87]. The drug is conjugated to the copolymer through a pH-sensitive boronate
ester bond. This approach allowed to load anticancer drugs with high loading levels, which release is
accelerated at acidic pH demonstrating the utility of phenylboronic acid-functionalized nanoparticles
as a promising platform for drug delivery applications. Yang and coworkers [88] also exploited the
formation of boronate ester linkage between drug and polymer. To take advantage of the acidic tumor
environment, they designed dual pH-responsive shell-cleavable micelles for anticancer drug delivery.
Micelles consisted of poly(ethylene glycol) and catechol-containing APC with acetal bond as the linker
between hydrophilic and hydrophobic copolymer parts. Whereby, obtained micelles shed the PEG
“shell” at acidic pH accelerating the drug release. The catechol groups in the copolymer backbone
form a boronate ester bond with bortezomib, an anticancer drug containing a phenylboronic acid
group in structure. Dual pH-sensitive micelles showed much better anti-tumor activity in human
breast cancer BT-474 xenograft mouse model than free bortezomib while mitigating hepatotoxicity of
the drug. The same group developed PEGylated APC copolymer containing phenylboronic acid and
tertiary amine groups for conjugation of apomorphine (a drug containing a catechol group), which is
used for the treatment of Parkinson’s disease. The tertiary amine groups in the copolymer backbone
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increase conjugation efficiency. In vivo studies revealed that the intranasal administration of such
nanoparticles transports them across the blood-brain barrier, which makes them a potential platform
for the treatment of Parkinson’s disease [89].
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Figure 3. Schematic illustration of preparing (A) mixed micelle system based on PEGylated
polycarbonate copolymers; organocatalytic anticancer drug loading. (B) Biomimetic mechanism
of drug-loading onto the catechol side chains of the block copolymer. (inset) Raper−Mason mechanism
of melanin biosynthesis. Reprinted with permission from ref [85]. Copyright 2016 American
Chemical Society.

The hydrazone bond is also an attractive linkage used in pH-responsive drug delivery systems
due to its unique characteristic. At physiological pH 7.4, the hydrazone group is relatively stable
and hydrolysis occurs slowly. However, in a mildly acidic environment, the rate of hydrolysis
increases significantly. Especially, the hydrazone bond is a commonly used linkage for conjugation
of doxorubicin through its ketone group [90]. Yang et al. [91] developed pH-responsive PEGylated
APC with doxorubicin conjugated via Schiff-base linkage to circumvent multidrug resistance.
The resulting amphiphilic copolymer formed stable micelles in a physiological environment with
an average size of about 100 nm and a pH-dependent drug release mode. In vitro cell studies
have shown that for MCF-7 breast cancer cells, the cellular uptake of free doxorubicin was
higher compared to DOX-conjugated micelles. However, in the case of DOX-resistant MCF-7/ADR
cells, the cellular uptake of free DOX was negligible, while DOX-conjugated micelles easily
entered the cancer cells leading to effective inhibition of proliferation. Similarly, conjugation of
doxorubicin via a hydrazone bond to aliphatic carbonates was developed by Ji et al. [92], using the
biodegradable polymer prodrug poly(5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one)-g-12-acryloyloxy
dodecyl phosphorylcholine-co-6-maleimidocaproyl-doxorubicin. He et al. [93] also grafted DOX on
amphiphilic copolycarbonate. In both cases, DOX was released at mildly acidic conditions via the
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cleavage of the hydrazone bonds. Extended cellular uptake studies revealed that in both cases, micelles
easily penetrated cancer cells and release DOX into the cancer cells nuclei.

Recently, Shunmugam et al. [94] synthesized an active tumor-targeting nanocarrier based on
biotin-tagged PEGylated copolymer of lactide and cyclic carbonate functionalized with propargyl
groups. DOX-azide derivative containing oxime linkage has been conjugated to a copolymer through
“click” chemistry. Biotin has been attached to the outer shell of micelles to ensure active tumor-targeting
due to the overexpression of biotin receptors in tumor tissues. The pH-sensitivity of the system is
caused by the presence of an oxime bond, which at acid pH (5.0) hydrolyses quickly releasing DOX.
In vitro drug release revealed pH-dependency, while cell viability studies showed that micelles are
highly effective in inhibiting cancer cell growth.

Lately, Kuckling and coworkers developed a versatile platform for designing and synthesizing
novel pH-responsive nanocarriers based on diblock copolymer poly(dimethylacrylamide)-
b-poly(trimethylene carbonate) with imine linkage between hydrophilic and hydrophobic blocks [95].
The copolymer was synthesized via combined ROP and RAFT polymerization techniques which gives
a huge amount of possibilities to functionalize such copolymers to achieve superior tumor-targeting
efficiency. Such an approach to develop the pH-cleavable bond between hydrophilic and hydrophobic
polymeric chains might expand the range of applications of aliphatic polycarbonates as tumor-targeting
drug delivery systems.

The possibility of using nanocarriers containing ionizable groups in copolymer structure for
pH-triggered drug release was also studied. When these ionizable groups become protonated below
the acid dissociation constant, the nanoparticles are destabilized by the charge repulsion causing
reorganization and consequently, the release of the encapsulated cargo. Venkataraman et al. [96]
developed an APC copolymer containing amines and zwitterions in the copolymer backbone as a
versatile platform for pH-responsive vehicles for biomedical applications. Biodegradable polymers were
synthesized via controlled ROP of N-substituted 8-membered cyclic carbonates using organocatalyst
or through the combination of ROP and post-polymerization modification. Feng et al. [97] developed a
random copolymer of ε-caprolactone and 16-membered cyclic dicarbonate with tertiary amine groups
in the backbone via lipase-catalyzed ROP. This copolymer was fully biodegradable and biocompatible,
as confirmed by in vitro studies. In addition, the higher the carbonate content in the copolymer,
the faster the enzymatic degradation took place, with the formation of non-toxic degradation products.
To demonstrate the potential use as a drug carrier, microspheres were obtained and loaded with
ibuprofen and doxorubicin as model drugs. The pH-sensitivity of the obtained particles results from
the presence of tertiary amine groups in the copolymer structure. Amine groups accept a proton,
which increases hydrophilicity and releases the encapsulated drug in a pH-dependent manner. The same
group further extended researches using APCs with tertiary amine groups to develop nanoparticles for
controlled drug delivery systems. For example, in the form of an amphiphilic triblock copolymer ABA
obtained using tertiary amine-functionalized APC diol as a telechelic initiator of enzymatic ROP of
ε-caprolactone [98]. Furthermore, copolymer consisted of PEG and poly(tertiary amine-functionalized
carbonate-co-ε-caprolactone) blocks [99], or amphoteric aliphatic copolycarbonates with amine and
carboxyl groups in copolymer structure [100] were also reported.

Recently, the same authors have developed micelles based on amine-functionalized copolymer,
poly(6,14-dimethyl-1,3,9,11-tetraoxa-6,14-diaza-cyclohexadecane-2,10-dione)-b-(1,3-dioxepan-2-one)
The micelles obtained had a size of ~165 nm. However, at pH 5.8, which is simulating the
tumor microenvironment, the tertiary amines are ionized, leading to the micelles swelling and the
encapsulated drug release. Extended studies using confocal laser scanning microscopy (CLSM) have
shown an enhanced cellular internalization of camptothecin or doxorubicin-loaded micelles by cancer
cells [101]. Quadir et al. [102] prepared pH-responsive iRGD peptide decorated nanoparticles consisting
of PEGylated APC for pancreatic cancer combination therapy. The iRGD-peptide were immobilized
on a nanoparticle shell to augment cellular uptake. The APC blocks have been functionalized with
tertiary amines, such as N,N′-dibutylethylenediamine (pKa = 4.0) and 2-pyrrolidin-1-yl-ethyl-amine
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(pKa = 5.4) to obtain responsivity at different pH. The amines promote the disintegration of micelles in
acidic pH and release of the encapsulated anticancer agents gemcitabine and a Hedgehog inhibitor
(GDC 0449) in the extracellular tumor microenvironment (pH 6.0–7.0) and intracellular compartments
(pH 5.5–4.5) of tumor tissues, respectively. It was also reported that a stoichiometric mixture of micelles
formed from two types of pH-sensitive copolymers, enabled to achieve drug release depending on
corresponding extra- and intracellular tumor microenvironment. This system was found to inhibit
the proliferation of pancreatic cancer cells and showed selective internalization of nanoparticles in
pancreatic tumor tissues (Figure 4).
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The acidic extracellular and intracellular microenvironment of tumor tissues led to a comprehensive
study of pH-triggered nanocarriers for controlled anticancer drug release. The pH-triggered drug
administration is considered to be the most basic strategy to target tumor cells. Despite the many
advantages of such nanocarriers, limited stability is one of the major issues. Nanocarriers must be stable
before entering the cancer cell to prevent drug leakage. Obtaining stable nanoparticles is difficult due to
the dynamic process of their formation and reorganization. Therefore, the combination of pH-triggered
drug release with cross-linking of the micelle core (physically, chemically, or stimuli-responsive) seems
to be a promising strategy to improve stability against dilution and prolonged circulation. Moreover,
to enhance internalization by tumor tissues, targeting ligands that can differentiate tumor tissues from
normal ones might be added. In the future, the combination of pH-responsive copolymers with other
stimuli and/or the addition of active targeting ligands to nanoparticle surfaces might mitigate some of
the challenges in chemotherapy.

2.2. Redox-Responsive APC Nanocarriers

The differences between intracellular and extracellular levels of reducing agents are broadly
exploited as an endogenous stimulus for the controlled release of genes and drugs [103]. The reduced
glutathione (GSH) i.e., γ-glutamyl-cysteinyl-glycine, is the most common biological reducing agent next
to ascorbate, cysteine, albumin, tocopherol, β-carotene, etc. [104]. The concentration of intracellular
GSH is specific for different cell types and ranges from ~2 to 10 mM while an extracellular concentration
is in the range of ~2–20 µM [105]. It is known that cancer cells have at least a fourfold higher
concentration of GSH than healthy cells. Carcinogenesis studies have shown a relationship between the
concentration of GSH in tumor tissues and their resistance to radio- and chemotherapy. Recent studies
emphasize the protective role of GSH in the process of cell apoptosis, so tumor tissues with higher
amounts of glutathione are resistant to apoptosis [106]. Therefore, a decrease in GSH concentration



Polymers 2020, 12, 2890 11 of 30

in tumor tissues may increase the effectiveness of radio- and chemotherapy, but also stimulate rapid
apoptosis of cancer cells [107]. The depletion of GSH levels causes apoptosis in pancreatic cancer
cells [108], hepatoma cells [109], or B16 Melanoma cancer cells [110]. The high glutathione concentration
in tumor tissues constitutes a great endogenous stimulus in designing tumor-targeting nanocarriers for
the intracellular release of anticancer drugs. The disulfide bond is the most common redox-responsive
linker to provide GSH-sensitive nanocarriers. It is due to the stability of the disulfide bond at
physiological pH and susceptibility to reduce at a high concentration of GSH in the intracellular
tumor tissues. The disulfide bond is cleaved into two thiols groups and the reduced glutathione is
transformed into oxidized glutathione form, causing the rupture of nanoformulations and initiating
drug release [111]. This can be achieved by designing nanocarriers containing redox-sensitive groups
within the hydrophobic copolymer backbone. Li et al. [112] developed a reduction-responsive polymeric
prodrug from PEGylated APC functionalized with a propargyl group grafted with N3-SS-Paclitaxel via
azide-alkyne click reaction. The paclitaxel-conjugated amphiphilic copolymer was used to encapsulate
doxorubicin to provide combination chemotherapy. To enhance stability and on-demand drug
release, the nanoparticles were crosslinked by a redox-sensitive linker. The excess of propargyl
groups was crosslinked by azide-alkyne click reaction with bis(azidoethyl)disulfide. Both drugs were
released slowly from the nanocarriers at physiological pH, however, were significantly accelerated
in the presence of intracellular reducing agent concentration (10 mM dithiothreitol). The in vitro
studies conducted on HeLa and MCF-7/ADR cells revealed that the co-delivery of two anticancer
drugs exhibited a synergistic effect for inhibiting the proliferation of cancer cells. Chen et al. [113]
developed glyco-nanoparticles with GSH-responsive sheddable saccharide (lactobionic acid) shells
for hepatoma-targeting delivery of doxorubicin. Lactobionic acid is an active tumor-targeting
moiety taking advantage of hepatocellular carcinoma cells that overexpress asialoglycoprotein
receptors. The lactobionic acid decorated nanoparticles were obtained from ε-caprolactone and
pyridyl disulfide-functionalized APC followed by post-polymerization modification with thiolated
lactobionic acid by thiol-disulfide exchange reaction. This design allows the targeting of liver cancer cells
and release of DOX in the reductive tumor microenvironment by rapid shell-shedding. Flow cytometry
results showed enhancement in the association of lactobionic acid decorated nanoparticles over the
non-targeted nanoparticles. A similar tumor-targeting ligand is a cRGD peptide due to its binding
capacity of theαvβ3 integrin which overexpression occurs in most tumor tissues. That is why it has been
extensively studied for tumor-targeting in the treatment of cancer [114]. Zhong and coworkers [115]
synthesized a cRGD-decorated PEGylated poly(trimethylene carbonate-co-dithiolane trimethylene
carbonate). The micelles with an average size of ~150 nm formed from this amphiphilic copolymer
were loaded with doxorubicin. The micelle cores were crosslinked via a disulfide bond to minimize
drug leakage and improve stability. The in vivo biodistribution investigation showed better therapeutic
outcomes and enhanced accumulation of cRGD peptide decorated nanoparticles in tumor tissues
compared to clinically used PEGylated liposomal doxorubicin. Recently, the same group has improved
the cRGD-decorated nanoparticles by conjugating the anticancer drug (mertansine) via a disulfide bond
to impart redox-sensitivity to drug release. Whereas, excess of thiol groups in the copolymer structure
was used to crosslink micelle cores to enhance stability. The confocal microscopy studies have shown
active tumor-targeting by cRGD-decorated nanoparticles to αvβ3 integrin overexpressing melanoma
cells. In vivo experiments revealed a significant tumor growth inhibition with cRGD-functionalized
nanoparticles loaded with mertansine when compared with non-targeting nanoparticles loaded with
drug and free mertansine [116]. Another well-known receptor-mediated tumor-targeting moiety is folic
acid. Tumor tissues have been shown to be overexpressing folate receptors on the cell surface compared
to healthy tissues [117]. This folate overexpression of tumor tissues was exploited by Lv et al. [118] to
design smart folate-conjugated PEGylated APC. The micelles were crosslinked via a disulfide bond to
obtain redox-responsiveness. The results of in vitro studies and confocal laser scanning microscopy
revealed that the conjugation of folic acid at the surface of micelles enhanced the cellular uptake due to
folate receptor-mediated endocytosis.
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The emerging therapeutic potential of nitric oxide in cancer treatment has made the design of
nanoparticles for co-delivering nitric oxide and anticancer drugs a hot research topic in recent years.
To overcome multi-drug resistance, Chen and coworkers have designed reduction-triggered micelles
for co-delivery of nitric oxide and doxorubicin [119]. The micelles were obtained by self-assembly of
amphiphilic nitrate-functionalized APC to improve the stability of nitric oxide-donor, while triggered
nitric oxide and DOX at tumor reductive conditions. In vivo studies revealed that the nitric oxide
release results in P-glycoprotein inhibition to avoid multi-drug resistance and significantly enhance
the DOX accumulation in tumor cells (Figure 5) to obtain an efficient therapeutic outcome.

Figure 5. (A) Schematic illustration of the synthesis of nitric oxide donor-containing
polycarbonate-based micelles (NO-M) for reduction-triggered drug delivery. (B) Intracellular NO
release from NO-M in MCF7/DOX resistant cells determined by Griess reagent treatment and observed
by fluorescence microscopy (C). (D) Detection of P-gP expression in MCF7/DOX resistant cells
incubated with nitric oxide donor-containing aliphatic polycarbonates (APC)-based micelles at different
concentrations by Western blot assay. (E) Fluorescence images and flow cytometer analysis for cellular
uptake of free DOX in MCF7/DOX resistant cells with and without 24 h pretreatment of nitric oxide
donor-containing micelles (1.0 mg/mL). The scale bars represent 50 µm. Reprinted with permission
from ref [119]. Copyright 2019 American Chemical Society.

The polycarbonate-based copolymers with various architecture e.g., brushes [120] or graft
copolymers [121] were also investigated for GSH-triggered drug delivery systems. However,
the most common route to use a GSH-sensitive linkage is to incorporate it into the micelle
core as a core-crosslinking agent in order to increase the colloidal stability of micelles in an
aqueous medium, improve stability against dilution, avoiding drug leakage, prolonged circulation,
and to get redox-sensitivity leading to micelles disintegration followed by the intracellular drug
release in tumor cells. Therefore, most research on GSH-responsive nanocarriers focuses on
developing core-crosslinked nanoparticles via disulfide bonds. For this reason, the combination
of biodegradable polymers with thiol functionalized aliphatic polycarbonates as a hydrophobic
part of amphiphilic copolymers are attractive for designing novel biodegradable GSH-responsive
nanocarriers. Jing and coworkers described the core-crosslinked PEG-b-poly(lactide-co-thiol
functionalized cyclic carbonate) micelles for GSH-triggered doxorubicin release [122]. In this context,
Wang et al. [123] reported a disulfide bond containing biodegradable nanoparticles produced by
crosslinking of the partially azidated poly(ethylene glycol)-b-poly(ε-caprolactone-co-5,5-dibromomethyl
trimethylene carbonate) via click chemistry with propargyl 3,3′-dithiopropionate. Subsequently,
the authors reported such prepared nanoparticles loaded with paclitaxel and showed the
reduction-responsive intracellular drug release, which was verified by confocal laser scanning
microscopy studies [124]. Similarly, Zhang et al. [125] reported biodegradable micelles based on
poly((ethylene glycol)-b-(2,2-dimethyltrimethylene carbonate-co-2,2-bis(azidomethyl) trimethylene



Polymers 2020, 12, 2890 13 of 30

carbonate)) with a crosslinked core using click chemistry with disulfide containing dialkynyl linker.
In this area, Yi et al. [126] also described a highly stable redox-responsive nanocarrier for intracellular
doxorubicin delivery, prepared using PEGylated partially crosslinked copolycarbonate obtained by ROP
of disulfide-coupled bis-(cyclic carbonate) and trimethylene carbonate monomers using DBU/thiourea
derivative (TU) as a catalytic system. In another example, Lu and coworkers synthesized poly((ethylene
glycol)-b-(5-methyl-5-propargyloxycarbonyl-1,3-dioxane-2-one)) to which 6-bromohexanoic acid and
azide-functionalized α-lipoic acid were attached via click reaction. The disulfide core-crosslinked is
formed by the addition of a catalytic amount of dithiothreitol [127]. The same group also reported
GSH-responsive core-crosslinked biodegradable micelles for doxorubicin delivery into DOX-resistant
tumor cells. The nanoparticles with core crosslinked via “click” reaction with bis-(azidoethyl)disulfide
were made of diblock copolymer: PEGylated propargyl-functionalized APC. In vitro studies of
such GSH-sensitive micelles loaded with doxorubicin were conducted using HeLa cells, 4T1 cells,
and doxorubicin-resistant ADR/MCF-7 cells which showed a more efficient inhibition of tumor cell
growth than the free drug. More importantly, DOX-loaded micelles possessed significantly higher
anti-tumor activity against ADR/MCF-7 cells compared to free doxorubicin. It is caused by the “stealth”
endocytosis that overcomes the biological barriers of drug-resistant ADR/MCF-7 cells [128]. Overall,
such studies highlight that tumor-targeting nanoparticles provide a promising approach to effective drug
delivery into multi-drug resistance tumor cells for a large number of clinical chemotherapeutics, which is
often a major obstacle to develop an effective tumor therapy. Other limitations of effective chemotherapy
with nanoparticles are poor solid tumor penetration by nanoparticles. Very recently, Zhu et al. [129]
worked to overcome this limitation by developing a small-sized (~19 nm) redox-responsive
nanoparticles based on PEG2000-b-poly(5-methyl-5-acryloyloxymethylene-1,3-dioxan-2-one), which was
cross-linked by Michael addition reaction between pendant acrylate groups and cystamine. Extended
in vivo studies using confocal laser scanning microscopy performed with HeLa tumor-bearing mice
revealed that DOX-loaded small-sized micelles (DPP) penetrate deeper into tumor parenchyma
compared to micelles with an average size ~50 nm (CDPP) (Figure 6). Furthermore, GSH-responsiveness
to such small micelles can increase tumor inhibition efficacy due to the rapid release of DOX in highly
reducing cytoplasm tumor microenvironment.

In summary, it is evident that redox-responsive nanocarriers based on GSH-triggered
disulfide/diselenide bond rupture are capable to efficiently improve the cellular uptake of nanoparticles
into tumor tissues, demonstrating their high potential for applications in chemotherapy. However,
based on the studies outlined above, redox-sensitive bonding has a dual-use: i.e., triggering the drug
release and, equally important, cross-linking of micelles core to enhance their stability and preventing
drug leakage. Combining the redox-responsive core cross-linked micelles with another stimulus for
drug triggering release could provide a promising platform for cancer treatment.
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microscopy (CLSM) images of multicellular tumor spheroids treated with DOX, micelles with average
size ~50 nm (CDPP), and small-sized micelles with average size ~19 nm (DPP). Scale bar represents
100 µm. (C) Semiquantitative fluorescence along the line drawn on the central slice in all groups.
(D) In vivo fluorescence imaging of tumor-bearing mice after injection of Cy-5 labeled DPP and CDPP.
The red circles indicate the tumor sites. (E) Quantitative fluorescence analysis in the tumor at different
times. (F) Frozen sections of HeLa tumors after treatment with CDPP or DPP. The tumor vessels and
nuclei are stained with FITC-tagged CD31 antibody (green) and DAPI (blue), respectively. Scale bar
represents 50 µm. Reprinted with permission from ref [129]. Copyright 2020 Royal Society of Chemistry.

2.3. ROS-Responsive APC Nanocarriers

There are a lot of studies pointing that tumor tissues are characterized by a higher level of
reactive oxygen species (ROS) compared to healthy cells. Endogenous cancer cells constantly produce
ROS (e.g., hydroxyl radical (·OH), hydrogen peroxide (H2O2), superoxide (O2

−), singlet oxygen
(1O2), etc.) as the byproducts of aerobic metabolism caused by oncogenic transformation, intensive
metabolism related to increased proliferation, or mutations in mitochondrial DNA [130]. A high
level of ROS in tumor tissues may cause a variety of physiological responses, such as the formation
of DNA mutations and genetic instability, cell adaptation, or increased proliferation rate [131].
The phenomenon of a higher level of ROS in cancer cells prompted scientists to develop ROS-triggered
nanocarriers to release anticancer drugs in response to elevated ROS concentration in tumor site-specific
regions. In this regard, some studies suggest that the ROS-responsive nanocarriers family has great
potential for cancer treatment and inflammation targeting [132,133]. However, the mechanism of
the oxidation process and the safety of oxidation byproducts have to be evaluated before clinical
use. Yan et al. [134] recently reported biodegradable oxidation-responsive nanocarriers. Respectively,
poly((ethylene glycol)-b-(carbonate-thioether)) was synthesized by lipase-catalyzed ROP of the cyclic
diethylene sulfide carbonate dimer. The thioether groups located in the copolymer main chain caused
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the nanocarriers to exhibit ROS-sensitivity by oxidizing the thioether groups to hydrophilic polar
sulfoxides or sulfones. This causes the size of the micelles to decrease, which was attributed to the
reduction in the core of the micelles. Further oxidation increased the hydrophilicity of the copolymer
and led to an increase in the size of the micelles, which was caused by the formation of loose aggregates
(Figure 7). MTT assays showed that the thioether-containing APC and their oxidized products were
non-toxic. Furthermore, the authors paid particular attention to clarify the mechanism of the oxidation
process to provide a promising platform for cancer treatment.
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Wang et al. [135] developed ROS-responsive core crosslinked APC nanocarriers for the delivery of
doxorubicin. The PEGylated APC with a pendant alkynyl group was coupled with thioketal containing
azide derivative (bis(2-azidoethyl)-3,3′-(propane-2,2-diylbis(sulfanediyl))dipropanoate) via “click”
reaction. The introduction of thioketal containing core-crosslinker endowed ROS-responsiveness for
triggered intracellular anticancer drug release and improved stability of nanocarrier. The DOX-loaded
core-crosslinked micelles with the thioketal group show low biotoxicity and had significantly higher
toxicity effects for cancer cells (HeLa and MCF-7) compared to both the non-crosslinked micelles
and non-responsive cross-linked micelles. Moreover, CLSM studies revealed an internalization
efficiency and drug release inside the cancer cells. Yang et al. [136] developed ROS-responsive
nanocarriers based on selenium-containing amphiphilic APC. The DOX-loaded nanoparticles were
rapidly disrupted under biologically relevant concentrations of H2O2, thus releasing the encapsulated
drug for inducing cancer cells apoptosis. Moreover, in vitro cytotoxicity studies revealed that these
DOX-loaded nanoparticles inhibit the proliferation of cancer cells while exhibiting much lower
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cytotoxicity in healthy cells. Yu et al. [137] designed and synthesized a series of ethyl selenide,
phenyl selenide, or ethyl telluride groups-functionalized APC for ROS-responsive photodynamic
therapy. The PEGylated chalcogen-containing APC nanoparticles rapidly disintegrate under triggering
in ROS conditions releasing encapsulated drugs. The oxidation mechanism and kinetics studies
revealed that telluride-functionalized nanoparticles degraded much faster than selenides-containing
ones. To evaluate the ROS-triggered drug release, DOX and photosensitizer chlorin e6 (Ce6) were
loaded. Upon red light irradiation, Ce6 generates 1O2 that triggers the degradation of the nanocarrier.
It results in an acceleration of DOX release to achieve efficiently the combination of photodynamic
therapy and chemotherapy. In view of the potential of clinical application of ROS-responsive APC
nanocarriers, the same group expanded their research in this field. More recently, Yu et al. [138]
developed theranostic nanocarriers for delivering anticancer drugs to the ROS-overproduced tumor
tissues and fluorescent monitoring of the intracellular redox status simultaneously. Nanocarriers
were prepared from the triblock copolymer consisting of PEG and two APC blocks, functionalized
with ethyl selenide and coumarin-based chromophore respectively. The nanoparticles formed can be
loaded with two anticancer drugs—PTX through hydrophobic interactions and cis-platin through
coordination. Moreover, dual-drug loaded nanocarriers showed increased stability against dilution
due to additional cross-linking through Se-Pt coordination. Nanocarriers loaded with two anticancer
agents selectively kill triple-negative breast cancer cells and show reduced toxicity to the healthy cells.
So far, there are only a few reports that present the use of ROS-responsive nanocarriers based on
aliphatic polycarbonates for anticancer drug delivery. Further research in this field may thus provide
new possibilities for tumor treatment.

2.4. Light-Responsive APC Nanocarriers

The convenient and clean nature of light made the photoactivated nanocarriers an extensively
studied drug delivery systems. What distinguishes light-responsive nanocarriers from other
stimuli-responsive carriers is their ability to achieve a precise on-demand drug release in a
spatiotemporal manner in response to non-invasive light irradiation with a specific wavelength [139].
The phototoxicity of high energy irradiation (X-rays, γ-rays) is clinically used in radiotherapy whereby
damaging the DNA of tumor tissues leading to cellular death [140]. However, high-energy radiation
damages healthy tissues, which precludes the use of this type of radiation as a stimulus. The light used
as a trigger to release drugs from nanocarriers must be of lower energy. Therefore, light-responsive
nanocarriers are mostly based on UV, VIS, or NIR irradiation [141]. An additional advantage of
light-triggered drug delivery systems is the low toxicity of photosensitive groups, which can be
incorporated into the main copolymer chain or functionalized as a side group. The response of the
photosensitive group may be irreversible or reversible, however, it is mainly based on the processes of
photoisomerization, photoreduction, photolysis, change of electrostatic charge and lead to the release of
the therapeutic agent [142]. Lu and coworkers designed photosensitive APC micelles by introducing a
trifluoromethoxy-azobenzene as a side group via “click” chemistry [143]. Azobenzene group undergo
trans–cis photoisomerization in response to UV and VIS light. The cis form of the azobenzene group
is more polar than the trans. The isomerization of trans-azobenzene group functionalized APC
micelles into the cis-azobenzene group under 365 nm UV irradiation caused a micelles disintegration
with the simultaneous release of the encapsulated drug. It was caused by a disturbance of the
hydrophilic-hydrophobic balance. Subsequent irradiation of copolymer with the visible light (450 nm)
caused micelles to form once again. This phenomenon occurred due to the azobenzene cis-trans reverse
isomerization (Figure 8A).
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Figure 8. (A) Synthesis of PEGylated trifluoromethoxy-azobenzene-decorated poly(carbonate)s and
schematic illustration of reversible light-responsive micelles for drug packaging and release. Reprinted
with permission from ref [143]. Copyright 2014 Royal Society of Chemistry. (B) Schematic illustration
of micelle assembly and disassembly of photo-responsive amphiphilic APC containing spiropyran
group. Reprinted with permission from ref [144]. Copyright 2014 Wiley Periodicals, Inc.

In this context, the same group reported light-sensitive micelles consisting of PEGylated APC
functionalized with spiropyran chromophore group in the side chain [144]. The photosensitivity of
this system was caused by the conversion of hydrophobic spiropyran into hydrophilic merocyanine
under 365 nm UV light irradiation. As a result, the disintegration of micelles and the subsequent
release of the encapsulated hydrophobic drug is observed. Exposing the micelles to visible
light (620 nm), the aggregation process was observed again with subsequent re-encapsulation
of drugs (Figure 8B). These works provide a smart and convenient approach to design smart
vehicles for the release of various hydrophobic molecules. Lu and coworkers have continued
to develop novel light-responsive APC nanocarriers. PEGylated APC with pendent o-nitrobenzyl
ester group was reported [145]. The photo-cleavage nature of the o-nitrobenzyl ester group into
the free carboxylic acid group and o-nitrosobenzaldehyde under UV light irradiation caused
micelles disassembly and the release of the encapsulated drug. Similarly, Fang et al. [146]
reported photo-responsive micelles consisting of PNIPAM-b-poly(3-methyl-3-nitrobenzyl-trimethylene
carbonate) for indomethacin drug delivery system. Likewise, Kuckilng and coworkers developed a



Polymers 2020, 12, 2890 18 of 30

series of light-degradable nanocarriers consisting of PEGylated APC with an o-nitrobenzyl ester group
as side chains [147–151]. The nanoparticles were prepared from mixing amphiphilic APC copolymer
with poly(lactide-co-glycolide) in ratio 1:3 (Figure 9). The nanoparticles were stable in dark, however,
the light-triggered cleavage of the o-nitrobenzyl ester groups led to degradation of the copolymers
via intramolecular cyclization into small molecules. The photoactivated degradation of nanocarriers
results in a burst release of the encapsulated drug (temoporfin). Preliminary in vitro cellular studies
of the above-mentioned nanoparticles and degradation products confirmed that systems have the
potential to be used for in vivo studies.
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Very recently, the same group reported light-degradable APCs nanoparticles by introducing
bromocoumarin groups into the side chain [152]. Upon light irradiation, the photo-degradable
bromocoumarin side groups are removed, which causes the appearance of nucleophilic amino groups.
As a result, the copolymer undergoes amine induced degradation into low molecular weight compounds.
In addition, the authors suggest that the bromocoumarin group, compared to the o-nitrobenzyl one,
shows better biocompatibility, does not form toxic degradation products and characterizes a higher
photolysis rate. Based on this strategy, a variety of photoactivated nanoparticles can be obtained to
expand the family of aliphatic polycarbonates nanocarriers as highly controlled spatially and temporally
drug delivery systems. Overall, light-sensitive nanocarriers represent a promising option for controlled
drug delivery systems. Although the endogenous stimuli-responsive nanocarrier approach is limited
due to the heterogeneity of the tumor tissues, the complexity of the light-triggered drug release
mechanism and the potential toxicity of the photosensitive groups and their degradation products
are still major disadvantages of photosensitive systems. However, the simultaneous combination of
endogenous and exogenous stimulus-responsive groups into a biodegradable nanocarrier may provide
more precise cancer treatment with reduced side effects.

2.5. Dual/Multiple Stimuli-Responsive APC Nanocarriers

The rapid and uncontrolled growth of cancer cells is associated with the unique characteristic
tumor microenvironment. As cancer develops, tumors become more and more heterogeneous [153].
Thereby, the levels of characteristic pathophysiological markers (i.e., pH, GSH, ROS, enzyme level or
various vitamin receptors overexpression, etc.) differ from cell to cell. Therefore, it would be highly
advantageous to use combinations of two or more stimuli to further enhance the tumor-targeted
effect, response rate or achieve on-demand burst drug release in tumor site-specific regions.
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Multi-stimuli-sensitive nanocarriers have so far shows much more advantages over single-stimuli
responsive ones. Herein, we emphasize the development of dual- or multi-stimuli-responsive
nanocarriers consisting of aliphatic polycarbonates.

Recently, most research has focused on combining pH sensitivity with various endogenous stimuli,
e.g., redox, ROS. The combination of pH and redox-sensitivity is attractive because tumor tissues are
always characterized by low pH and elevated level of intracellular GSH. Taking advantage of this,
Zhong and coworkers designed and developed a pH/GSH-responsive micelles consisted of diblock
copolymer poly(ethylene glycol)-b-(disulfide bond)-poly(2,4,6-trimethoxybenzylidene pentaerythritol
carbonate) for dually-triggered intracellular release of doxorubicin [154]. The acetal bonds located in
the core-forming block of micelles hydrolyzes in endosomes causing nanocarriers to swell leading
to partial drug release. Following the movement of micelles from the endosomes to the cytosol,
disulfide bonds are cleaved due to the high concentration of GSH, leading to the rapid release of
the encapsulated drug. In vitro, drug release studies revealed that dual pH- and redox-sensitive
micelles exhibit synergistic drug release effects compared with pH-responsive. Hydrolysis of the acetal
groups to two hydroxyl groups increases the hydrophilicity of the micelle core, which significantly
facilitates the reduction-triggered DOX release. The sensitivity to two stimuli also explains better
anticancer activity compared with only pH-responsive nanocarriers. Similarly, Yi et al. [155] reported
nanoparticles prepared from the poly((ethylene glycol)-b-(2,4,6-trimethoxybenzylidene- pentaerythritol
carbonate-co-5-methyl-5-propargyl-1,3-dioxan-2-one)) obtained by organocatalyzed ROP. The propargyl
groups were used to cross-link the core via “click” reaction with 1,6-diazidohexane or bis(azidoethyl)
disulfide to obtain insensitive and GSH-sensitive crosslinking, respectively. Yang and coworkers
designed and prepared smart pH/redox dual-responsive micelles with high drug loading for anticancer
drug delivery [156] and reported micelles consisted of PEGylated polycarbonate that contains
disulfide-functionalized carboxylic acid groups (PEG-b-(APC-SS-COOH)). Interestingly, the effect of
hydrophilic/hydrophobic block lengths and drug loading efficiency was studied. The DOX loading
capacity increased with an increasing ratio of the carboxylic acid groups in the copolymer side chain.
In vitro drug release showed that at the endolysosomal pH (~5.0) and in the presence of GSH at the
cytoplasmic concentration (10 mM GSH), DOX release was significantly accelerated. Moreover, these
DOX-loaded dual-sensitive nanocarriers accumulate in tumor tissues, as shown by confocal microscopy
studies, and demonstrated better inhibition of tumor growth in nude mice bearing BT-474 xenografts.
In this context, Hu et al. [157] developed dual-responsive nanovesicles by introducing disulfide and
tertiary amine groups into the APC copolymer backbone.

Another research reported dual-responsive micelles obtained through mixing positively charged
pH/reduction-sensitive APC copolymer possessed hydrazone linked doxorubicin and disulfide
functional pendant groups, with negatively charged PEGylated APC copolymer containing acid-labile
β-carboxylic amide as side groups [158]. The hydrazone-bond linked DOX was effectively released
under endosomal pH and 10 mM GSH conditions. The confocal microscopy studies and MTT assays
conducted on HeLa cells showed enhanced intracellular uptake efficacy and better antiproliferative
properties compared with free DOX.

Dual-responsiveness to pH and ROS is also an attractive modification of nanocarriers for targeted
tumor chemotherapy, because cancer cells display low pH and elevated ROS level. Yang and coworkers
designed pH/ROS-sensitive nanocarriers based on a mixture of two diblock copolymers (i) PEGylated
carboxylic acid-functionalized thioether-containing APC and (ii) PEGylated phenylurea-functionalized
thioether-containing APC [159]. The addition of the PEGylated copolymer containing phenylurea
groups enhanced the colloidal stability of nanocarriers. Whereas, oxidation of the thioethers group
to sulfoxide followed by the subsequent oxidation of the later to sulfone group causes an increase in
hydrophilicity in the hydrophobic core of micelles. The micelles were highly sensitive to pH and ROS
as shown in the in vitro DOX release studies. In vivo studies revealed that dual-responsive micelles
accumulated in the tumor tissues upon the enhanced permeability and retention effect in a PC-3
xenograft mouse model. The nanocarrier consisting of poly(ethylene glycol)-b-polycarbonate with
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incorporated selenide and tertiary amine groups into the APC backbone (Figure 10) was also reported
to be pH/ROS-dual-responsive platform for cancer chemotherapy [160].
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Figure 10. (Top) Synthesis of PEGylated APC containing selenide and tertiary amine groups in the
polymer backbone by lipase-catalyzed ring-opening copolymerization. (Bottom) Schematic illustration
of dual-responsive nanocarriers for ROS/pH-controlled drug release. Reprinted with permission from
ref [160]. Copyright 2019 Royal Society of Chemistry.

Yu and coworkers reported fluorophore-installed APC nanocarriers possessing incorporated
selenide and tertiary amine groups in the copolymer backbone [161]. Among the various dual-responsive
nanocarriers, pH/light-responsive systems have been also reported. Lu and coworkers designed
photo/pH-responsive nanocarriers for anticancer drug release based on a triblock amphiphilic aliphatic
polycarbonate containing azobenzene and 2-azido-1-ethyl-diethylamine groups as side chains [162].
Then the same authors designed triple-stimuli-responsive micelles which respond to the changes in
GSH, light and temperature. APC-based micelles consisted of a thermo-sensitive shell by introducing
tetraethylene glycol as a pendant group and photo-responsive poly(2-nitrobenzyl methacrylate) which
was linked via GSH-sensitive disulfide bond. The use of a triple stimulus allowed control of the
changes in the morphology of nanoparticles, and thus for a precise, controlled release of drugs [163].
Kalva et al. [164] reported pH/photo-dual-sensitive nanocarriers. The micelles consisted of PEGylated
APC bearing photo-responsive o-nitrobenzyl ester group and doxorubicin molecules conjugated via
acid-sensitive Schiff-base linkage. Interestingly, both triggers can be used individually or together for
adjusting the drug release rate (Figure 11).

Very recently, Wang et al. [165] reported GSH/ROS-sensitive nanoparticles consisting of PEGylated
poly(ester-co-carbonate) obtained via enzymatic copolymerization of ε-caprolactone and diselenic
carbonate macrolide. A detailed study of the copolymerization made it possible to obtain a copolymer
with a controlled number of diselenide groups in the main chain to ensure a highly controlled
GSH/ROS-responsive drug release from the nanoparticles. Sun et al. [166] designed and developed
pH/GSH/ROS-triple sensitive nanovehicles for activated intracellular DOX release. The reported
micelles were formed from PEGylated APC copolymer containing diselenide and tertiary amine groups
in the backbone. Both bioresponsive groups allowed for pH/GSH/ROS-triple responsiveness, resulting
in a highly controlled drug release. The confocal microscopy studies indicated facilitated cellular
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uptake and intracellular DOX release. The heterogeneity and complexity of the tumor tissues make it
extremely difficult to achieve precise and highly controlled drug release in tumor site-specific regions.
In addition, levels of pathophysiological markers are highly patient-dependent and vary with disease
states. However, it seems that the application of two or more stimuli with synergistic action may
increase efficient drug delivery. Therefore, personalized therapy with nanocarriers sensitive to two
or more stimuli, depending on the type of cancer and its condition, should be considered in order to
ensure the best therapeutic effect.Polymers 2020, 12, x FOR PEER REVIEW 21 of 31 
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3. Conclusions

The introduction of Doxil® as an anticancer agent has shown how powerful a weapon the use
of nanoparticles can be in the fight against cancer. Furthermore, it is also worth noting that an
analysis of the American Food and Drug Administration and European Medicines Agency databases
indicates that more and more novel nanocarriers are approved for the diagnosis and treatment of cancer,
including systems using active targeting or stimulus-responsivity mechanisms [167]. This prompts
scientists to develop more efficient systems to tailor individual therapy that targets cancer cells and
circumvents multi-drug resistance. Excellent biodegradability and biocompatibility, combined with
numerous modification possibilities in the monomer and copolymer structure to achieve superior
tumor-targeting efficiency, makes nanocarriers based on aliphatic polycarbonates ideal candidates for
anticancer drug delivery systems. Therefore, the use of APC as stimuli-responsive nanocarriers has
been extensively studied in the past decade. Some efforts have focused on the design of nanocarriers
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responsive to endogenous stimuli e.g., pH, GSH, ROS, or the overexpression of various vitamin
receptors. Considering that the ability of such systems to release anticancer drugs with such small
changes in pH, ROS or GSH is not an easy task, even if the risk-benefit ratio is definitely favorable for
nanocarriers, it should be assessed before clinical use. The use of an exogenous stimulus such as light
also appears to be attractive because of the possibility of achieving a controlled on-demand release
of a drug in a spatiotemporal manner. To provide a better therapeutic outcome and tumor-targeting
efficiency a versatility of dual/multi-responsive nanocarriers based on APC has also been studied.
The use of a nanocarrier sensitive to two or more stimuli allows the ability to target the tumor cells
with a very precisely controlled drug release manner in tumor tissues. Besides, the encapsulation
of fragile chemotherapeutic agents in nanocarriers significantly improves their efficacy by avoiding
systemic side effects and reducing the doses of drugs administered. In spite of all this, most of
the multi-stimuli-responsive systems are sophisticated in design which makes clinical development
more complex. In particular, the mechanism and benefits of each stimulus used should be assessed.
In addition, recent attention is given to the ligand-decorated nanocarriers which can specifically
recognize and target the tumor tissues. The ligand-installed nanocarriers showed an enhanced
internalization by tumor tissues, improved cellular uptake of the encapsulated drugs, and reducing
systemic side effects which were excellently described by Kataoka and coworkers [168]. In the future,
the combination of stimuli-responsive biodegradable nanocarriers with the addition of active targeting
ligands to nanoparticle surfaces might mitigate some of the challenges in chemotherapy.

In the fight against cancer, current advances in research on stimulus-responsive systems are a
promising strategy with a bright future. The successful clinical implementation of stimuli-responsive
nanocarriers based on aliphatic polycarbonates remains a major challenge, even though recent results
are promising. In future studies, there is an expectation of more efficient nanocarriers with a superior
balance between safety, tumor-targeting ability, and clinical outcome.
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71. Domiński, A.; Krawczyk, M.; Konieczny, T.; Kasprow, M.; Foryś, A.; Pastuch-Gawołek, G.; Kurcok, P.
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