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Abstract

Background: In recent years, the increasing prevalence of skin cancers, particularly

malignant melanoma, has become a major concern for public health. The develop-

ment of accurate automated segmentation techniques for skin lesions holds immense

potential in alleviating the burden on medical professionals. It is of substantial clinical

importance for the early identification and intervention of skin cancer. Nevertheless,

the irregular shape, uneven color, and noise interference of the skin lesions have pre-

sented significant challenges to the precise segmentation. Therefore, it is crucial to

developahigh-precisionand intelligent skin lesion segmentation framework for clinical

treatment.

Methods: A precision-driven segmentation model for skin cancer images is pro-

posed based on the Transformer U-Net, called BiADATU-Net, which integrates the

deformable attention Transformer and bidirectional attention blocks into the U-Net.

The encoder part utilizes deformable attention Transformer with dual attention block,

allowing adaptive learning of global and local features. The decoder part incorporates

specifically tailored scSE attention modules within skip connection layers to capture

image-specific context information for strong feature fusion. Additionally, deformable

convolution is aggregated into two different attention blocks to learn irregular lesion

features for high-precision prediction.

Results:A series of experiments are conducted on four skin cancer image datasets (i.e.,

ISIC2016, ISIC2017, ISIC2018, and PH2). The findings show that our model exhibits

satisfactory segmentation performance, all achieving an accuracy rate of over 96%.

Conclusion: Our experiment results validate the proposed BiADATU-Net achieves

competitive performance supremacy compared to some state-of-the-art methods. It

is potential and valuable in the field of skin lesion segmentation.
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1 INTRODUCTION

Skin diseases are among the widespread ailments characterized by a

high incidence rate in the population. They are distributed in a wide

range of ages. Many internal organ diseases are directly manifested on

the skin. There are various types of skin diseases and melanoma is a

malignant tumor that arises from normal melanocytes or pre-existing

nevus cells in the lesional epidermis.1 Malignant melanoma is charac-

terized by rapid disease spread, poor healing effects, and an extremely

high mortality rate. According to the statistics of the World Health

Organization, there were an estimated 325 000 new cases of cuta-

neous melanoma worldwide in 2020, and 57 000 people died from the

disease. The projection indicates a concerning surge in the occurrence

of melanoma, with an anticipated escalation of more than 50% from

the year 2020 to 2040.2 However, if it is detected early, the 5-year

survival rate can reach more than 90%.3 The later the detection, the

survival rate will be greatly lowered. Therefore, prompt diagnosis and

early detection are essential for successful treatment of melanoma.

In early clinical practices, dermatologists usually identify melanoma

by using the ABCDE rule based on the dermoscopic images.4–6 The

diagnostic results rely on visual observations manually. Nevertheless,

the lesion at an early stage resembles the natural skin features. It is

occasionally covered up by hair. Even experts might make mistakes

in diagnosis. The advancement of computer-aided diagnostic system

(CADS) provides convenient conditions for improving this situation. An

automated CADS usually goes through four stages after image acquisi-

tion: image preprocessing, precise segmentation of the skin lump area,

feature extraction, and lesion identification. Among them, the accurate

lesion segmentation contributes to promoting the reliability of diag-

nosis in the follow-up process. Thus, achieving precise and automated

lesion segmentation is a critical step in advancing the field of precision

oncology.7

The process of segmenting skin lesions is fraught with numerous

complexities, such as low contrast, artificial artifacts, and vague con-

tour. These problems render the precise delineation exceedingly chal-

lenging.With the development of deep learningmethods, a plethora of

sophisticated artificial intelligence algorithmswith high precision have

been harnessed for the segmentation of skin tumors. Benefiting from

convolutional neural network (CNN),8 the U-shaped network (U-Net)9

is distinguished by the incorporation of skip connections that bridge

the two components. Nowadays, the U-Net and its derivatives have

becomeprevalent in the field of skin lesion segmentation.10–12 Despite

obtaining some good results, there is still room for further optimization

owing to the problems of coarse boundary location and diverse shapes

in dermatological images. Hence, we focus on four public datasets

of dermoscopic images that are dedicated to segmentation research.

Drawing on the advantages of existing methods, a more competitive

framework is proposed for the accurate skin lesion segmentation. The

primary contributions are concluded as follows.

1. An efficacious medical image segmentation framework, namely

BiADATU-Net, is designed in an end-to-end way in this paper. It

integrates two different attention blocks into a deformable atten-

tion Transformer U-Net structure. We explore a promising design

on the basis of the encoder-decoder architecture, expanding the

flexibility of segmentation networks.

2. Deformable convolution is embedded into the dual attention and

scSE attention block, designing two types of attention modules,

called DAD-block and scSED-block, respectively. In the encoder

part, DAD-block is placed at the front end of the deformable atten-

tion Transformer, while the scSED-block is positioned in the skip

connection part before the decoder. Ablation experiments con-

firmed that this design enhanced feature extraction and fusion

capabilities, facilitating promoting of segmentation performance.

3. We conducted comprehensive experiments across four skin cancer

image datasets to evaluate the efficacy of BiADATU-Net, bench-

marking it against a range of other advanced models. The exper-

iment outcomes validate that our network has delivered superior

performance, as evidenced by its accuracy, Dice coefficient, and

Jaccard index scores.

The rest of this paper is outlined as follows: The “literature review”

section provides a brief review of methods about skin lesion seg-

mentation problems, discussing classical digital image processing tech-

niques and CNN-based methods. Besides, a concise introduction of

Transformer-based method and attention mechanism are presented

for medical image segmentation. The “methods” section is dedicated

to detailing our model. The “experiments and analysis” section elabo-

rates our comparative experiment results analysis and ablation study.

A concise discussion of experimental results is made in the “discussion”

section. The “conclusion” part summarizes the paper.

2 LITERATURE REVIEW

2.1 Skin lesion segmentation

Traditional approaches to image segmentation predominantly utilize

the establishment of various thresholds, capitalizing on features like

grayscale levels, textural patterns, and color attributes to distinguish

regions of interest.13 By classifying each pixel into different regions,

the entire image is segmented to separate different areas by cate-

gories. These techniques can be separated into three principal groups:

thresholding approaches, region-based strategies, and edge-based

methodologies. Glaister et al.14 introduced a segmentation algorithm

for skin lesions that is predicated on the concept of texture distinctive-

ness (TD). This algorithm utilizes TD as a coremetric for discerning the

sparse texture patterns presentwithin the input images. The algorithm

adeptly identifies and accentuates the disparities in texture distribu-

tions, thereby establishing an optimal threshold to effectively partition

the image into normal skin and those indicative of lesions. Although

this method is computationally simple, the selection of the optimal

threshold can be a tedious task. Region-based methods partition an

image into distinct regions by employing similarity criteria that define

the coherence within each individual region. Abbas et al.15 improved

region-based active contour methods to segment multiple lesion
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tissues. However, when there are significant differences in texture

and color between the skin and lesion tissues, region-based meth-

ods can lead to over-segmentation. Edge-based methods detect areas

with abrupt changes in either grayscale or structure, segmenting the

image by identifying pixels along the edges of the target region. Ali

et al.16 employed the Canny edge detector to locate skin lesion bound-

aries and evaluated the regularity. Nevertheless, this method is highly

susceptible to the noise, leading to low segmentation accuracy. Oukil

et al.17 exploited the K-means algorithm to segment the regions of skin

lesions. Utilizing the color and texture attributes of these lesions, they

developed a superior feature extraction technique that facilitates the

detection of melanoma.

Currently, deep learning techniques have been extensively utilized

in the taskof image segmentation.Akramet al.18 combinedCNN-based

deep learning methods with edge detection techniques to achieve

effective boundaries location of skin lesions. Then, they used the

ResNet50 model to perform the recognition of the skin lesions. Tak-

ing the proposal of fully convolutional network (FCN) as an important

node, the encoder-decoder structure was innovatively constructed to

realize the dense prediction of image pixels. Multiple FCNswere lever-

aged to learn the subtle features of the lesion area.19 The shortcoming

of this approach is that the relationships between pixels are not fully

considered. Besides, it is less sensitive to fine details in the image,

resulting in under-segmentation results. The U-Net has garnered con-

siderable interest among researchers due to its outstanding efficacy in

the domain of medical image segmentation. The U-Net and its variants

are still the mainstream research to date.20 For instance, U-Net++,10

residual U-Net,21 recurrent residual U-Net(R2U-Net),22 attention U-

Net11 are frequently applied in many semantic segmentation tasks.

Oktay et al.11 introduced attention mechanism into segmentation net-

works, enhancing the expressive power of CNN by adaptively learning

feature weights. This enables important features to be assigned higher

weights, facilitating faster learning of skin lesion characteristics. Alom

et al.22 investigated two novel structures based on residual U-Net.

They have similar performance as the equivalent model in various seg-

mentation tasks. Maurya et al.23 harnessed the U-Net architecture

to construct an automated telangiectasia detection model. The study

established a pathway for the early detection of skin cancer by iden-

tifying key signs indicative of the disease. Jin et al.24 devised a novel

diffusion network to achieve classification and segmentation of skin

lesions. The designed module incorporated the mechanism of multi-

task learning to enhance segmentation performance.Nevertheless, the

segmentation accuracy of U-Net is still challenging as a result of com-

plex lesion shapes, blurred boundaries, and artifacts in skin cancer

images.

2.2 Transformer-based methods for medical
image segmentation

Lackof capturing long-rangedependencies imposes certain constraints

on the segmentation accuracy for CNN. In recent years, Transformer25

has revolutionized the field of computer vision, achieving remarkable

success and setting new benchmarks in image analysis and process-

ing. TransUNet26 represents a pioneering effort to investigate the

applicability of the Transformer architecture for medical image seg-

mentation, breaking new ground in the integration of this technology

within the field. Its overall architecture follows the design of U-Net,

utilizing Transformer as an encoder to encode feature maps from the

CNN into input sequences for extracting global context information.

However, it overlooks the image-specific positional and channel infor-

mation. Sun et al.27 integrated dual attention mechanisms into the

Transformer encoder, thereby significantly boosting themodel’s capac-

ity for feature extraction. TEC-Net28 integrated dynamic deformable

convolution into the CNN and combined it with vision Transformer

for skin lesion segmentation. Traditional Transformer encoder exhibits

high computational and storage complexity when processing high-

resolution feature maps. In response to these challenges, Zhu et al.29

developed the deformable detection Transformer (DETR), a novel

approach that effectively mitigates the issues of slow convergence

and elevated complexity associated with the original Transformer

framework. It combined the sparse spatial sampling of deformable con-

volution with the relationship modeling capabilities of Transformer,

resulting in highly competitive detection performance.

2.3 Attention mechanism

Attention mechanism is a computational model that mimics the way

human attention is allocated, enabling models to focus on crucial

parts when processing vast amounts of data. This mechanism enables

models to dynamically adjust attention allocation based on the impor-

tance of input data, thereby enhancing themodel’s expressiveness and

generalization capabilities.25 As one of the key tools for enhancing per-

formance of model, it has garnered widespread application across the

realmsof natural languageprocessing and computer vision.30 Squeeze-

and-Excitation network (SENet)31 leverages the channel attention

mechanism to refine and invigorate input features. Convolutional block

attention module (CBAM)32 seamlessly amalgamates both channel

and spatial attention mechanisms, culminating in a hybrid attention

mechanism. Similarly, dual attention network (DANet)33 adeptly fuses

spatial and channel attention features to boost feature representa-

tion capability. Currently, attention mechanisms are widely utilized in

medical-related semantic segmentation models. Azad et al.34 incorpo-

rated channel attention into the Deeplabv3+ network to develop a

segmentation model for skin diseases, resulting in an enhancement of

segmentation accuracy. Li et al.35 introduced a lightweight attention-

based U-Net tailored for the segmentation of retinal vessel images,

demonstrating performance metrics that surpass those of prevailing

mainstreammethodologies.

Inspired by the aforementioned studies, we propose BiADATU-

Net for segmenting skin cancer images. It combines the deformable

attention Transformer with the U-Net structure and introduces hybrid

attention modules that include both dual attention and scSE atten-

tion mechanisms. This design effectively exploits the complementary

advantages of the deformable attention Transformer and the U-Net,
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F IGURE 1 An overall structure diagram of BiADATU-Net.

enhancing the segmentation process. Moreover, the hybrid attention

modules contribute to capturing densely global context information

and image-specific position and channel features. The subsequent

section delves into the architecture of BiADATU-Net.

3 METHODS

In this section, we commence with a general introduction to the seg-

mentation framework designed for skin lesions. Next, we describe the

key components within the segmentation architecture, including the

deformable attention Transformer, DAD-block, scSED-block, and the

decoder.

3.1 The overall segmentation framework

The BiADATU-Net is composed of an encoder with deformable atten-

tion Transformer and DAD-block, skip connection layers with scSED-

block and decoder. The diagram is illustrated in Figure 1. The encoder

part, as a key component for optimization, does not use the tradi-

tional transformer layer. Instead, it employs a deformable attention

Transformer (DAT)36 mechanism preceded by a specially designed

DAD-block that integrates deformable convolution. For the skip con-

nection layers, we also utilize the specifically tailored scSED-block

placed in the middle of the entire network. The DAD-block and scSED-

block constitute the bidirectional mixed attentionmodules, which help

the model retain more valuable features and enhance the efficiency of

feature extraction. As for the decoder part, we adopt the conventional

convolutional module design.

To fully elucidate the rationality of the model we constructed, it

is essential to first outline the constraints inherent in the traditional

U-Net structure and Transformer with respect to feature extraction.

Although traditional Transformers can capture long-distance feature

dependencies through cascading self-attention modules, they tend

to overlook the details of local features. Moreover, extracting fea-

tures from high-resolution images requires substantial computation

and memory resources. U-Net structures are adept at extracting local

features for dense prediction, but still encounter certain limitations

in capturing global features. To address these constraints, we have

employedamore suitableDAT layer tailored fordenseprediction tasks.

This integration is complemented by the incorporation of a DAD-block

preceding it, along with the integration of scSED-blocks within the

skip connections. The benefits of these enhancements are evident: this

approach merges the strengths of Transformer and U-Net in feature

extractionwhilemitigating excessive computational overhead, yielding

a more meaningful and robust feature representation. Meanwhile, the

introduction of the DAD-block and scSED-block refines the features

transmitted to the decoder, facilitating the learning of intricate image

deformations and thereby enabling a more precise reconstruction of

featuremaps.

3.2 Encoder with deformable attention
Transformer and DAD-block

As illustrated in Figure 1, the encoder section is composed of four piv-

otal components: CNN blocks, DAD-block, embedding layer, and DAT

layers. Following each stage of theCNNblocks, the featuremapdimen-

sion is halved, while the channel count is doubled. The outputs from

each level are preserved as inputs to the skip connections of U-Net.

Then, the final output from the CNN blocks undergoes feature extrac-

tion and fusion at both position and channel levels via the DAD-block.

This output is processed through an embedding layer encoding the
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F IGURE 2 The structure diagram of deformable attentionmodule.

feature map into a format suitable for the DAT layer. Through multi-

ple layers of the DAT, features are refined and optimized. Ultimately,

the fine-grained features are relayed to the decoder layer for feature

reconstruction.

3.2.1 Deformable attention Transformer

The traditional Transformer’s self-attention mechanism is known

for its substantial memory and computational demands. To cope

with this problem, researchers have embarked on designing

sparse self-attention mechanisms. Deformable attention Trans-

former is one of these innovations, achieving remarkable results in

image classification.36 Borrowed from this thought, the structure

of DAT is depicted on the left side of Figure 1. This configura-

tion primarily consists of the deformable attention mechanism,

a feedforward neural network (FNN), and residual connections.

A schematic of the deformable attention module is depicted in

Figure 2.

The key and value vectors of the deformable attention mechanism

are obtained by projecting sampled features from the original images.

These sampled features are acquired through bilinear interpolation

at sampling locations, which are dynamically determined by an offset

learning network from the query vectors. Given an input feature map

X ∈ RH×W×C , the query vectors Q are generated initially by project-

ing the input. Simultaneously, according to the dimensions of the input

feature map, a regular grid of reference points P ∈ R
H
r
×
W
r
×2

is pro-

duced as references, where r is a predefined parameter, called scaling

factor. The reference points are linearly two-dimensional coordinates

{(0,0),… , (
H

r
− 1,

W

r
− 1)}. To simplify computation, the coordinate val-

ues of these reference points are uniformly normalized to the interval

[−1, +1]. The query vectors Q are then input into the Offset(⋅) net-

work to learn the offset ΔP for each reference point. Then, the

deformed points are derived by adding the reference points and the

offset. Based on the coordinates of the deformed points, bilinear

interpolation sampling is utilized to sample the input feature map,

thereby obtaining the sampled features Xs. Subsequently, these sam-

pled features are projected to generate deformed keys and values,

namely K and V, respectively. The calculation formulas are listed

below:

Q = XWq, K = Xs Wk, V = Xs Wv (1)

ΔP = Offset (Q) , Xs = BI (X, P + ΔP) (2)

where Wq , Wk , Wv ∈ RC×C are the projection matrices. BI(⋅) denotes

bilinear interpolation sampling. Finally, the obtained Q, K and V are

used to compute the output results through amulti-head self-attention

(MSA)mechanism just as the traditionalmethods. The related formulas

are:

Z(h) = Softmax

(
Q(h)K(h)T√

d

)
V(h),

DMHA (Z) = Concat
(
Z(1), Z(2),… , Z(m)

)
Wz (3)

where Z(h) represents the attention output for the hth head, with m

being the total number of heads, and Wz ∈ RC×C is the output projec-

tion matrix for the deformable MSA. Ultimately, the output undergoes

a Multi-Layer Perceptron (MLP) block and residual connections, form-

ing the DAT. The computational formula of DAT can be represented as

follows:

Z′l = DMHA (LN (Zl)) + Zl (4)

Zl+1 = MLP
(
LN

(
Z′l

))
+ Z′l (5)

where DMHA(⋅) represents deformable MSA mechanism and LN(⋅) is

layer normalization.

3.2.2 Dual attention with deformable convolution
block

As depicted in Figure 1, the dual attention with deformable convolu-

tion block is positioned preceding the DAT layers within the encoder,

serving as a critical component for feature extraction. It aids in captur-

ing image-based spatial and channel information. The rationale behind

this setup is that while Transformer layers excel at extracting global

features of an image, they are slightly less effective when it comes to

capturing image-specific attributes. Within the DAD-block, the posi-

tion attention module (PAM) and channel attention module (CAM)33

effectively execute feature extraction pertaining to spatial and chan-

nel information of images. The structure diagram of DAD-block is

illustrated in Figure 3. Considering the fixed size of traditional con-

volution kernels, their receptive field is inherently limited, rendering

them less effective in perceiving the geometric shapes of target regions

within an image. The incorporation of a deformable convolution layer

renders the module’s feature learning capabilities more flexible and

adaptive, which is instrumental in augmenting the network’s capacity
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F IGURE 3 The structure diagram of DAD-block.

F IGURE 4 The structure diagram of scSED-block.

for learning geometric transformations. The outputs from thePAMand

CAM, after being processed through a standard convolutional layer,

are aggregated and subsequently subjected to another convolutional

layer to achieve a deep fusion of features. This arrangement augments

the model’s capacity to discern and integrate pivotal image attributes,

subsequently elevating the accuracy in handling complex data.

3.3 Skip connection layers with scSED-block

The scSED-block is displayed in Figure 4. We consider incorporat-

ing a specially crafted scSED-block into all skip connection layers,

replacing straightforward feature passing mechanism. The primary

motivation behind this optimization stems from the tendency of tradi-

tional direct feature passing to propagate redundant features. Through

scSED-block, features are selected and combined at both spatial and

channel levels. This process aids in extracting more valuable features

and improving the accuracy of featuremap reconstruction.

The scSED-block encodes spatial and channel information sepa-

rately, capturing pixel-level spatial information. It needs to go through

a deformable convolution layer firstly, then obtains the fused features

via scSE attention module.37 By introducing cross-channel and cross-

spatial information interaction, it enhances the network’s perceptual

capabilities. The scSED-block is designed for use in the skip connec-

tion layers, facilitating the strengthening of meaningful features and

suppression of irrelevant ones. In this way, our model implements a

bidirectional hybrid attention mechanism in the encoder part and the

skip connection layers. As proven by experiments on four dedicated

datasets of skin cancer images, it helps promote the model’s overall

performance and generalization ability.

3.4 Decoder

The right half of Figure 1 illustrates the decoder component of

the model, which receives the output from the deformable Trans-

former layer in the encoder section. This procedure entails a series

of upsampling operations executed in a stepwise manner, each dou-

bling the dimensions of the feature map. The expanded feature map

is subsequently merged with the corresponding output from the skip

connection layer, and the amalgamation is processed further through a

convolutional layer for enhanced integration. These steps are iterated

three times to reconstruct the feature map. Finally, the segmentation

head layer produces the segmentation results for the target area in the

image. By implementing these strategies in our segmentation model,

we ensure that the decoder achieves high-quality feature reconstruc-

tion, yielding ahigh-precision segmentation framework focusedon skin

lesions.

4 EXPERIMENTS AND ANALYSIS

4.1 Dataset description and preprocessing

Four well-known skin cancer image datasets are utilized as bench-

marks to construct an automated segmentation framework in the

study. These datasets include ISIC2016,38 ISIC2017,39 ISIC2018,40

and Pedro Hispano 2(PH2)41 dataset. The first three datasets are

sourced from the International Skin Imaging Collaboration (ISIC),

which hosts international workshops and challenges based on biomed-

ical imaging. They contain pigment lesion areas from different pop-

ulations and have been annotated by experts for lesion contour and

type. The ISIC2016 dataset consists of 900 training samples and 379

testing samples. The ISIC2017 dataset has 2000 training images, 150

validation images, and 600 testing images, while the ISIC2018 dataset

contains 2594 images in total. According to the partition scheme sug-

gested in Qin et al.,42 it is divided into 1816 training images, 260

validation images, and 518 testing images.

The PH2 dataset is a dedicated dermoscopy image database. It is

comprised of 200 skin lesion images with manually annotated seg-

mentation by dermatologists. This dataset is specifically designed for

clinical research and benchmark testing.We use the PH2 dataset as an

additional test set for evaluating the segmentationmodel’s generaliza-

tion ability on the ISIC2018 dataset in conformity with the approach

described in He et al.7

One of the challenges in skin lesion segmentation is the presence of

hair and artifacts in the lesion area. A common approach to addressing

this challenge is to employ classical digital imageprocessing techniques

to remove obstacles from the skin lesion images before segmenta-

tion. For example, Kasmi et al. developed the SharpRazor method to

detect hair and artifacts noise and remove them from dermoscopic
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F IGURE 5 Image preprocessing.

images.43 As for an automated and intelligent segmentation frame-

work, it is essential to embody an end-to-end philosophy, minimizing

multi-step processing to enhance segmentation efficiency. Therefore,

the proposed BiADATU-Net circumvents the need for additional hair

and artifacts noise processing methods, allowing direct input of skin

images into the segmentation network. This operation demonstrates

that our model can learn effective features from the lesion area, sup-

press interference from noise signals, and exhibit good robustness

and anti-interference capability. Considering the limited sample size

in existing skin image datasets, there is an increased risk of model

overfitting during the training phase. To bolster the precision of lesion

segmentation, this research employs data augmentation techniques to

expand training samples. These operations include random horizon-

tal flipping, vertical flipping, random rotation, grayscale conversion,

and adjustments to image hue. Figure 5 demonstrates the processed

data samples. Additionally, image resize andnormalization are alsoper-

formed. Image pixel resolution in the original database varies from

540 × 722 to 4499 × 6748.44 Such large dimensions impose high

hardware requirements on the training equipment. Therefore, we uni-

formly rescale the image size to 224× 224 and perform normalization,

mapping the pixel values to the range of 0 to 1.

4.2 Implementation details

The experiments conducted in this paper are performed on a computer

equippedwith an Intel 16 vCPU Intel(R) Xeon(R) Platinum 8350CCPU

@ 2.60 GHz and an NVIDIA GeForce RTX A5000 (24GB) GPU. The

deep learning framework used is PyTorch, with Python version 3.8 and

CUDA version 11.1. During the training process, we randomly initialize

the network weights and update the parameters using the SGD opti-

mizer. The sum of BCEWithLogitsLoss and Dice metric is used as loss

function to guide the training. The learning rate is set to 0.0001 and a

weight decay of 0.0001. The number of training iterations and batch

size are set to 50 and 8, respectively. To improve computational effi-

F IGURE 6 Loss curves on the ISIC2018 dataset.

ciency, we fix the input image size to 224 × 224 × 3 uniformly. Taking

the training on the ISIC2018 dataset as an example, the training and

validation loss curves are depicted in Figure 6.

4.3 Evaluation metrics

We choose five commonly used indicators for image segmentation

assessment, that is, Pixel Accuracy (Acc), Sensitivity (Sen), Precision

(Pre), Dice Coefficient (DC), and Jaccard Index (JA). Among these met-

rics, DC and JA can be used as comprehensive measures to evaluate

the similarity between the ground truth and the predicted region. The

other three metrics are typically regarded as statistical measures of

binary classification tasks. They are used as references in our task.

Their calculation formulas are presented below:

Acc =
TP + TN

TP + FN + TN + FP
(6)



8 of 13 CAI ET AL.

F IGURE 7 Visualization of segmentation results. From top to bottom: original images, ground truth, and predicted segmentation.

Sen =
TP

TP + FN
(7)

Pre =
TP

TP + FP
(8)

DC =
2 × TP

2 × TP + FN + FP
(9)

JA =
TP

TP + FN + FP
(10)

where TP signifies the quantity of lesion pixels that have been accu-

rately classified, while FP represents the count of non-lesion pixels

erroneously categorized as lesions. Conversely, TN corresponds to the

number of non-lesion pixels that have been correctly identified, and

FN refers to the lesion pixels that have been misclassified as non-

lesion. These metrics are quantified on a scale from 0 to 1, with values

approaching 1 indicating superior model performance.

4.4 Analysis of results

Figure 7 presents the comparison diagram between the true labels and

predicted results of ourmodel in theaforementioneddatasets. Figure7

demonstrates that our model has delivered satisfactory segmenta-

tion outcomes for some challenging samples, including those with low

contrast or noise. Additionally, the model exhibits relatively accurate

learning of irregular boundaries.

With the aim of confirming the segmentation performance differ-

ence between the proposed model and seven advanced models, for

instance, U-Net,9 R2U-Net,22 Attention U-Net,11 TransUNet,26 CPF-

Net,45 FAT-Net46 and DA-TransUNet,27 we implemented experiments

on the ISIC2016, ISIC2017, ISIC2018, and PH2 datasets. The seg-

mentation metrics are exhibited from Table 1 to Table 4. It should be

noted that we did not train the PH2 dataset. Instead, we used it as

a supplementary test set to assess the generalization ability of the

segmentationmodel established on the ISIC2018 dataset.

As shown in Table 1 to Table 4, it can be observed that the pro-

posed model consistently achieves relatively better metrics. Table 1

delineates the prediction results of the ISIC2016 dataset. Compared

with the classical U-Net model, our proposed model shows perfor-

mance improvements on metrics such as Acc, Sen, Pre, DC, and JA,

with increases of 2.98%, 4.35%, 2.76%, 2.11%, and 2.87%, respec-

tively. When benchmarked against some state-of-the-art models like

DA-TransUNet, FAT-Net, and CPF-Net, our model also exhibits a mod-

est degree of performance enhancement. According to Table 2, our

model achieves Acc, DC, and JA values of 0.9618, 0.8990, 0.8270,

respectively, outperforming DA-TransUNet’s scores of 0.9553, 0.8869,

0.8021 on the ISIC2017 dataset. The same conclusion can also be

drawn regard to the experiments of the ISIC2018 dataset in Table 3.

The results in Table 4 are more convincing as they are not trained on

the PH2 dataset. The metrics are calculated directly using the training

model on the ISIC2018 dataset. According to Table 4, the evaluation

results reveal even higher scores of 0.9687, 0.9496, 0.9475, 0.9463,

and0.8998 for the fivemetrics, surpassing someadvancedmodels such

asCPF-Net, FAT-Net, andDA-TransUNet. All the above results indicate

that the segmentation model developed in this study demonstrates

superior generalization capabilities.

Figure 8 andFigure 9 present the visual comparison results of afore-

mentioned models. These visualizations provide a comparative and

intuitive reflection of the differences in segmentation performance

among various models. Figure 8 depicts the comparison results on dif-

ferent models. By comparing the predicted results of each model, it is

evident that ourmodel exhibits a greater degree of segmentation accu-

racy in contrast with the other models. The extent of failure or missed

segmentation is minimal, and the results closely approximate the man-

ually annotated ground truth. Figure 9 illustrates the segmentation

result details of different networks, with enhanced contrast in yellow

and purple to distinguish between skin lesions and normal regions.

4.5 Ablation experiment

To substantiate the efficacy of specifically designed modules incorpo-

rated in our proposed model, an ablation experiment was conducted



CAI ET AL. 9 of 13

TABLE 1 Performance comparison of various networks on ISIC2016 dataset.

Citation Method Acc Sen Pre DC JA

Ronneberger et al. (2015)9 U-Net 0.9318 0.8771 0.9084 0.9003 0.8307

Alom et al. (2018)22 R2U-Net 0.9325 0.8798 0.9092 0.9012 0.8350

Oktay et al. (2018)11 Attention U-Net 0.9383 0.8829 0.9112 0.9027 0.8352

Feng et al. (2020)45 CPF-Net 0.9502 0.9078 0.9143 0.9134 0.8424

Chen et al. (2021)26 TransUNet 0.9455 0.9069 0.9070 0.9048 0.8373

Wu et al. (2022)46 FAT-Net 0.9526 0.9105 0.9135 0.9149 0.8449

Sun et al. (2023)27 DA-TransUNet 0.9538 0.9112 0.9152 0.9172 0.8491

Proposed BiADATU-Net 0.9616 0.9206 0.9360 0.9214 0.8594

Abbreviations: Acc, accuracy; DC, dice coefficient; JA, Jaccard index; Pre, precision; Sen, sensitivity.

TABLE 2 Performance comparison of various networks on ISIC2017 dataset.

Citation Method Acc Sen Pre DC JA

Ronneberger et al. (2015)9 U-Net 0.9320 0.8434 0.9101 0.8499 0.7641

Alom et al. (2018)22 R2U-Net 0.9358 0.8542 0.9089 0.8506 0.7762

Oktay et al. (2018)11 Attention U-Net 0.9390 0.8502 0.9153 0.8602 0.7775

Feng et al. (2020)45 CPF-Net 0.9498 0.8623 0.9185 0.8799 0.7912

Chen et al. (2021)26 TransUNet 0.9452 0.8581 0.9172 0.8663 0.7845

Wu et al. (2022)46 FAT-Net 0.9512 0.8605 0.9207 0.8805 0.7918

Sun et al. (2023)27 DA-TransUNet 0.9553 0.8612 0.9265 0.8869 0.8021

Proposed BiADATU-Net 0.9618 0.8727 0.9479 0.8990 0.8270

Abbreviations: Acc, accuracy; DC, dice coefficient; JA, Jaccard index; Pre, precision; Sen, sensitivity.

TABLE 3 Performance comparison of various networks on ISIC2018 dataset.

Citation Method Acc Sen Pre DC JA

Ronneberger et al. (2015)9 U-Net 0.9312 0.8521 0.9012 0.8579 0.7757

Alom et al. (2018)22 R2U-Net 0.9427 0.8635 0.9034 0.8637 0.7850

Oktay et al. (2018)11 Attention U-Net 0.9449 0.9036 0.8618 0.8673 0.7854

Feng et al. (2020)45 CPF-Net 0.9542 0.8757 0.9044 0.8886 0.8045

Chen et al. (2021)26 TransUNet 0.9532 0.8725 0.9015 0.8846 0.8014

Wu et al. (2022)46 FAT-Net 0.9556 0.8788 0.9052 0.8918 0.8092

Sun et al. (2023)27 DA-TransUNet 0.9561 0.8814 0.9048 0.8925 0.8186

Proposed BiADATU-Net 0.9626 0.9137 0.9168 0.9008 0.8343

Abbreviations: Acc, accuracy; DC, dice coefficient; JA, Jaccard index; Pre, precision; Sen, sensitivity.

TABLE 4 Performance comparison of various networks on PH2 dataset.

Citation Method Acc Sen Pre DC JA

Ronneberger et al. (2015)9 U-Net 0.9237 0.9209 0.9014 0.8862 0.8300

Alom et al. (2018)22 R2U-Net 0.9321 0.9314 0.9071 0.8960 0.8368

Oktay et al. (2018)11 Attention U-Net 0.9325 0.9383 0.9124 0.9023 0.8416

Feng et al. (2020)45 CPF-Net 0.9412 0.9251 0.9285 0.9315 0.8729

Chen et al. (2021)26 TransUNet 0.9376 0.9344 0.9137 0.9205 0.8562

Wu et al. (2022)46 FAT-Net 0.9426 0.9409 0.9181 0.9342 0.8803

Sun et al. (2023)27 DA-TransUNet 0.9458 0.9432 0.9355 0.9358 0.8871

Proposed BiADATU-Net 0.9687 0.9496 0.9475 0.9463 0.8998

Abbreviations: Acc, accuracy; DC, dice coefficient; JA, Jaccard index; Pre, precision; Sen, sensitivity.
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F IGURE 8 Visualization results of different models on the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 test set.

using the ISIC2018dataset as a case study. By sequentially addingDAT,

DAD-block and scSED-block, we compare the DC and JA values on

the ISIC2018 test set to determine if the inclusion of these modules

has a positive impact. Table 5 presents the results of our experiments.

As observed, the initial row corresponds to the baseline performance

of the original model, which is evaluated without the incorporation of

any additional modules. After individually adding the aforementioned

modules, positive improvements are achieved in all cases, and the

combination of the three modules engenders greater improvements.

Compared to the model without adding any modules, the Dice coef-

ficient and JA increase by 4.27%, 5.81%, respectively. Consequently,

the incorporation of thesemodules has significantly contributed to the

improved performance of the segmentationmodel.

5 DISCUSSION

According to Figure 9, when images contain small regions of inter-

est, models like U-Net, Attention U-Net, CPF-Net, and FAT-Net fail to

effectively differentiate the true lesion area from other healthy skin.

They tend tomis-segment skin lesion areas, resulting in multiple lesion

blocks.However, ourmodel successfully identifies theseminorpseudo-

lesion areas, reducing segmentation errors. When the skin lesion is

surrounded by a significant amount of hair, we can observe from the

area within the red box that the other six models display errors in

segmentation due to interference from the hair. It indicates that their

algorithm inadequately filters out hair noise fromnormal area, yielding

inaccurate results. Nevertheless, our model is less affected compared
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F IGURE 9 Visualization details of different models.

TABLE 5 Ablation experiment with different module
combinations.

Number DAT DAD-block scSED-block DC JA

1 0.8581 0.7762

2 ✓ 0.8745 0.7978

3 ✓ 0.8706 0.7934

4 ✓ 0.8752 0.7986

5 ✓ ✓ 0.8901 0.8068

6 ✓ ✓ ✓ 0.9008 0.8343

Abbreviation: DAT, deformable attention Transformer; DC, dice coefficient;

JA, Jaccard index.

to the other models overall, which further validates its effectiveness

and superior robustness.

Based on the analysis above, our intelligent segmentation model

demonstrates competitive performance in terms of skin lesion images.

Integrating the strengths of deformable Transformer and U-Net,

our model incorporates bidirectional attention modules that aid in

complex feature extraction at both positional and channel attribute

levels. This design facilitates feature reconstruction of segmenta-

tion tasks. Through experiments conducted on four dermatological

image datasets, our model not only achieves enhanced segmentation

accuracy but alsomanifests outstanding generalization capabilities.

Despite having certain advantages, our model currently exhibits

some constraints. Firstly,while the incorporation of theDAD-block and

scSED-block contributes to improved accuracy, it has also increased

computational complexity, posing a constraint for applications requir-

ing high real-time performance. Secondly, the decoder section still

employs the traditional U-Net structure, leaving room for optimiza-

tion. Particularly, as we consider the potential application of thismodel

to a broader spectrum of medical segmentation tasks in the future,

optimization and enhancement of the decoder part are necessary to

analyzemore complex data objects.

6 CONCLUSION

This paper proposed a hybrid segmentation architecture, that is,

BiADATU-Net, for skin cancer datasets. Themodel utilized deformable

attention Transformer and bidirectional attention modules, that is,

DAD-block and scSED-block, to enhance the learning capability of

skin lesion features. Comprehensive experiments on the ISIC2016,

ISIC2017, ISIC2018, and PH2 datasets indicated that our proposed

model achieved commendable segmentation results in contrast with

some sophisticated methods. The results on the PH2 dataset also con-

firmed the strong robustness and generalization capacity of ourmodel.

Besides, our model is adaptable for application to a variety of other

medical segmentation tasks. In addition to high-precision skin lesion

segmentation, future research will take into account the diagnosis and

recognition of skin disease types to better assist in clinical treatment.
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