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Traffic sign detection is a challenging problem in the field of unmanned driving, particularly important in complex environments.
We propose a method, based on the improved You only look once (YOLO) v4, to detect and recognize multiscale traffic signs in
complex environments. This method employs an image preprocessing module that can classify and denoize images of complex
environments and then input the images into the improved YOLOv4. We also design an improved feature pyramid structure to
replace the original feature pyramid of YOLOv4. This structure uses an adaptive feature fusion module and a multiscale feature
transfer mechanism to reduce putative information loss in the feature map generation process and improve the information
transfer between deep and shallow features, enhancing the representation ability of feature pyramids. Finally, we use EIOU LOSS
and Cluster-NMS to further improve the model performance. The experimental results on the fusion of Tsinghua-Tencent 100 K
and our collected dataset show that the proposed method achieves an mAP of 81.78%. Compared to existing methods, our method
demonstrates its superiority with regard to traffic sign detection.

1. Introduction

Automatic traffic sign detection and recognition (ATSDR) is
a topic attracting immense interest in the computer vision
field. It plays a very important role in the advanced auto
drive system. Due to the diversity of traffic sign types and the
complexity of actual road conditions, a real-time and high-
precision solution of ATSDR remains a challenging problem
[1]. Vehicles will inevitably encounter various extreme en-
vironments (i.e., rain and snow, fog, and blurred vision
caused by other reasons), which significantly increases the
difficulty of traffic sign detection and recognition [2].
ATSDR can be divided into two parts, traffic sign detection
(TSD) and traffic sign recognition (TSR), processed con-
secutively. The detection step is used to locate the areas
containing traffic signs in the image, and the recognition step
is used to classify these areas into specific traffic signs or
backgrounds.

The traditional TSD method emphasizes the use of
color features or shape features of traffic signs for de-
tection. Detection methods based on color features

usually detect bright traffic signs, which discern the
surrounding environment well [3, 4]. However, the de-
tection method based on color features is easily affected by
the external environment; especially in extreme weather,
the efficiency of this detection method is significantly
reduced [5]. The detection method based on shape fea-
tures works by first detecting the shape contour first, and
then making a decision according to the number of
contours. However, in a complex environment, traffic
signs are easily blocked by other objects, which seriously
affects the detection efficiency. With the development of
deep learning, traffic sign detection and recognition al-
gorithms based on the convolutional neural network have
been widely studied. These algorithms can automatically
locate and identify traffic signs, significantly improving
the recognition speed [6]. However, traffic sign detection
and recognition still face the following challenges:

(1) In rainy, snowy, foggy, and other complicated
weather, the photos captured by the camera contain a
significant amount of noise [7]
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(2) Under different lighting conditions, the color and
saturation of traffic signs will change [8]

(3) Some part of the traffic sign may be blocked by
railings, trees, snow, etc.

(4) Under different shooting angles, the shape of traffic
signs may be distorted

(5) Some traffic signs are too small to be recognized

You only look once, (YOLO) [9] as a new object
detection model, which not only achieves fast detection
but also high accuracy. In recent years, the YOLO model
has been continuously improved, with steady enhance-
ments in its performance. YOLO v2 adds batch nor-
malization to YOLO to further improve detection
accuracy [10]. YOLOv3 deeply refines the feature ex-
traction network and adopts a multi-scale fusion method
for prediction, which effectively improves the detection
accuracy while maintaining a high detection speed [11].
YOLOvV4 combines the cross-stage partial network in the
trunk part and introduces the spatial pyramid pool and
path aggregation network in the neck part, which reaches
a new standard in the detection accuracy and speed [12].
However, under extreme environmental conditions, the
accuracy of YOLOV4 is not ideal, and there is still room for
improvement. Therefore, we propose a multiscale traffic
sign detection method based on YOLOv4 in complex
environments. Experimental results on the fusion of
Tsinghua-Tencent 100K (TT-100K) and the data set
collected by us show that the detection accuracy of this
method is significantly improved, and the detection speed
is guaranteed.

The main contributions of this study are as follows:

(1) We propose an image preprocessing module for
addressing high noise in complex environments.
This module classifies noise and uses corresponding
preprocessing algorithms to reduce the impact of
noise on traffic sign recognition.

(2) We propose an improved feature pyramid structure
(FT-Feature pyramid networks,FT-FPN). The
structure includes an adaptive feature fusion module
(AFFM) and a multiscale feature transfer mechanism
(MFTM). Through these two parts, more informa-
tion is retained during the feature transfer, which
enhances the expressive ability of the feature pyra-
mid and effectively improves the accuracy of mul-
tiscale target recognition.

(3) EIOU loss is used to replace the CIOU loss employed
by YOLOV4 to optimize the training model, improve
the speed and accuracy of the algorithm, and use the
weighted Cluster-NMS to replace the DIOU-NMS
algorithm of YOLOv4 to improve the accuracy of
generating detection frames.

Section 2 of this paper reviews the general object de-
tection framework and the traffic sign detection method
based on convolutional neural network (CNN). Section 3
introduces our improved ideas and describes in detail the
specific methods of our proposed model; Section 4
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compares, analyzes, and evaluates our method with other
existing methods; Section 5 presents the summary and
prospects of future work.

2. Related Work

2.1. Object Detection. Object detection, among the core
problems in the field of computer vision, involves detecting the
objects of interest in the image and determining their categories
and positions. Because of the different appearance, shape, and
posture of various objects, as well as the interference of illu-
mination and occlusion, object detection is consistently the
most challenging problem in the field of computer vision. Zou
et al. [13] reviewed more than 400 papers on the development
of object detection technology, including historical milestone
detectors, detection frameworks, evaluation indicators, data
sets, acceleration techniques, and detection applications sys-
tematically and comprehensively presenting the development
status of object detection.

The research process of the object detection algorithm
can be roughly divided into two stages, namely, the con-
ventional method stage and the deep learning based method
stage. The traditional object detection method comprises
three steps: feature extraction, region extraction, and clas-
sification regression. Traditional object detection methods
rely on sliding windows and manual feature extraction. The
histogram of oriented gradient proposed by Dalal and Triggs
[14] is calculated on a dense grid of uniformly spaced cells,
and overlapping local contrast normalization is used to
improve performance. Due to the limited ability of manual
feature extraction, it cannot meet the needs of object de-
tection. Therefore, object detection algorithms based on
deep learning technology have undergone rapid develop-
ment. At present, the mainstream deep learning based
methods can be roughly divided into two categories: the two-
stage method and the one-stage method. The two-stage
method divides the problem into two parts. First, the lo-
cation information of the object is determined, and then the
objects in the region of interest are classified and regression
is employed. In the last five to seven years, around 367
papers showcased an architectural change in CNN [15].
RCNN [16] is the first algorithm that successfully applies
deep learning technology to object detection. It employs
CNN to extract object features and employs selective search
to reduce the amount of computation in the regional sug-
gestion stage. A series of improvements have been made to
the original RCNN algorithm, such as Fast RCNN [17], and
Faster-RCNN [18]. The one-step method transforms the
object detection task into a regression problem, which can
directly generate the classification and position coordinates
of the object. Typical methods include YOLO, SSD [19], and
RetinaNet [20]. Generally, the two-stage method is more
accurate, but the one-stage method exhibits better detection
speed and its accuracy is constantly improving. As time went
by, some algorithms have been improved to achieve specific
tasks. Pang et al. [21, 22] proposed an unsupervised cross-
domain ReID method based on median stable clustering
(MSC) and global distance classification (GDC) to improve
the performance of cross-domain person reidentification
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(ReID). Patel et al. [23] proposed the Dimension-Based
Generic Convolution Block (DBGC), which can be used with
any CNN to make the architecture generic and provide a
dimensionwise selection of various height, width, and depth
kernels.

2.2. TSD Based on CNN. The CNN has been widely used in
computer vision, natural language processing, and other
fields in recent years owing to its powerful feature extraction
capability [24, 25]. Researchers have improved the tradi-
tional object detection algorithm to improve the accuracy of
TSR. Shao et al. [26] proposed an improved fast RCNN
traffic sign detection method. They simplified the Gabor
wavelet with a region suggestion algorithm to improve the
network recognition speed. Wang et al. [27] used the RFP
structure to replace the original SPP structure and added
attention mechanisms CBAM and CA structures to the
backbone and neck layers of the model, which ultimately
reduced the parameters of the model and improved the
inference speed. Wu and Liao [28] improved the SSD, used
RFM to improve the receptive field and semantics of the
predicted feature map, and introduced a path aggregation
network to fuse multi-scale features to improve the location
and classification accuracy of traffic signs. Yang and Bing-
feng [29] proposed a lightweight real-time traffic sign de-
tection integration framework based on YOLO by
combining deep learning methods. The framework opti-
mized the latency problem by reducing the computational
overhead of the network and facilitated the transmission and
sharing of information at different levels.

Currently, most networks use a single-scale depth fea-
ture, which is difficult to obtain in a complex environment,
and its accuracy is not ideal. In complex environments,
feature extraction of traffic signs is susceptible to various
noise types, and the proportion of traffic signs in the whole
image is very limited. Therefore, multiscale feature extrac-
tion is particularly important in TSR [30]. FPNs are the basic
component of the recognition system for detecting objects of
different scales. FPN improves model accuracy by extracting
multi-scale feature information for fusion. However, due to
the reduction of feature channels, a large amount of in-
formation will be lost for advanced features, leading to a
decrease in the detection accuracy [31]. To deal with this
problem, researchers proposed a receptive field pyramid
(RFP) [32], which can enhance the expressive ability of FPN
and enable the network to learn the optimal feature fusion
mode.

3. Proposed Method

Traffic sign detection and recognition is very important for
automatic driving, especially in extreme environments. In
the real scene, the environment is complex and changeable,
such that the image captured by the vehicle camera may
contain a significant amount of noise, which has a serious
impact on the detection and recognition of traffic signs. At
present, the recognition performance of mainstream models
in complex environments is not satisfactory, and only one

scene can be recognized. To improve the recognition rate
and robustness of the model in a complex environment, we
improved YOLOv4. This section describes the Classify
Denoizer module, Feature Pyramid Networks, EIOU loss,
and cluster-NMS in detail.

3.1. Classify Denoizer Module. In the task of TSD in a
complex environment, the image in the dataset contains
evident noise due to various reasons. Rain, snow, fog, and
inevitable image blurring under complicated weather pose
great challenges to the detection of traffic signs. To solve the
problems of low image quality and evident complex noise,
we propose a preprocessing method for TSD tasks in
complex environments. Before the images are input into the
detection model, they are added into the Classify Denoizer
module for preprocessing, after which they are input into the
detection model.

The proposed Classify Denoizer module mainly consists
of the Challenge Classifier and Denoizing block. The
Challenge Classifier is based on the VGGI16 [33] network
model for feature extraction and classification of the original
image. We train and adjust the VGG16 network through
transfer learning and fine-tuning methods, such that it can
achieve the classification of the input image. The Challenge
Classifier trained by us can classify the original dataset into
five types, and the classified dataset will be used as input of
the Denoizing Block for corresponding denoizing
processing.

The Denoizing Block includes four parts as removal
algorithms for rain, snow, fog, and blur. The rain removal
algorithm can reduce the noise generated by raindrops in
the image. The snow removal algorithm removes most of
the snow, stripe, and veil effects (similar to fog or mist). At
the same time, the haze removal algorithm can make up
for the missing feature information from high-resolution
features while removing the noise in the image and im-
proving the image quality. In addition, the deblurring
algorithm solves the problem of image blurring caused by
vehicle turbulence. The Denoizing Block removes the
evident noise in the image to the maximum extent,
changing the image under the complex environment into
the normal environment, and restoring the image under
the complex background as much as possible. The pro-
posed Denoizing Block combines the currently best-
performing denoizing algorithm and continues specific
processing to the traffic sign, which optimizes the
denoizing effect of the algorithm.

The detection technology of traffic signs in a normal
environment is extensively developed. The proposed Classify
Denoizer module restores the image in a complex envi-
ronment to the greatest possible extent to the image in a
normal environment through preprocessing technology and
detect traffic signs, which significantly improves the model
performance. The proposed Classify Denoizer module is
illustrated in Figure 1.

Figure 1 shows the main process of the Classify Denoizer
module. The image processing of this module is divided into
four steps:
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FIGURE 1: Structure of Classify Denoizer module.

(1) First, original images are input into the trained
Challenge Classifier, which detects original input
according to the noise type in the image

(2) If noise is detected, it is divided into four challenge
types according to our settings: rain, snow, fog, and
lens blur. The classified images are used as the input
for different denoizing blocks

(3) Different Denoizing Blocks denoize the input im-
ages, and finally the processed images are fed into the
improved YOLOv4 model

(4) If the detected challenge type is “no challenge”, the
Challenge Classifier accepts it as a normal image and
directly transmits the image to the improved
YOLOvV4 by skipping the Denoizing Block

3.1.1. Challenge Classifier. For the Classify Denoizer mod-
ule, these challenging images must be classified before they
can be correctly entered into the corresponding denoizing
algorithm. If the image is incorrectly classified, the subse-
quent detection performance will be reduced. Therefore,
accurate classification is of high importance for the Classify
Denoizer module. The VGG16 network model exhibits
excellent classification performance. The model has a simple
structure and numerous structures adopt the same pa-
rameters. Simultaneously, the model is also composed of
several convolutional layers and pooling layers in the way of
stacking, which easily forms a deep network structure.

We adopt the VGG16 as the basic structure of our
Challenge Classifier and introduce transfer learning and
pretraining on an ImageNet dataset to obtain model pa-
rameters that can recognize low-level features of images. As
the resolution of the feature image decreases, the number of
model channels will increase exponentially, so as to retain
the semantic information of the image to the greatest
possible extent, and gradually combine the texture features
of the image into category features. VGG16 includes two

stages, namely, feature extraction and classification. The
feature extractor compresses existing information in the
image into a low-dimensional feature space. Subsequent
phases use these characteristics to perform the desired
classification.

(a) Feature extractor: the feature extractor is composed
of 13 convolution blocks, each of which has a 3x3
convolution kernel, a batch normalization layer, and
a ReLU activation layer. We use the max-pooling
operation for subsampling and perform global av-
erage pooling in the final stage to further compares
the features.

(b) Feature classification: loading the VGG16 network
model, the underlying model uses ImageNet trained
feature extraction layer parameters to apriori fine-
tune the top-level network, and the SoftMax acti-
vation function to output five kinds of labels, in-
cluding four different types of noise label (rain, snow,
fog, and lens blur) and one “no noise” label.

3.1.2. Denoizing Block. We use the Denoizing Blocks for
rain, snow, fog, and blur to deal with the corresponding
noise. These Denoizing Blocks are independent of each
other, which allows us to add more different noise reduction
blocks to improve our model.

Due to the influence of various factors, removing rain is a
highly complicated problem. In rainy weather, the details of
the background image are covered or lost, resulting in the
degradation of image quality. By analyzing and processing
the image with the rain removal algorithm, the rain stripe is
removed, and the clean background scene is restored, which
is helpful to improve image quality and restore image fea-
tures. Jiang [34] explored multiscale collaboration of rain
patterns in a unified framework from the perspective of
input image scale and hierarchical depth features, and at the
same time carried out a recursive calculation for similar rain
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strips at different positions to capture global texture. This
algorithm provides inspiration for our rain removal module.
We improved the algorithm accordingly. Because the
denoizing intensity of the algorithm is excessive in its
processing of rainy day images, and the traffic signs in the
image are often small, the shape of the traffic signs may
change after the denoizing algorithm, particularly the edge
parts of the traffic signs. Therefore, we reduce the noise
reduction intensity of the algorithm. We found that the
smaller intensity did not reduce the accuracy of the model,
but ensured the quality of the input image. Furthermore, we
adjust the algorithm such that it can take the output of the
YOLOv4 as the input to the Denoizing Block, which
smoothly outputs the image into YOLOv4.

Snow days are similar to rainy days, but manifest like a
combination of rainy and foggy days, and the research on
desnowing algorithms is incomplete. The single image
desnowing algorithm using hierarchical dual-tree com-
plex wavelet representation and contradict channel loss
[35] is one of the currently best algorithms. The algorithm
is mainly aimed at the effect of snow, snow strip, and veil
in the image and can deal with scattered noise very well. In
TSD, the shielding of large snowflakes on traffic signs will
severely affect the detection performance of the model and
reduce the recognition accuracy. This algorithm is evi-
dently superior to other snow removal algorithms in terms
of the snow removal effect and computational complexity.
This also enables our classification noise reduction
module to spend less time dealing with the noise in
complex environments.

The existence of a large number of small droplets, col-
loids, dust, and other particles in the air, these particles
become suspended in the atmosphere and lead to the for-
mation of fog. Foggy days greatly reduce the quality of a
captured image, which is reflected in its reduced contrast
and saturation. This makes it difficult to distinguish the
contours of the target, thus affecting the detection and
recognition of traffic signs. To solve such problems, we use a
multiscale enhanced fog removal network [36] based on
U-Net. The network steps back to a fog-free image by adding
strengthen-operate-subtract to the decoder. The extensive
evaluation shows that this model performs best on bench-
mark datasets.

In the process of vehicle driving, due to the uneven road
surface, the on-board camera may have a fuzzy problem
when capturing the image. Simultaneously, due to the ex-
cessive speed, the local area of the image may also have a
fuzzy problem. These ambiguities also reduce the detection
performance of traffic signs. We use self-supervised meta-
auxiliary learning to improve the performance of deblurring
by integrating both external and internal learning. To further
optimize the pretraining model, we refer to a novel meta-
auxiliary training scheme [37]. This scheme is of great help
to our deblurring block.

Through the Classify Denoizer module, we can efficiently
reduce the noise in the image and its impact on the iden-
tification of traffic signs. Figure 2 shows the image pro-
cessing effect of the Classify Denoizer module.

FIGURE 2: Image processed by the Classify Denoizer module.

3.2. FT-FPN Structure. The characteristic interaction in the
original YOLOv4 network is a propagation structure that
combines top-down and bottom-up approaches. Although
the increase of fast connections shorts the information path
between shallow and deep features and speeds up infor-
mation fusion, the efficiency of nonadjacent information
transmission between deep and shallow features remains
limited. Furthermore, the traditional feature pyramid net-
work will lose the context information in the high-level
feature graph due to the reduction of feature channels. The
scale of traffic signs in the image is different, and the in-
fluence of noise in the complex environment makes it more
difficult to extract the features of traffic signs. To solve the
above-given problems, further optimize the interaction
between deep and shallow feature information and improve
the target detection accuracy, an AFFM and a multiscale
feature transfer mechanism are proposed. The FT-FPN
structure is shown in Figure 3.
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3.2.1. Adaptive Feature Fusion Module. AFFM can be di-
vided into two steps. First, we use the adaptive averaging
pool layer to obtain multiple context features at different
scales. We set the pooling coefficient as [0.1, 0.5] and
adaptively change the target size of the dataset. Then, the
spatial attention mechanism generates spatial weight maps
for each feature map. The spatial weight map can fuse
context features and generate a novel feature map containing
context features. The new feature map combines the original
high-level feature map. Finally, the combined feature map is
fused with other low-level features.

The structure of AFFM is shown in Figure 4. Herein, Cs;
serves as the input of AFFM, and its size is S. Cs enters the
adaptive pooling layer first, and the context features of
different scales (8; X S, B, X S, B3 X S) can be obtained after its
processing. We process each context feature with 1x1
convolution to obtain the same 256-dimensional channel.
Then, bilinear interpolation was used to upsample the
features to obtain S-scale features and perform the subse-
quent fusion. The concat layer was used to merge the
channels of these context features, and the feature maps were
successively passed through the following three layers, the
1x1 convolution layer, ReLU activation layer, and 3x3
convolution layer. At this point, each feature map will
generate the corresponding spatial weight map N;. The new
feature map N3 is obtained by the Hadmard product op-
eration between N; and feature map N, after passing
through the concat layer. Finally, the feature map P4 was
obtained by the Matrix Sum operation of separated feature
map Nj; and original feature map P5 of Cs. At this point, the
multiscale information in the feature map is preserved, and
the information loss caused by the reduction of channels is
alleviated.

3.2.2. Multiscale Feature Transfer Mechanism. In traditional
FPN, the feature map is obtained by upsampling high-level
features and mutual fusion of low-level features, while the

path aggregation network further improves the effect of
feature fusion by bidirectional feature propagation. To
further optimize the integration between the deep and
shallow features and transmission strategy, reduce the
redundant structure, and improve the model accuracy
and robustness, especially for complex environment
features, we proposed a novel feature transfer mecha-
nism, i.e., an MFTM. The feature transfer proposed by us
is different from the traditional layer-by-layer transfer.
This transfer mechanism enables shallow and deep fea-
tures to be effectively shared and fused. At this time,
shallow features are no longer differentiated only for
simple objects, and deep features are no longer differ-
entiated only for complex objects. Compared with the
traditional feature transfer mechanism, our method en-
hances the features at all levels from space to semantics
more effectively and provides more comprehensive
multidimensional information after the fusion of deep
and shallow features. This mechanism learns and per-
ceives the rich details and location information of the
target by transmitting and sharing different scales of the
receptive field content, thereby obtaining clearer and
more accurate features.

In our mechanism, the features are segmented at each
scale, and upsampling or max-pooling operations are ap-
plied to assimilate the feature scales. At this point, the
generated intermediate features can be shared with each
other. Finally, the original and intermediate features of the
same scale are fused to obtain multiscale features. MFTM
divides feature maps into small-scale features (19 x19),
medium-scale features (38 x38), and large-scale features
(76 x 76). These features are repeatedly fused and share
information after upsampling or max-pooling operations,
which effectively solves the problem of lack of scale between
different layers. The information sharing ability between
deep and shallow features is improved, and the detection
accuracy of objects is enhanced. The structure of the MFTM
is shown in Figure 5.
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FIGURE 4: Structure of adaptive feature fusion.

Figure 5 illustrates the process of MFTM:

(1) The 19 x19 small-scale feature is divided into two
parts in the channel dimension, and the upsampling
operation is performed on them. Part of them is
subjected to ordinary upsampling to obtain 38 x 38
mesoscale features and then fused with the original
38 x 38 mesoscale features to obtain 38 x 38 inter-
mediate features. The other part is subjected to high-
power subsampling to obtain 76 x76 large-scale
features and then fused with the original 76 x 76
large-scale features to obtain 76 x 76 intermediate
features.

(2) The 38 x 38 mesoscale features are divided into
two parts in the channel dimension, and the
upsampling or subsampling operation is per-
formed on them. Part of them is upsampled to
obtain 76 x 76 large-scale features and then fused
with the 76 x 76 intermediate features generated
in (1) to yield 76 x 76 large-scale feature blocks.
The other part is subsampled to obtain 19 x19
small-scale features and then fused with the
original 19x19 small-scale features to yield
19 x19 intermediate features.

(3) The 76 x 76 large-scale feature is divided into two
parts in the channel dimension, and the down-
sampling operation is performed on them. Part of
them is subjected to ordinary subsampling to
obtain 38 x 38 mesoscale features and then fused
with the 38 x 38 intermediate features generated in
(1) to yield 38 x 38 mesoscale feature blocks. The
other part is subjected to high-power subsampling
to obtain 19x19 small-scale features and then
fused with the 19 x19 intermediate features gen-
erated in (2) to yield 19x19 small-scale feature
blocks.

At this time, the features of each scale are transferred to
the features of other scales, and more information is
generated.

3.3. EIOU Loss and Cluster-NMS. CIOU loss is used as the
loss function of the bounding box, and the CIOU loss
function is given by the following formula:

P(6)

2
C

Lejoy = 1 - 10U + +aV, (1)

where b and b¥" are the center points of the predicted box
and the real box, respectively, p is the Euclidean distance
between the two center points, and ¢ represents the diagonal
distance of the smallest closure area that can contain both
the predicted and the real box. « is a positive trade-off
parameter, V is a parameter used to measure the consistency

of aspect ratio, « and V are defined as shown in the following
formulas:

Vv
=, 2
Y1 IoU+v @
4 w9t o\’
V=? arctanﬁ—arctanﬁ , (3)

where w, w9, h, h9" are the widths and lengths of the pre-
dicted box and the ground truth box, respectively.

Although CIOU loss considers the overlapping area,
center point distance, and aspect ratio of bounding box
regression, the difference in the aspect ratio is reflected by V
in its formula, rather than the true difference between the
width and height. This can sometimes affect the performance
of the model. To solve this problem, we use EIOU loss to
replace the original CIOU loss. The EIOU loss splits the
aspect ratio on the basis of CIOU loss and calculates the
difference between the width and height. The loss function
consists of three parts: the overlap loss, center distance loss,
width, and height loss. The first two parts continue the
method in CIOU, but the width and height loss directly
minimize the difference between the width and height of the
target box and the anchor box, making the convergence
speed faster. The EIOU loss function is represented by the
following formula:
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where ¢, and ¢, are the width and length of the minimum
circumscribed rectangle covering the two boxes, respectively.
Nonmaximum suppression is used to find locally optimal
object bounding boxes and eliminate redundant ones.
YOLOv4 adopts the DIOU-NMS algorithm, which not only
considers the overlapping area but also the center point
distance. However, the algorithm still causes false suppression
when faced with two very close targets. To improve the ac-
curacy of finding bounding boxes and increase the detection
speed, we employ the Cluster-NMS algorithm. The Cluster-
NMS algorithm uses row transformation to simplify the it-
erations that should be performed on all Clusters to iterate
only on the Cluster with the largest number of boxes. This
significantly reduces the number of iterations and reduces the
time complexity. In the detected image, the effect is more
evident when there are multiple Clusters. Furthermore, the
Cluster-NMS algorithm can fuse the score penalty, weighted
average, and center point distance methods to further im-
prove the accuracy. In this study, the Cluster-NMS algorithm
was fused with the weighted average method is used to replace
the DIOU-NMS algorithm in YOLOvV4 to obtain a further
increase in the inference speed and accuracy of the model.

4. Experiments and Analysis

4.1. Datasets and Data Augmentation. Traffic sign datasets
play an important role in traffic sign detection and recog-
nition, and the quality of the datasets affects the overall de-
tection results. TT-100K has richer image resources and more
pictures in complex scenes. The TT-100K dataset contains
100,000 images, of which 30,000 images contain traffic signs.

The brightness and weather conditions of these images are
variable. The images in TT-100K are from the Tencent Street
View, which covers more than 300 Chinese cities and their
road networks [38]. These images are divided into 220 classes,
and each class has a unique name (partial classification is
shown in Figure 6), which will help better distinguish traffic
signs. In the TT-100K dataset, although the number of images
reaches 100,000, only about 10,000 images contain traffic
signs, and the remaining 90,000 images do not. To expand the
size of the dataset we used for recognition and avoid the
impact on the recognition rate of our model due to the small
data size, we took and collected another 3000 images to
expand the dataset. To better train our model and improve its
learning ability in complex environments, most images we
captured are of rainy, snowy, foggy, and other complex
weather. We use Labelme to annotate these images.

We obtained 10,000 images with traffic signs in Tsing-
hua-Tencent 100K, of the 3,000 images captured. Never-
theless, due to the large number of learnable parameters in
the model, to prevent the model from overfitting, we used
data augmentation methods to expand the dataset. We used
the random erasing algorithm [39] to process our original
13,000 images. We also performed operations such as
horizontal and vertical flipping, random rotation, and

PO8) R0 F(h)

PR 2 + 2 (4)

c c, oy

random color transformation on these images. The final
result is 39,000 images containing traffic signs. Some images
after data enhancement are shown in Figure 7.

4.2. Experimental Environment and Evaluation Metrics.
This experiment is executed by Python based on the Linux
platform, and it is debugged and run on the Ubuntul8.04
server with E5-2680 v4 @ 2.40 GHz CPU and NVIDIA Tesla
V100 32G GPU. The training process of the model proposed
in this study is implemented based on the Pytorch framework.

The images in the TT-100K dataset have a resolution of
2048 x 2048, and using images of such a large size in the
noise classification stage is an expensive process. The noise is
distributed over the whole image, and the main function of
our Challenge Classifier is to identify the type of noise.
Therefore, we enhance this global feature by subsampling
and resize the image to 608 x 608 pixels. First, we use a
Challenge Classifier to divide the input image into five
classes, where four classes are used to represent different
noise types, and one class is used to represent no noise (low
noise). The Challenge Classifier uses categorical cross-en-
tropy as the loss function, and the Adam optimizer [40] is
used to optimize our network during training. The initial
learning rate was set to 0.001, and if the validation score did
not improve within three epochs, the learning rate was
decreased by a factor of 0.5. Finally, we trained our network
for 50 epochs using these specifications. The improved
YOLOvV4 model employs Adam as an optimizer to enhance
our model during training. The initial learning rate is set to
0.001, the batch_size is set to 64, and each training is per-
formed for 600 epochs.

To verify the effectiveness and stability of our method for
TSD in complex environments, we conduct several sets of
experiments to validate and evaluate the performance of the
model. We use mean average precision (mAP) and frames
per second (FPS) to evaluate the precision and real-time
performance of the model and compare and analyze the
results with other mainstream models.

In terms of precision, the average precision (AP) is the
precision used to measure a specific type of target, and it
represents the area under the precision-recall curve. The mean
average precision (mAP) is usually used as an indicator to
quantitatively evaluate the overall accuracy of the detection
model. This is the result of averaging APs of different categories,
and it is one of the commonly used indicators for evaluating
object detectors. mAP is defined as the following formula:

1 N
mAP = ~ ;APi. (5)

In terms of real-time performance, we use FPS to
evaluate the detection speed of our model. FPS mainly refers
to the number of frames per second transmitted by the
image. The higher the value, the smoother the displayed
action.
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FIGURE 6: Traffic sign categories in Tsinghua-Tencent 100K.

Original images

Augmented images

FIGURE 7: Various sample images after data enhancement.

4.3. Visualization of Detection Results. To more intuitively
observe the performance of our model in practical appli-
cation scenarios, we display the results in a visual form. In
this paper, several complex and representative detection
results are selected from the experimental results of real road
environment scenes.

Figure 8 shows representative experimental results in
rainy, snowy, foggy, lens blurring, and normal weather.
Among them, Figures 8(a) and 8(b) show the detection
results in rainy and snowy conditions, respectively. Our
model demonstrates the full capability to perform the
corresponding detection tasks in rainy and snowy weather
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FiGure 8: Traffic sign visualization detection results in (a) rain, (b) snow, (c) fog, (d) lens blur, and (e) no challenge environments.
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and can accurately detect traffic signs. Second, foggy
weather is also an important factor affecting the per-
formance of traffic sign detection. The detection results of
our model on traffic signs in foggy weather are shown in
Figure 8(c). The effect is evident, and it is also very ac-
curate for small-scale TSR. Furthermore, the vehicle will
inevitably encounter bumps during the process of driv-
ing, which will cause the captured image to become
blurred. Figure 8(d) shows that the model performs very
accurately in the detection of traffic signs in the blurred
image as well, and the classification results are likewise
very accurate. Moreover, we tested the traffic sign de-
tection performance in the normal environment. From
the detection effect shown in Figure 8(e), we see that the
detection performance in the normal environment is
likewise very satisfactory.

The improved model detection results show that in the
detection of traffic signs, the location of the bounding box as
well as the classification of the traffic signs is highly accurate.
These results demonstrate that the detection model pro-
posed in this study not only exhibits reliable accuracy but
also meets the detection requirements in complex envi-
ronments, reflecting good robustness and adaptability of the
model.

4.4. Performance Comparison. To objectively evaluate the
detection performance of our proposed model in real sce-
narios, this experiment adopts a variety of evaluation in-
dicators from different perspectives for quantitative
comprehensive evaluation. Herein, we first analyze the
performance of the Challenge Classifier and compare our
proposed model with the current mainstream models Faster-
RCNN, RetinaNet, YOLOv3, YOLOv4, and SSD. In addi-
tion, we also compare the detection performance of the
model for traffic signs in different environments. Finally, to
more intuitively observe the impact of each of our im-
provements on model performance, we performed ablation
studies on the same dataset and hardware.

4.4.1. Quantitative Analysis. The performance of the
Challenge Classifier has a crucial impact on our model. First,
we use our enhanced dataset to test the performance of the
classifier. Its classification accuracy reaches 99.32%, which is
very satisfactory. Although our Challenge Classifier achieves
such excellent performance, we still must consider whether
the Challenge Classifier will classify the unchallenged image
as the challenged one, which will lead to the degradation of
image quality and affect the detection performance of
subsequent traffic signs. As shown in the confusion matrix in
Figure 9, our Challenge Classifier achieves a detection
classification accuracy of 99.90% when detecting unchal-
lenged images. Unchallenged images have an extremely low
probability of being misclassified. Therefore, this hardly
affects the performance of traffic sign detection. However,
misclassification occurs in some challenges with low envi-
ronmental complexity, such as light fog and snow, as they
are very similar to normal weather.

Computational Intelligence and Neuroscience

We compare the improved YOLOv4 model with the
current advanced detection models Faster-RCNN, SSD,
RetinaNet, YOLOv3, and YOLOv4. The comparison results
are listed in Table 1.

The proposed method achieves an mAP of 81.78% on
the augmented TT-100K dataset. Compared with the
classic YOLOv4, the mAP of our model is increased by
4.53%, with significant improvement. Compared with the
single-stage detectors SSD, RetinaNet, YOLOv3, and
YOLOv4-Tiny, the mAP of our model is 9.66, 9.94, 7.46,
and 9.75% higher, respectively. Compared with the two-
stage detector Faster-RCNN, our model is highly com-
petitive in its mean average precision. Although the mAP of
Faster-RCNN is slightly higher than our model, its ex-
tremely high number of floating point operations makes it
difficult to apply in mobile devices.

To verify the performance of our model in different
environments, we tested it under different complex envi-
ronments, such as no challenge, rainy, snowy, foggy, and
lens blur and compared it with the current mainstream
model. We conducted multiple experiments, and the best
results are shown in Table 1. The traffic sign precision under
the no challenge environment is very high, mAPy,chaiienge
reaching 87.19%, i.e., 3.27% higher than the classic YOLOv4,
8.08% higher than the YOLOv4-Tiny and compared with the
one-stage detector SSD, RetinaNet and YOLOvV3, mAPy,.
Challenge it i increased by 8.48, 9.12, and 7.01%, respectively.
Moreover, compared with the two-stage detector Faster-
RCNN, the mAPNochalenge Of our model is 1.67% lower;
however, it is still more competitive. In addition, for the
detection and recognition of traffic signs in complex envi-
ronments, our model performs significantly better than
other models in terms of detection. This is attributed to our
pre-processing of the image before the detection of traffic
signs, which enables the model to perform better in various
complex environments.

Our model achieves the highest mAP in rainy, snowy,
foggy, or lens blur conditions. Among these conditions,
the model exhibits the best performance in traffic sign
detection in blurred images, with mAP g1, reaching
76.41%, which is 7.15% higher than the classic YOLOv4
and 3.36% higher than Faster-RCNN. In the foggy en-
vironment, the large amount of condensed water vapor in
the air seriously affects the detection performance of the
model. Therefore, the detection performance of each
model is reduced under foggy conditions. Nevertheless,
our model still achieves the highest performance for traffic
sign detection under foggy conditions, with mAPg,, of
72.50%, which is 6.91% higher than the classic YOLOv4
and 3.22% higher than Faster-RCNN. Furthermore, our
improvement on the feature pyramid fuses deep features
with shallow ones, thereby retaining more multiscale
feature information, which allows us to extract more
valuable information in complex environments and im-
prove the model’s performance.

In terms of real-time performance, our FPS is slightly
lower than the original YOLOv4, while the speed advantage
compared to other models remains evident. The decrease in
FPS is mainly due to the addition of a classification
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TaBLE 1: Comparison of proposed and other methods.
Model mAPNoChallenoe mAPRain mAPSnow mAPFog mAPLensBlur mAP FPS
Faster-RCNN 88.86 70.51 71.07 69.28 73.05 82.59 24
SSD 78.71 61.54 63.56 60.97 64.58 7212 51
RetinaNet 78.07 59.55 60.91 63.89 64.76 71.84 53
YOLOvV3 80.18 63.94 63.83 62.81 66.25 74.32 58
YOLOvV4-tiny 79.11 61.57 61.45 60.32 63.59 72.03 142
YOLOv4 83.92 66.62 67.14 65.59 69.26 77.25 86
Ours 87.19 73.22 74.02 72.50 76.41 81.78 74

denoizing model. However, owing to the modular design of
the classification noise reduction model, we can consider
whether to use this module as needed. Compared with the
two-stage detector Faster-RCNN, our model achieves ex-
tremely high real-time performance. This recognition speed,
which is three times higher than that of Faster-RCNN,
provides a great opportunity for this model to be assembled
on moving vehicles. As can be seen from Table 1, although
YOLOvV4-Tiny has a better real-time detection performance
of 142 FPS, it has a significant decrease in accuracy. For
traffic sign detection, 74 FPS already satisfies the real-time
requirement. At this point, detection accuracy is more
important, especially in extreme weather and for traffic sign
detection and recognition of small objects. This improve-
ment in accuracy can significantly improve driving safety.
This is the reason why we choose YOLOvV4 as the baseline
model.

Although the addition of the Classify Denoizer
module leads to a slight decrease in the overall model
detection speed, we observe from the detection results that
the number of accurately recognized traffic signs in the
classified and denoized images is effectively improved. The
speed of our model entirely meets real-time requirements
in the field of autonomous driving and will not affect

practical applications. After comparing the detection
precision and speed with the mainstream model, our
model is deemed superior.

4.4.2. Ablation Study. To verify the performance improve-
ment brought by different refinements to the proposed
model, we conduct ablation studies to evaluate the effec-
tiveness of the Classify Denoizer module, FT-FPN structure,
EIOU loss, and Cluster-NMS.

Table 2 shows the impact of different improvements on
the detection performance on YOLOv4. The mAP of the
standard YOLOV4 is 77.25%. Considering that the enhanced
Tsinghua-Tencent 100K dataset contains a large number of
images in complex environments, we add the proposed
image preprocessing module, the Classify Denoizer module,
in front of YOLOv4. Owing to the modular design, this
module can easily be added to or omitted from YOLOv4.

After adding the Classify Denoizer module, the model
mAP reaches 79.15%. However, the recognition speed of the
model decreases slightly, because our Classify Denoizer
module first classifies the image and then performs corre-
sponding noise reduction processing, thus affecting the
overall recognition speed of the model. In addition, we use
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TABLE 2: Ablation experiment results.
Method mAP (%)
YOLOv4 77.25
YOLOV4 + classify denoizer 79.15
YOLOV4 + FT-FPN 79.36
Proposed model 81.78

the improved FT-FPN structure to replace the original
structure of YOLOvV4 and do not add the Classify Denoizer.
Thus, the mAP of the improved model improves from 77.25
to 79.36%. Furthermore, the addition of EIOU loss and
Cluster-NMS has a certain improvement in the mean av-
erage precision of the model. Ablation experiments show
that after combining the above-given modules, the perfor-
mance of the model is greatly improved.

5. Conclusions

In this paper, we propose a multi-scale traffic sign detection
method in complex environments based on improved
YOLOvV4. A Classify Denoizer module is added in front of
the YOLOv4 model, which classifies the image by the types
of noise and uses the Denoizing Block for noise reduction.
We also improve the original feature pyramid to reduce the
possible information loss during the generation of feature
maps and enhance the information transfer between shallow
and deep features. EIOU loss and Cluster-NMS are
employed to further improve the detection performance.
Our model exhibits a significant improvement in the pre-
cision of traffic signs in the rain, snow, fog, and lens blur and
has better detection precision and real-time performance for
multiscale traffic sign recognition. However, the detection
performance of our model in other complex environments is
still not satisfactory. Notably, the introduction of the Classify
Denoizer module decreases the real-time performance of the
model. In the future, we plan to improve the Classify
Denoizer module to improve its detection speed and ability
to deal with various complex environments.

Data Availability

The dataset studied in this paper can be obtained from
Tsinghua-Tencent 100K official website.
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