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Abstract 

Background: Joint replacement is one of the options to retrieve the interosseous distal radioulnar joint (DRUJ) func-
tion. DRUJ prosthesis has recently been introduced clinically to treat DRUJ instability. This article analyzes the biome-
chanical behavior of the prosthesis during different loadings by the finite element method.

Methods: CT images of a healthy 33 years old man were used to construct the three-dimensional geometry of the 
forearm bone. Then two models, a healthy foreman (Model A) and a damaged model with an inserted interosseous 
prosthesis (Model B), were constructed to analyze and compare the foreman’s biomechanical behavior under different 
loading conditions using the finite element method. Both models were examined during pronation and supination 
with 500, 1000, 2000, and 5000 N.mm values. Also, both models were subjected to volar and dorsal loads with values 
of 10, 30, and 50 N and traction force with 100, 150, and 200 N.

Results: Maximum and minimum principal stresses were evaluated for bones in all conditions, and von Mises stress 
was considered for the prosthesis and fixing screws. In supination, the maximum stress in Model A is significantly 
higher than the Model B. However, the maximum principal stress of both models is similar during volar and dorsal 
loading. In Model A, the maximum principal stress in traction is much smaller than in Model B. The absolute value 
of minimum principal stress in pronation and supination in Model B is higher than in Model A. The prostheses and 
screws are subjected to higher stresses during pronation than supination. Also, the amount of stress created in 
prostheses and screws during volar and dorsal loading is almost equal. In traction loading, screws are subjected to 
significantly high stresses.

Conclusion: Our study indicates that the interosseous DRUJ prosthesis can perform the foreman’s normal daily activi-
ties. This prosthesis provides the ability similar to a normal hand.

Level of evidence: IV.
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Introduction
The distal radioulnar joint (DRUJ) is a complex joint 
involved in both forearm axial and wrist movements 
and the transmission of forces across the wrist to 
the forearm [1]. Disorders of the distal DRUJ, such as 

osteoarthritis, ulna fractures, inflammatory arthritis, 
ligament injuries, and congenital diseases, are associ-
ated with wrist ulnar side pain, weakness, instability, 
and loss of forearm rotation [2, 3].

Different treatment methods have been proposed to 
treat osteoarthritis and DRUJ instabilities [4–7]. One of 
the options to retrieve the DRUJ function is joint replace-
ment [8, 9]. Joint replacement in this area is challenging 
due to its biomechanical complexity. However, studies 
with long-term follow-up to evaluate the effect of these 
techniques showed that they cannot restore normal 
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anatomy and kinematics and have not been entirely suc-
cessful in reducing forearm pain and instability [10, 11].

So far, various designs for distal radioulnar prosthe-
ses have been introduced [12–14]. Recently a new cat-
egory of DRUJ prosthesis by the name of "interosseous 
DRUJ prosthesis" has been introduced clinically based 
on the "Kapandji technique" [15]. In the Kapandji tech-
nique, a joint is created in the distal region of   the ulna 
by removing a segment of the bone [9]. Moradi et al. [16] 
performed a study on a cadaver to evaluate the function 
of DRUJ prosthesis in the body. Based on the results of 
that study, the intraosseous DRUJ prosthesis did not sig-
nificantly affect the wrist range of motions and showed 
efficacy in restoring function. However, unlike significant 
prosthesis stability in longitudinal traction, the rotational 
force has inherent instability. In another short-term clini-
cal study, one of the five patients with the DRUJ prosthe-
sis was dislocated in a two-year follow-up [15].

However, two fundamental questions are still unclear 
about this prosthesis: Since the prosthesis is located 
in its anatomic place, it may affect the wrist and axial 
forearm range of motion and concerns about the stabil-
ity of the prosthesis. According to two previous articles, 
the latter issue is more concerned. Therefore, using the 
finite element method, this prosthesis and forearm bone’s 
biomechanical behavior under different loading condi-
tions were evaluated in long-term and compared with a 
healthy forearm.

Materials and methods
CT images of a healthy 33  years old man were used to 
compare the biomechanical behavior of the healthy fore-
arm (model A) and the designed prosthesis (model B) 
under different loading conditions using the finite ele-
ment method.

Geometry
CT images were used to construct 3D geometry, includ-
ing ulnar, radius, and distal humerus. After receiving 
the CT images, MIMICS software (MIMICS 10.1; Mate-
rialise NV, Leuven, Belgium) was used to convert the 
images into STL format, which were finally imported 
to CATIA (CATIA V5; Dassault Systemes, Ve’ Lizy-Vil-
lacoublay, France) to construct the final models. Finally, 
cortical and trabecular bones were modeled by consider-
ing a 2  mm layer for cortical bone. Since the CT imag-
ing cannot detect the cartilages, the gap between the 
bones is considered for modeling the elbow joint carti-
lages. Next, each cartilage was modeled by expanding the 
related bone volume and operating Boolean operations 
with some geometrical modifications. And finally, the 
humerus was fixed in all directions, as depicted in Fig. 2. 
Following segmentation in Mimics software, threshold 

definition for different model components, and creating 
STL files, then these STL files were transferred to Catia 
software. Then the defects were corrected in the affected 
areas. The final CAD files were imported into ABAQUS 
software (ABAQUS 6.11, Dassault Systèmes, Vélizy-Vil-
lacoublay, France). The subsequent finite element proce-
dures are illustrated in the following sections. The final 
geometry of the model is depicted in Fig. 1.

A specific defect by subtracting a region from the ulna 
was created to insert the DRUJ prosthesis, as depicted 
in Fig.  1. The DRUJ prosthesis is inserted between two 
sides of the osteotomy. Pseudoarthrosis is carried out in 
the Sauvé-Kapandji procedure to address the drawbacks 
of different surgical techniques and prostheses [9]. In 
this prosthesis, two main distal and proximal parts are 
connected with a ball. This ball enables the prosthesis to 
move freely in each degree of freedom. Furthermore, the 
proximal part fixes to ulna and radius with two screws. 
Finally, the distal and proximal stems centered on the 
sphere can have axial movements and bending.

Material definition
All materials used for cortical and trabecular bone, 
cartilages, and different parts of the prosthesis are 
considered linear elastic [17]. Also, titanium material 
properties are assigned to all prosthesis parts except the 
ball. For the ball, polyurethane [18] linear elastic prop-
erties are assigned [15]. The material properties of the 
bone were defined using Young’s modulus of 17.5 GPa 
for the cortical bone and 309.8 MPa for the trabecular 
bone. The Poisson’s ratio for both the cortical and tra-
becular bones was 0.3. Cartilage was modeled with 
Young’s modulus of 12  MPa and Poisson’s ratio of 0.4 
[17]. Titanium and Polyurethane were assumed to have 
Young’s modulus of 110 GPa, and Poisson’s ratio of 0.35 
and 0.31, respectively [18, 19].

Ligaments stand for tension force between bones mod-
eled with spring elements. Springs were designated to 
each elbow ligament to model the corresponding liga-
ment’s function. Four parallel springs for each medial 
anterior, medial posterior, lateral radial, and lateral ulnar 
ligaments with the stiffness of 72.3, 52.2, 15.5, and 57 N/
mm were selected, respectively. Three similar springs 
with stiffness of 28.5 N/mm were assigned for the annu-
lar ligament. Also, for each distal/proximal interosse-
ous membrane and central interosseous membrane, two 
springs with the stiffness of 18.9  N/mm and 65  N/mm 
were assigned, respectively. The position of these liga-
ments was selected based on previous studies [17, 20].

Loading and boundary condition
Cortical and trabecular bones bounded together [21]. 
As this study aims to analyze the prosthesis’s long-term 
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behavior, the interface of the distal and proximal part 
of the prosthesis is bonded to the bone, and frictionless 
contact is defined between the ball and the prosthesis. 
The bones and ligaments of the wrist were not consid-
ered in this study, so the ulna and radius’ proximal sur-
faces connected with coupling constraints [17]. Each 
ligament bonded to its bone, and the frictionless sur-
face-to-surface contact was considered for the cartilages 
of humerus-radius, humerus-ulna, and radius-ulna.

Five different loading scenarios were considered for 
both models A and B. These loading conditions represent 
different conditions each hand encounters during regular 
daily activity. These loading conditions include pronation 
(500, 1000, 2000, and 5000 N.mm), supination (500, 1000, 
2000, and 5000 N.mm), dorsal (10, 30, and 50 N), volar 
(10, 30, and 50  N), and traction (100, 150, and 200  N). 
180º rotation was applied to the ulna and radius with 
the origin depicted in Fig.  2 to simulate the supination 

loading; then, the corresponding torque was applied. In 
all simulations, the proximal surface of the humerus was 
fixed. All loading conditions are depicted in Fig. 2.

Finite element analysis
ABAQUS-CAE was used to build the finite element 
meshes with 4-noded linear tetrahedrons. The optimal 
number of elements was chosen after simulating the 
convergence analysis to obtain sufficient accuracy in 
the results, then all simulations were performed using 
ABAQUS (ABAQUS 6.11, Dassault Systèmes, Vélizy-Vil-
lacoublay, France).

Results
The following results show the stress and displacement 
distribution of the bone in a healthy forearm (model A), 
a forearm with a prosthesis (model B), and the prosthesis 
and screws in different loading conditions.

Fig. 1 3D representation of wrist and DRUJ prosthesis and their components: (a) healthy forearm, (b) defeated ulna with the prosthesis, and (c) 
DRUJ prosthesis and its components
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Figure  3 shows models A and B’s maximum princi-
pal stress distribution with different loading conditions. 
The results of pronation and supination with 1000  N.
mm, volar and dorsal with 30 N and traction with 150 N 
are depicted in this figure. In supination, the maximum 
stress in model A is significantly higher than the model B. 
Except for the first loading (5000 N.mm), the maximum 
principal stress created in models A and B during supina-
tion, is almost identical to the maximum principal stress 
generated during pronation. For example, the maximum 
principal stress during supination under 2000  N.mm 
loading is equal to 294 MPa in model B, and the equiva-
lent loading in model B pronation is 273 MPa. Similarly, 
in model A, the maximum principal stress value during 
supination was 140.8  MPa under 2000  N.mm loading, 
equal to 128.9 MPa in model A pronation. It can be seen 
that the maximum principal stress during supination is 
slightly higher than pronation.

The maximum principal stress of both models is similar 
during volar and dorsal loading. However, the amount of 
stress during the dorsal is about 70 MPa and in the volar 
is about 31 MPa. There is a significant difference between 
model A and model B in traction. In this loading condi-
tion, the maximum principal stress in model A is about 

68 MPa, while in model B, it is about 850 MPa. Figure 4 
shows the distribution of minimum principal stress in 
each loading condition as depicted for maximum prin-
cipal stress. In model B the absolute value of minimum 
principal stress is in pronation, and supination is higher 
than in model A.

The absolute value of the minimum principal stress 
in pronation and supination in model B is higher than 
model A. Still, this difference is more significant in supi-
nation than in pronation. For example, under a load of 
1000  N.mm, the minimum absolute value of the prin-
cipal stress in model B during supination is equal to 
603  MPa, which is equivalent to this loading in model 
A, in which a value of 57.71  MPa was obtained. But in 
pronation, the minimum absolute value of the principal 
stress during the loading of 1000 N.mm in model B was 
equal to 132.1, while in model A, the value of 74.92 MPa 
was obtained.

Figure  5 shows the distribution of von Mises stress 
in each loading condition in the prosthesis and the 
screws. As can be seen, the prostheses and screws are 
subjected to higher stresses during pronation than 
supination. Also, the amount of stress created in pros-
theses and screws during volar and dorsal loading is 

Fig. 2 Five loading condition: (a) pronation (500, 1000, 2000, and 5000 N.mm), (b) supination (500, 1000, 2000, and 5000 N.mm), (c) dorsal (10, 30, 
and 50 N), (d) volar (10, 30, and 50 N), (e) traction (100, 150, and 200 N)
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almost equal. In traction loading, screws are subjected 
to very high stresses. For example, the amount of stress 
obtained in the prosthesis and screws during the pro-
nation and under 1000  N.mm loading was 220.13  MPa 
and 180.3  MPa, respectively, and the equivalent of this 
loading during supination was 20.5 MPa and 80.3 MPa, 
respectively. Furthermore, by comparing the stresses 
created in the prosthesis and the screw during supina-
tion and pronation, it can be observed that in supina-
tion, the screws are significantly under more stress 
than the prosthesis. Still, the prosthesis is slightly more 
stressed than the screws in pronation. The displace-
ment in the bone and prosthesis in model B during the 
pronation and supination is significantly higher than in 
model A. In both models, no significant difference was 
observed during volar and dorsal loading. While in the 

traction loading, there is higher displacement in model 
B. The results obtained in all loading conditions during 
supination and pronation, the forces applied in volar, 
dorsal, and traction loading are reported in Tables 1, 2, 
and 3, respectively, and the comparison of these results 
is shown in the following diagrams (Figs. 6, and 7).

Discussion
This study investigated the mechanical behavior of the 
DRUJ prosthesis introduced in the previous study [16] by 
applying various forces. The finite element method was 
used to compare the DRUJ prosthesis with a healthy fore-
arm. This study’s results can guide the use of this pros-
thesis in clinical surgeries and improve its design.

In this study, we examined stress distribution in bone 
and prostheses. As shown in Fig. 7, the stress created in 

Fig. 3 Distribution of maximum principal stress in different loading conditions for model A: (a) 1000 N.mm pronation (maximum in the head of the 
ulna, minimum in the head of the radius) (b) 1000 N.mm supination (maximum and minimum on the inner surface of the radius head) (c) 30 N volar 
(maximum and minimum at the end of the ulna bone) (d) 30 N dorsal (maximum at the end of the ulna bone and the minimum at the inner surface 
of the head of the radius bone) (e) 150 N traction (maximum in the head of the radius and minimum in the inner surface of the humerus bone), and 
model B: (f) 1000 N.mm pronation (maximum in the middle of the inner surface of the ulna bone and minimum at the outer surface of the head 
of the ulna) (g) 1000 N.mm supination (maximum and minimum in the middle of the external surface of the ulna) (h) 30 N volar (maximum and 
minimum in the middle of the posterior surface of the ulna) (i) 30 N dorsal (maximum in the middle of the outer surface of the ulna and minimum 
at the end of the ulna bone) (j) 150 N traction (maximum at the head of the ulna and minimum at the middle of the external surface of the ulna)
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Fig. 4 Distribution of minimum principal stress in different loading conditions for model A: (a) 1000 N.mm pronation (maximum and minimum 
in the head of the radius bone), (b) 1000 N.mm supination (maximum in the head of the ulna bone and minimum in the head of the radius bone), 
(c) 30 N volar (maximum and minimum at the end of the ulna), (d) 30 N dorsal (maximum and minimum at the end of the ulna), (e) 150 N traction 
(maximum in the head of the ulna bone and minimum in the head of the radius bone), and model B: (f) 1000 N.mm pronation (maximum on the 
external surface of the head of the ulna and minimum on the internal surface of the head of the radius bone), (g) 1000 N.mm supination (maximum 
in the middle of the external surface of the ulna and minimum at the head of the ulna), (h) 30 N volar (maximum in the middle of the posterior 
surface of the ulna and minimum at the end of the ulna), (i) 30 N dorsal (maximum and minimum in the middle of the external surface of the ulna), 
(j) 150 N traction (maximum in the middle of the posterior surface of the ulna and minimum at the head of the ulna)

Fig. 5 Distribution of von Mises stress in different loading conditions for screws: (a) 1000 N.mm pronation, (b) 1000 N.mm supination, (c) 30 N 
volar, (d) 30 N dorsal, (e) 150 N traction, and prosthesis: (f) 1000 N.mm pronation, (g) 1000 N.mm supination, (h) 30 N volar, (i) 30 N dorsal, (j) 150 N 
traction
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the forearm bone during the pronation is significantly 
less than the supination. However, the stress created in 
the prosthesis and screws during the pronation is more 
than the stresses created with supination. Also, bone and 

prosthesis displacement during pronation was greater 
than supination. By comparing these results, we con-
clude that when the stress on bone is smaller, loosening 
the screws and components of the prosthesis is less likely, 
which can cause a reducing the instability and failure of 
the prosthesis. On the other hand, due to the obtained 
values, especially in the cases with higher loads, it is nec-
essary to do more research on the design and placement 
of the prosthesis.

Some studies in forearm computational analysis have 
focused on the kinematic and instability of the DRUJ, and 
few studies have examined the biomechanical behavior 
of the joint and DRUJ prosthesis under various loading 
conditions [2]. Khuyagbaatar et  al. evaluated the stabil-
ity of the DRUJ when using a stabilizer [20]. Bajuri et al. 
investigated the stress distribution in wrist arthroplasty 
in rheumatoid arthritis [22]. Austman et al. compared the 
stresses on the bone before and after using a cemented 
distal ulnar implant [3]. Tan et al. simulated the Monteg-
gia fracture using the finite element method [23]. Zhang 
et  al. evaluated locking plates in head fracture fixation 
[19]. Although these studies provide valuable information 
in DRUJ computational analysis, none of them simulated 
the distal prosthesis under different loading conditions.

Few clinical studies also investigated the prosthesis 
behavior planted on a cadaver. A clinical study analyzed 
five patients (four men and one woman) with a mean 
age of 48.8  years and a mean follow-up of 27.6  months 
who experienced intraosseous DRUJ replacement sur-
gery [15].In that study, the stability of the prosthesis dur-
ing traction force loading showed significant resistance 
by applying traction force of 150  N, and no dislocation 

Table 1 Stress and displacement values in supination and pronation

Loading condition 500 (N.mm) 1000 (N.mm) 2000 (N.mm) 5000 (N.mm)

Supination model A Maximum principal stress (MPa) 35.00 70.30 140.8 351.9

Minimum principal stress (MPa) -28.88 -57.71 -115.2 -286.2

Displacement (mm) 2.35 4.38 8.80 22.27

model B Maximum principal stress (MPa) 80.70 152.1 294.1 722.2

Minimum principal stress (MPa) -115.3 -603.0 -1166 -2863

Displacement (mm) 7.02 14.83 28.23 65.90

prosthesis von Mises stress (MPa) 10.3 20.5 41.36 61.4

screws von Mises stress (MPa) 50.12 80.3 110.0 200.1

Pronation model A Maximum principal stress (MPa) 32.83 65.0 128.9 320.1

Minimum principal stress (MPa) -37.59 -74.92 -149.2 -370.3

Displacement (mm) 1.47 2.66 5.20 13.10

model B Maximum principal stress (MPa) 40.76 79.25 276.3 384.6

Minimum principal stress (MPa) -68.97 -132.1 -195.2 -637.2

Displacement (mm) 20.92 42.0 83.0 140.2

prosthesis von Mises stress (MPa) 110.2 220.13 380.7 800.1

screws von Mises stress (MPa) 90.4 180.3 360.6 800.0

Table 2 Stress and displacement values in volar and dorsal loads

10(N) 30(N) 50(N)

Volar model A Maximum principal stress 
(MPa)

12.89 37.26 62.12

Minimum principal stress 
(MPa)

-28.24 -81.49 -135.9

Displacement (mm) 1.02 2.99 4.98

model B Maximum principal stress 
(MPa)

80.70 152.1 294.1

Minimum principal stress 
(MPa)

-115.3 -603.0 -1166

Displacement (mm) 0.90 2.45 4.08

prosthesis von Mises stress (MPa) 25.1 74.9 131.4

screws von Mises stress (MPa) 9.5 18.6 28.7

Dorsal model A Maximum principal stress 
(MPa)

23.42 72.18 120.0

Minimum principal stress 
(MPa)

-14.01 -36.03 -58.27

Displacement (mm) 0.89 2.71 4.52

model B Maximum principal stress 
(MPa)

22.81 70.17 118.0

Minimum principal stress 
(MPa)

-8.03 -24.55 -41.18

Displacement (mm) 1.08 2.99 4.92

prosthesis von Mises stress (MPa) 25.3 75.6 130.2

screws von Mises stress (MPa) 3.5 8.4 15.4
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was observed in the prosthesis. However, in the present 
study, as shown in Fig. 7, the bone in model B is subjected 
to significant stress during this loading condition. Also, 
hand and prosthesis displacement with this loading is 
higher than the displacement in a healthy case. On the 
other hand, although the amount of stress created in the 
prosthesis is acceptable, the screws are under relatively 
high stress. Whether this amount of stress exposes the 
stability and function of the prosthesis to dislocation and 
failure requires further investigation.

As seen in Fig. 7, in examining the stress distribution 
in the bone and prosthesis volar and dorsal, the stresses 
on model B are significant during the volar loading. In 
contrast, in the dorsal loading, there is no considerable 
stress difference between Model A and B. Although the 
stress distribution in the prosthesis is approximately 
the same during both loadings, the stresses on screws 
are almost twice the stresses created with the volar 
loading. Also, the displacement in both loads is almost 
equal for both models, which is significant. While the 
results of the cadaver study reported that the prosthe-
sis was very stable during volar loading, and no disloca-
tion was observed while applying this loading. Still, the 
prosthesis was unstable during dorsal loading, and four 
dislocations out of 16 cadavers were recorded.

In this study, as in other similar studies, there are 
some limitations that should be considered in the 
future. Simulation of the wrist area was not per-
formed due to simplification. Considering this area 
can be effective in the better application of boundary 
conditions. The applied loads are concentrated, while 
for more realistic results, it is better to use the loads 
through the reaction of the muscles [24]. The mechan-
ical properties of ligaments and cartilages were con-
sidered linearly elastic, while ligaments and cartridges 
exhibit time-dependent nonlinear behavior [25]. Since 
bone is anisotropic, applying anisotropic properties to 
bone can lead to more accurate results, which should 

be considered in the future studies. Using a viscoelas-
tic model for the ligament can be beneficial in achiev-
ing better results. Although, in this study, the cortical 
and trabecular parts of the bone were identified, the 
mechanical properties of the bone have a heterogene-
ous distribution and change based on osteoblasts and 
osteoclasts interaction due to the well-known bone 
remodeling procedure [26, 27]. Considering bone 
remodeling and the effects of bone damage due to 
overloading of the functions that the prosthesis may 
cause can be crucial in better studying the behavior of 
the prosthesis. The constructed geometry in this study 
was based on CT images of a 33 years old healthy man, 
so the assigned material properties were chosen based 
on data available for healthy bone. As we know, in 
the presence of diseases like osteoarthritis, the stabil-
ity and function of the prosthesis are greatly affected. 
Therefore, considering patients with such diseases 
and assigning the related properties can open a new 
perspective in studying the DRUJ prosthesis. Finally, 
a case study on this type of prosthesis recipient and 
applying mechanical properties and boundary condi-
tions according to the patient’s characteristics can pro-
vide helpful information and effective future clinical 
decisions.

Conclusion
This study showed that the DRUJ prosthesis could help 
restore the healthy hand’s functionality but shows a 
tendency to fail under unreal overloading conditions. 
However, it should be noted that initially, the screws are 
subjected to more stress during the pronation, and it is 
essential to know where the bone will form. But in supi-
nation, the most stressed part is the prosthesis, which 
may lead to its failure. In addition, there is a possibility of 
dislocation after osseointegration during the supination. 
Considering the failure observed in clinical practice, 
finite element analysis of intraosseous prostheses can 

Table 3 Stress and displacement values in traction

100(N) 150(N) 200(N)

Traction model A Maximum principal stress (MPa) 45.10 67.73 90.39

Minimum principal stress (MPa) -12.78 -19.19 -25.5

Displacement (mm) 5.00 7.46 9.95

model B Maximum principal stress (MPa) 568.3 852.5 1137.0

Minimum principal stress (MPa) -429.3 -652.2 -876.8

Displacement (mm) 11.94 18.12 24.27

prosthesis von Mises stress (MPa) 130.14 190.05 248.63

screws von Mises stress (MPa) 400.21 604.3 816.41
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Fig. 6 The amount of maximum and minimum principal stress in all conditions performed during movements: (a) pronation, (b) supination and 
loading: (c) volar, (d) dorsal, (e) traction
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effectively decrease mechanical problems. The results 
obtained in this study are promising, and the stresses 
obtained as a result of normal loading do not exceed the 
strength of the material. The design of the prosthesis 
should be optimized if it is vital to use such a prosthesis 
for a particular case that requires overloading.
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