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The aim of this study is to explore functional and structural properties of abnormal brain
networks associated with Parkinson’s disease (PD). 18F-Fluorodeoxyglucose positron
emission tomography (18F-FDG PET) and T1-weighted magnetic resonance imaging
from 20 patients with moderate-stage PD and 20 age-matched healthy controls were
acquired to identify disease-related patterns in functional and structural networks.
Dual-modal images from another prospective subject of 15 PD patients were used as
the validation group. Scaled Subprofile Modeling based on principal component analysis
method was applied to determine disease-related patterns in both modalities, and brain
connectome analysis based on graph theory was applied to verify these patterns.
The results showed that the expressions of the metabolic and structural patterns
in PD patients were significantly higher than healthy controls (PD1-HC, p = 0.0039,
p = 0.0058; PD2-HC, p< 0.001, p = 0.044). The metabolic pattern was characterized by
relative increased metabolic activity in pallidothalamic, pons, putamen, and cerebellum,
associated with metabolic decreased in parietal–occipital areas. The structural pattern
was characterized by relative decreased gray matter (GM) volume in pons, transverse
temporal gyrus, left cuneus, right superior occipital gyrus, and right superior parietal
lobule, associated with preservation in GM volume in pallidum and putamen. In addition,
both patterns were verified in the connectome analysis. The findings suggest that
significant overlaps between metabolic and structural patterns provide new evidence
for elucidating the neuropathological mechanisms of PD.

Keywords: Parkinson’s disease, brain network, pattern, 18F-FDG PET, MRI

INTRODUCTION

Parkinson’s disease (PD) is a complex, chronic, and neurodegenerative disorder, pathologically
characterized predominately by a loss of substantia nigra pars compacta dopaminergic
neurons, manifesting in functional and structural alterations throughout the brain (Lee and
Trojanowski, 2006; Choi et al., 2013; Rocha et al., 2018). Pathological studies have shown
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that the cortical and subcortical regions are widely involved in PD
pathology (Braak et al., 2003). Current efficient diagnostic tools
for PD neuroimaging—including magnetic resonance imaging
(MRI), positron emission tomography (PET), and single-photon
emission computed tomography (SPECT)—rely on different
principles that could be useful depending on the research
or clinical setting available (Politis, 2014). In particular, 18F-
fluorodeoxyglucose positron emission tomography (18F-FDG
PET) has been used to localize and quantify abnormal brain
energy metabolism in vivo and recently been used in metabolic
connectivity studies to identify different disease-specific patterns
(Titov et al., 2017). It is increasingly used in routine clinical
practice (Teune et al., 2013). For instance, spatial covariance
analysis of 18F-FDG PET data consistently reveals the presence of
a stereotyped spatial covariance pattern associated with different
stages of motor symptoms in PD patients. The metabolic
Parkinson’s disease-related pattern (PDRP) associated with
motor symptoms is characterized by increased metabolism in the
putamen, globus pallidus, bilateral thalamus, and pontine, and
relatively decreased metabolism in the premotor and parieto-
occipital cortex (Ma et al., 2007; Eidelberg, 2009; Spetsieris
and Eidelberg, 2011; Spetsieris et al., 2013; Wu et al., 2013;
Ko et al., 2017; Tomšse et al., 2017). The reproducibility of
metabolic PDRP in different cohorts, according to the extensive
literature, indicated that the metabolic PDRP was a reliable
marker of disease across various ethnic groups and PET
instrumentations as well as imaging protocols (Schindlbeck and
Eidelberg, 2018). Moreover, the PDRP expression values (subject
scores) from various studies have also shown significant positive
correlations with disease progression and have decreased after
effective treatments of motor symptoms (Huang et al., 2007;
Peng et al., 2014b).

While metabolic PDRP can effectively reveal the abnormal
metabolic function in PD, these functional abnormalities may
also have corresponding changes in neuroanatomical structures.
MRI, as a noninvasive examination and cost-effective imaging
technique, has become more and more important to the study
of neurodegenerative diseases, which revealed the structural
and functional alterations underlying these conditions. For
example, T1-weighted structural MRI is able to measure the
volume/thickness alterations of the gray and white matters
in the subcortical and cortical areas associated with PD
(Wilson et al., 2019). Currently, imaging studies have provided
preliminary evidence for structural abnormalities in the brain
of PD patients, especially brain atrophy. Given that prolonged
metabolic derangement causes atrophy, the spatial pattern of
atrophy demonstrated an overlap with the metabolic PDRP
topography, as well as with intrinsic networks present in
healthy brain (Zeighami et al., 2015). However, it is still under
speculation whether both spatial patterns of metabolic function
and atrophy are effective to address PD progression at the
same time.

In response to this issue, we explored the topographical
relationship between both spatial patterns of metabolic function
and atrophy. In addition, we also explored corresponding
disease intrinsic networks defined using brain connectome
analysis based on graph theory. This analysis method is an

innovative approach that has revealed fundamental aspects of
brain structural or functional network organization, and it can
reveal abnormalities in network characteristics associated with
neurological diseases and the potential impact of the disease
network on brain information processing (Fox, 2018). Currently,
graph theory in conjunction with spatial covariance analysis
was used to examine the topology of disease networks in
metabolic PDRP (Ko et al., 2017). The results in that study
showed that disease networks defined by the spatial covariance
analysis in PD patients exhibit exaggerated small world property,
suggesting that it is more beneficial to elucidate the pathological
basis of PD from the perspective of PD-related metabolic
functional alterations in disease intrinsic networks. Nevertheless,
it remains to be determined whether such alterations also occur
in PD-related structural networks.

The primary objective of this work was to characterize
inherently metabolic PDRP and structural PDRP together in
PD patients and explore their correlations. A secondary aim
was to explore whether the disease brain networks derived from
metabolic or structural PDRP from graph theory has abnormal
topological characteristics. We also hypothesized that there are
abnormal topological characteristics in the disease structure and
metabolic networks in the PD.

MATERIALS AND METHODS

Figure 1 provides the general framework of our study. First,
both 18F-FDG PET and T1-weighted structural MRI scans from
PD1 and HC subjects in cohort A were analyzed using spatial
covariance analysis to identify a significant region-of-interest
(ROI)-based metabolic PDRP (PET-PDRP) topography and a
structural PDRP (MRI-PDRP) topography. Both topographies
and corresponding pattern expression values were compared
with each other. Data from PD2 subjects in cohort B were used
for a prospective evaluation of both metabolic and structural
PDRPs in single cases. Second, based on the customized criteria,
we identified some salient abnormal brain regions from the
PET-PDRP or MRI-PDRP topographies as network nodes in
the disease subspace, and the remaining regions constituted the
nondisease subspace. Finally, to explore network properties in
the disease and nondisease subspaces in PD patients, connectome
analysis based on graph theory was performed from each group.
We calculated the corresponding network metrics between the
disease and nondisease subspace and compared differences in
network metrics for the PD groups relative to the corresponding
control values.

Subjects
This study included two different cohorts (cohort A and
B) of healthy subjects and PD patients (Table 1). Cohort
A included 20 nondemented patients with PD and 20
age-matched healthy controls recruited from Huashan Hospital
(Shanghai, China) in one project conducted from January
2014 to September 2015. Cohort B included 15 nondemented
patients with PD recruited from Huashan Hospital (Shanghai,
China) in another project conducted from January 2013 to
September 2013. All subjects in cohorts A and B underwent
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FIGURE 1 | The overall framework of the experimental process used in this study.

TABLE 1 | Demographic characteristics of PD patients and healthy controls.

Cohort A Cohort B p value

HC PD1 PD2

N 20 20 15 PD1-HC PD2-HC
Age (years) 59.6 ± 7.2 62.4 ± 7.3 62.8 ± 4.9 0.230a 0.148a

Gender (F/M) 12/8 10/10 3/12 0.525b 0.018b

UPDRS - 21.6 ± 11.2 21.6 ± 10.5 - -
Speech - 0.5 ± 0.5 0.5 ± 0.5 - -
Facial expression - 1.2 ± 1.0 1.3 ± 1.0 - -
Static tremor - 2.2 ± 2.1 2.1 ± 2.3 - -
Postural tremor - 1.2 ± 1.1 1.1 ± 1.0 - -
Rigidity - 4.6 ± 3.6 4.1 ± 5.0 - -
Gait - 0.8 ± 0.6 0.8 ± 0.6 - -

MMSE - 28.8 ± 1.7 27.8 ± 1.9 - -

Age and clinical rating are given as mean ± standard deviation. UPDRS, Unified Parkinson’s Disease Rating Scale. ap value was obtained by the two-sample two-tailed t-test between
healthy controls and PD patients. bp value was obtained by the χ2 test between healthy controls and PD patients. Bold value indicated a significant difference between healthy controls
and PD patients.

both 18F-FDG PET and T1-weighted structural MRI scans.
All patients were scanned and clinically examined by two
senior neurologists specializing in dyskinesia before their
inclusion in the study. The PD diagnosis was according to
the United Kingdom Brain Bank criteria (Hughes et al.,

1992). Patients with PD have no dementia, supranuclear gaze
abnormalities, or ataxia, and are not caused by encephalitis
or antipsychotic medication. The Unified Parkinson’s
Disease Rating Scale (UPDRS) motor examination was
administered at least 12 h after the cessation of antiparkinsonian
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medications. Mini-mental State Examination (MMSE) was
administered synchronously.

All healthy controls received the same clinical
scanning procedures as PD patients. Exclusion criteria
for all subjects included: (a) primary psychiatric illness;
(b) central nervous system comorbidities; and (c) abnormal
neurological examination.

Ethical permission for the study was obtained from the
Research Ethics Committee of Huashan Hospital, Shanghai,
China (approval number: KY2013-336). Written informed
consent was obtained from each subject after providing detailed
instructions of the procedures.

Acquisition Protocol
18F-FDG PET
All subjects underwent 18F-FDG PET examination at resting
state. PET scans were performed with a Siemens Biograph
64 HD PET/CT (Siemens, Germany) in three-dimensional
(3D) mode. All subjects were fasted for at least 6 h before
scanning. After intravenous injection of 185 MBq 18F-FDG,
the PET scan was started after a 45-min rest in a quiet and
dimly lit environment. Prior to the PET scan, a low-dose CT
transmission scan was performed for attenuation correction. The
PET scan was performed in 3D mode for 10 min. All PET
data were reconstructed using a 3D ordered subset expectation
maximization algorithm and corrected for random coupling,
scattering, and radioactive decay.

T1-Weighted Structural MRI
All MRI measurements were obtained on a 3-T GE Discovery
MR750 Scanner (Milwaukee, WI, USA) equipped with a circular
polarized eight-channel head matrix coil at the Department of
Radiology of Huashan Hospital of Fudan University, China.
High-resolution, T1-weighted, 3D anatomical brain images were
obtained using an inversion recovery prepared fast spoiled
gradient recalled sequence (repetition time = 11.1 ms; echo
time = 5.0 ms; flip angle = 20◦; matrix resolution = 256 × 256;
voxel size = 1 × 1 × 1 mm3; field of view = 240 mm2; slice
thickness = 1.0 mm; 146 slices without slice gap, transverse
acquisition), with the scan range from the calvarium to
foramen magnum.

Data Preprocessing
Data preprocessing for both PET and MRI images was
done using Statistical Parametric Mapping 12 (the Wellcome
Department of Neurology, London, UK) package implemented
in Matlab2016b (Mathworks Inc.). First, 18F-FDG PET scan
for each subject was aligned with corresponding T1-weighted
MRI scan. Second, MRI images were segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
tissue probability maps. Then, the GM map was registered to
the Montreal Neurological Institute (MNI) stereotaxic template
using nonlinear transformation parameters. The aligned PET
image was also normalized to the MNI template using the
same transformation parameters. Finally, the normalized MRI
and PET images were smoothed equivalent to a convolution

with an isotropic Gaussian kernel of 8 mm to increase
signal-to-noise ratios.

Pattern Analysis
Pattern analysis was performed using ScanVP 7.0w package
implemented in Matlab2016b1 (Eidelberg, 2009; Spetsieris
and Eidelberg, 2011). The PD-related covariance pattern
was generated using ROI-based spatial covariance mapping
algorithms known as Scaled Subprofile Modeling based on
principal component analysis (SSM/PCA). In this step, the
smoothed 18F-FDG PET data from the combined PD1 patients
and healthy subjects in cohort A was used as inputs. First,
we performed a logarithmic transformation on the mean
glucose metabolism within each region for each subject, and
the subject × ROI data matrix was obtained. Second, the
PCA was executed on the matrix to identify a disease-related
spatial covariance pattern reflected major sources of variation.
This pattern was a linear combination of selected principal
components (PCs), so that the expression values corresponding
to the pattern could maximally separate the PD patients from
the control subjects. The number of PCs was determined by the
lowest Akaike information standard (AIC) value in the logistic
regression model. Third, the regional weights of the pattern were
z-scored based upon the mean and standard deviation of all
regions (Spetsieris et al., 2013). Therefore, the subject expression
of this pattern in a prospective subject can be computed
using an ROI-based topographic profile rating (TPR) algorithms
(Eidelberg, 2009; Spetsieris et al., 2013). Finally, the resulting
expression was Z-transformed using the subject expressions of
the control subjects participating in the pattern identification.
In this study, we preselected 95 ROIs. In addition to 90 ROIs
from the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002), we also included five other regions where
functional imaging studies in PD commonly report altered
metabolism, including bilateral cerebellum, bilateral pons, and
cerebellar vermis. The MRI images were analyzed by the same
process as above.

As a result, a significant ROI-based metabolic PDRP (and
structural) topography was identified from 18F-FDG PET (and
T1-weighted GMMRI) scans of combined PD1 and HC subjects
in cohort A. Subject expressions of corresponding PDRP were
then computed for all scans in the combined PD1 and HC
subjects and Z-scored using subject expressions of the HC. We
validated corresponding PDRP topography by computing its
expression in the 18F-FDG PET (and T1-weighted GM MRI)
scans from PD2 subjects in cohort B. The corresponding PDRP
expressions of PD2 subjects were Z-scored the same way as
above and then compared with those of the original subjects
in PD1 and HC. The diagnostic power of the corresponding
PDRP expressions for discriminating PD patients from healthy
controls was evaluated by the area under the curve (AUC) in
the receiver operating characteristic (ROC) curves. ROC analysis
in cohort B was obtained by comparing PD2 and HC groups.
ROC analysis in cohorts A and B (cohort A + B) was obtained
by comparing combined PD1 and PD2 groups compared to HC

1http://www.feinsteinneuroscience.org
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group.We also evaluated whether the combination of PET-PDRP
and MRI-PDRP expressions could improve diagnostic power. In
addition, correlation analysis of corresponding PDRP expression
and clinical ratings in PD patients in cohorts A and B were
also performed.

Correlation Analysis Between PET-PDRP
and MRI-PDRP Topographies
The metabolic and structural topographies were assessed by
ROI-based correlation of regional weights in a set of salient
abnormal brain regions. The correlation between the two
patterns was calculated using only the regions with absolute
values ≥1.0 (Ge et al., 2018). The pattern expression for
PET-PDRP was also correlated with corresponding MRI-PDRP
expression in combined PD1 (or PD2) and HC samples.

Brain Connectome Analysis
Graph theory was used to explore network properties in brain
connectome analysis. Globally normalized glucose metabolism
within each ROI was used to construct a region × region
correlation matrix across each of three individual groups (PD1,
PD2, and HC groups). In each correlation matrix, functional
connectivity (FC) between each pair of regions was calculated
by partial correlation coefficient between ROI values for local
FDG uptake in each pair of regions, across participants, to
conduct for the control of age and gender effects (Lo et al., 2010;
Duan et al., 2017; Jiang et al., 2017). We used a sparsity (or
named cost, representing present connections as a percentage
of all possible connections) threshold to generate a series of
undirected graphs (Baggio et al., 2014; Duan et al., 2017). The
correlation matrices were thresholded at a range of sparsity
thresholds, in 0.01 steps (sparsitymin: 0.01: sparsitymax). The
minimum sparsity guaranteed that networks of all groups (HC,
PD1, and PD2) were fully connected, and no nodes were
fragmented. The maximum sparsity selected 0.5 because the
randomness of the network larger than this threshold would
increase, and the results would be unreliable (Hosseini et al.,
2012). At each threshold, we calculated the following network
metrics: (1) the clustering coefficient (C, quantification of the
degree to which nodes in a graph tend to cluster together
and a representation of network segregation, measuring the
local information transmission capability in a network); (2) the
characteristic path length (L, the average number of connections
on the shortest path between any two regions in a network and a
marker of network integration, measuring the global information
transmission capability in a network); and (3) small worldness (S,
the balance between local segregation and global integration).

Next, we divided the brain into disease subspace and
nondisease subspace based upon the PET-PDRP topographies
for further analysis. The nodes in the disease subspace consisted
of the salient abnormal brain regions (absolute regional weight
≥1.0; high local contributions to overall PDRP activity) identified
by the PDRP topography and the remaining regions constituting
the nondisease subspace (absolute regional weight <1.0; low
local contributions to overall PDRP activity). We calculated
the corresponding network metrics among disease subspace,
nondisease subspace, and whole brain, and we compared

differences in network metrics for the PD1/PD2 groups relative
to HC control values.

The graph theoretical analyses of brain structural network
were the same as in the procedure for metabolic brain network
but based on T1-weighted GM imaging data. It was worth noting
that disease subspace and nondisease subspace in brain structural
network were divided according to MRI-PDRP topography.

Brain connectome analysis was performed using Brain
Connectivity Toolbox2 and Graph Analysis Toolbox (Hosseini
et al., 2012) implemented in Matlab2016b.

Statistical Analysis
Differences in PET-PDRP (and MRI-PDRP) expressions
between patients and healthy controls were evaluated using
two-sample t-tests. PDRP expressions of patients were correlated
with corresponding MMSE, UPDRS, and six motor items
(speech, facial expression, static tremor, postural tremor,
rigidity, and gait) by computing Pearson’s correlations. Regional
weight and pattern expression between the two PDRPs identified
in the 18F-FDG PET scans and structural MRI scans was
compared using Pearson’s correlations. In order to determine
the significance of the differences in network metrics between
the patient group and HC group in each subspace, a permutation
test repeated 1,000 times was used (Hosseini et al., 2012; Ko et al.,
2017). All statistical tests were performed using Matlab2016b
(p< 0.05, two-tailed).

RESULTS

Abnormal Disease Topographies in
Pattern Analysis
PET-PDRP Identification and Validation
The ROI-based SSM/PCA multivariate analysis of 18F-FDG PET
data from cohort A investigated the first four PCs that explained
55.4% of the subject×ROI variance. The PET-PDRP topography
generated from a linear combination of PC1, PC3, and PC4 with
expression successfully discriminated PD1 patients and healthy
controls, and produced the lowest AIC value in the logistic
regression model. The pattern was characterized by relative
increased metabolic activity in pallidothalamic, pons, bilateral
putamen, and cerebellum, associated with metabolic decrease in
parietal–occipital areas (Figure 2A). Subject expressions for the
PET-PDRP topography were significantly elevated (p = 0.0039)
in PD1 compared to HC subjects (Figure 2B). Significant
increases in pattern expression were also seen in PD2 validation
subjects with respect to HC control values (p < 0.001). Subject
PET-PDRP expressions were without a difference between
PD1 and PD2 subjects (p = 0.097). ROC analysis revealed an
AUC = 0.74 (95% confidence intervals of 0.59–0.89; Figure 2C)
to distinguish the PD patients from the controls in cohort A. The
ROC curves also showed that PET-PDRP expression accurately
distinguished PD patients from the control individuals in cohorts
B and A + B. The AUC values were 0.88 (95% confidence
intervals of 0.75–1.00) and 0.80 (95% confidence intervals of

2http://www.brain-connectivity-toolbox.net/
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FIGURE 2 | (A) Metabolic Parkinson’s disease-related pattern (PET-PDRP) identified by Scaled Subprofile Modeling (SSM) multivariate analysis of 18F-FDG PET
scans from 20 (PD) patients in PD1 and 20 age- and gender-matched healthy controls. The pattern was characterized by relative increased metabolic activity in the
pallidothalamic, pons, bilateral putamen, and cerebellum, associated with metabolic decreased in parietal–occipital areas. (B) Subject expressions for the PET-PDRP
topography measured using violin plots in the HC, PD1, and PD2 scans (horizontal lines indicate group medians). Significant increases in pattern expression were
seen in PD1 original derivation subjects and PD2 validation subjects with respect to HC control values. (C) Receiver operating characteristic (ROC) curve for
discriminating PD patients from healthy controls.

0.68–0.92) for subjects in cohorts B and A + B, respectively
(Figure 2C).

MRI-PDRP Identification and Validation
The pattern analysis of MRI images examined the first four PCs
accounting for 52.4% subject × ROI variance. An MRI-PDRP
was generated by a linear combination of PC2 and PC3. The
pattern was characterized by relative decreased GM volumes in
bilateral pons, bilateral transverse temporal gyrus, left cuneus,
right superior occipital gyrus, and right superior parietal lobule,
associated with preservation in GM volumes in bilateral pallidum
and bilateral putamen (Figure 3A). Subject expressions for the
MRI-PDRP topography were significantly elevated (p = 0.0058)
in PD1 compared to HC subjects (Figure 3B). Significant
increases in pattern expression were seen in PD2 validation
subjects with respect to HC control values (p = 0.044). Subject

MRI-PDRP expressions were not different between PD1 and
PD2 subjects (p = 0.599). As for ROC curves distinguishing the
PD patients from the normal controls, AUC values were 0.74
(95% confidence intervals of 0.59–0.90), 0.68 (95% confidence
intervals of 0.50–0.86), and 0.72 (95% confidence intervals of
0.57–0.86) for subjects in cohorts A, B, and A + B, respectively
(Figure 3C).

Correlation Analysis
Correlations Between PDRP and Clinical Scales
PET-PDRP andMRI-PDRP expressions were not correlated with
MMSE in the PD group. The correlations between PET-PDRP
expressions and the corresponding UPDRS within each PD
group are shown in Figure 4. In PD1 group, PET-PDRP
expressions in patients correlated positively with UPDRS motor
ratings (r = 0.55, P = 0.01; Figure 4A). In PD2 group,
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FIGURE 3 | (A) Structural Parkinson’s Disease-Related Pattern (MRI-PDRP) derived from the same subjects. The pattern was characterized by relative decreased
gray matter (GM) volume in bilateral pons, bilateral transverse temporal gyrus, left cuneus, right superior occipital gyrus, and right superior parietal lobule, associated
with preservation in GM volume in bilateral pallidum and bilateral putamen. (B) Subject expressions for the MRI-PDRP topography measured using violin plots in the
HC, PD1 and PD2 scans (horizontal lines indicate group medians). Significant increases in pattern expression were seen in PD1 original derivation subjects and
PD2 validation subjects with respect to HC control values. (C) ROC curve for discriminating PD patients from healthy controls.

PET-PDRP expressions in patients also correlated with UPDRS
motor ratings (r = 0.60, P = 0.02; Figure 4B). In a combined
PD group from PD1 and PD2, PET-PDRP expressions had
positive correlations with UPDRS motor ratings (r = 0.54,
P < 0.001). MRI-PDRP expressions were also associated with
UPDRS motor ratings in PD1 group (r = 0.51, P = 0.02)
but not PD2 group. In a combined PD group (PD1 + PD2),
MRI-PDRP expressions were not correlated with UPDRS motor
ratings. The correlation results between PET-PDRP expressions,
MRI-PDRP expressions, and the six motor items of UDRPS
are shown in Figure 5. PET-PDRP expressions in patients
correlated positively with the scores of speech (r = 0.485,
P = 0.003), facial expression (r = 0.336, P = 0.0049), postural
tremor (r = 0.379, P = 0.025), rigidity (r = 0.361, P = 0.033),
and gait (r = 0.360, P = 0.034). MRI-PDRP expressions in
patients correlated positively with the scores of static tremor
(r = 0.505, P = 0.002).

Correlations Between PET-PDRP and MRI-PDRP
In the two PDRPs, six regions were salient abnormal brain
regions (absolute region weight ≥1.0) in both patterns,

including bilateral pons, bilateral pallidum, and bilateral
putamen (Supplementary Tables S1, S2). Regional weights
between the two PDRPs of these regions were negatively
correlated (r = −0.88, P = 0.02; Figure 6A). Two pattern
expression of the combined PD1 patients and healthy controls
showed positive correlations (r = 0.45, P = 0.0038; Figure 6B)
but not associated with combined PD2 and HC subjects or
combined PD1, PD2, and HC subjects. The correlations between
two pattern expressions in the single PD1 group was found
(r = 0.42, P = 0.064) but not found in single PD2 group or
combined PD1 and PD2 subjects.

Brain Connectome Analysis
PD-Related Metabolic Network
Connectome analysis was used to reveal abnormalities in
network features associated with PD. In our study, in order to
determine whether this feature is different between PD patients
and healthy subjects, we separated each group’s network into
two discrete subspaces. Eventually, 25 nodes constituted the
disease subspace, which had a higher local contributions to
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FIGURE 4 | PET-PDRP expressions in individual patients correlated with UPDRS motor ratings in the (A) original derivation subjects as well as in the (B) subsequent
validation subjects. Shaded areas represent 95% confidence of intervals. UPDRS, Unified Parkinson’s Disease Rating Scale.

overall PET-PDRP activity (for more details, please refer to
Supplementary Table S1). The remaining 70 brain regions
served as nodes in the nondisease subspace. The sparsitymin
(ensuring both the disease subspace and nondisease subspace
are fully connected) of the HC, PD1, and PD2 groups was 15,
38, and 28%, respectively. Network metrics in each group were
computed with a sparsity threshold ranging from 38% to 50%. At
sparsity 38%, the clustering coefficient for the disease subspace in
the PD1 group was significantly (P < 0.05) increased compared
with the HC group (PD1, 0.80; HC, 0.50; Figures 7A,B,D).
The characteristic path length had a tendency to increase in
PD1 compared to HC (PD1, 2.42; HC, 1.67; Figures 7A,B,E).
However, significant differences were not observed for the small-
worldness coefficient. Indeed, permutation analysis showed
that, in the entire sparsity threshold range (38–50%), the
clustering coefficient of PD1 group in the disease space increased
significantly (P < 0.05); in the sparsity threshold range of
41–50%, the characteristic path length also increased significantly
(P < 0.05; Supplementary Figure S1).

The clustering coefficient for the disease subspace was
significantly (P < 0.05) increased in PD2 compared to HC
over the sparsity range of 38–42% (for example, at sparsity
38%, C in PD2 is 0.76; C in HC is 0.50; Figures 7A,C,D). The
small world coefficient for the disease subspace in PD2 group
increased significantly (P < 0.05) at sparsity range of 39–41%
(Supplementary Figure S2) and had an increasing trend at
sparsity 38% (S in PD2, 1.91; S in HC, 1.19; Figures 7A,C,F). The
characteristic path length (had a tendency to increase, such as, at
sparsity 38%, L in PD2 is 2.16; L in HC is 1.67; Figures 7A,C,E)
did not show group differences (Supplementary Figure S2).
Group differences of network metrics were not significant for the
nondisease subspace or for the whole brain.

PD-Related Brain Structural Network
According to the local contributions to overall MRI-PDRP
activity, 11 nodes constituted the disease subspace

(Supplementary Table S2), and the remaining 84 brain regions
served as nodes in the nondisease subspace. PD-related brain
structural network was also analyzed based on T1-weighted GM
imaging data in different spaces. In the HC group, the minimum
sparsity in which all nodes became fully connected in both the
disease subspace and nondisease subspace was 20%, PD1 group
was 32%, and PD2 group was 17%. Network metrics were
computed at a sparsity range of 32–50% for the comparisons
between PD1 (or PD2) and HC. At sparsity 32%, increased
path length and slightly elevated small-world coefficients for the
disease subspace were observed in PD1 group but not PD2 group
(L in PD1, 2.15; L in PD2, 1.70; L in HC, 1.42; S in PD1, 2.88; S in
PD2, 1.05; S in HC, 1.28; Supplementary Figure S3). As above,
in the nonparametric permutation test analysis, we also found
that increased path length (in the sparsity range of 38–47%
and 49–50%) and slightly elevated small-world coefficient
(at sparsity 39% and 50%) over corresponding sparsity range
for the disease subspace in PD1 group but not PD2 group
(Supplementary Figures S4, S5). Group differences of network
metrics were not significant for the nondisease subspace or for
the whole brain.

DISCUSSION

In this study, we investigated 18F-FDG PET-based metabolic
covariance pattern (PET-PDRP) and T1 MRI-based structural
covariance pattern (MRI-PDRP) associated with PD for the
same patients. The MRI-PDRP topography revealed brain
region-level abnormalities containing a large number of
cortical neurons that partially overlap with the metabolic
pattern derived from 18F-FDG PET scans. Connectome
analysis also showed that the topological organization for
the disease network in the PET-PDRP and MRI-PDRP
topographies were significantly disrupted. These findings
provide new evidence for elucidating the neuropathological
mechanisms of PD.
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FIGURE 5 | PET-PDRP expressions in PD patients correlated with their levels of (A) speech, (B) facial expression, (D) postural tremor, (E) rigidity and (F) gait.
MRI-PDRP expressions in PD patients correlated with the levels of (C) static tremor. Shaded areas represent 95% confidence of intervals.

Reproducible Metabolic PDRP Topography
Using spatial covariance analysis, we reproduced a metabolic
PDRP topography (PET-PDRP) that was compatible with
previous imaging studies in both American and Chinese
PD patients (Ma et al., 2007; Wu et al., 2013; Ko et al.,
2017; Schindlbeck and Eidelberg, 2018). In our study,
the PET-PDRP expression in PD patients was significantly

elevated in the original derivation subjects and the subsequent
validation subjects. The regional metabolic dysfunction
within this abnormal topography could describe abnormal
cerebral metabolism or blood flow and reveal clinical
disability and treatment response in patients with PD
(Hirano et al., 2008; Eidelberg, 2009; Wu et al., 2013; Ko
et al., 2017). This topography revealed the presence of
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FIGURE 6 | (A) Regional weights on PET-PDRP and MRI-PDRP in a set of salient abnormal brain regions were correlated. (B) PET-PDRP expressions in
combination with PD1 patients and healthy controls and MRI-PDRP expressions in the same subjects were correlated. Shaded areas represent 95% confidence
of intervals.

abnormal metabolic changes at key nodes of the cortico-
striato-pallido-thalamo-cortical (CSPTC) loops and other
related anatomical/functional pathways, which is in line with
previous reports (Eidelberg, 2009; Poston and Eidelberg,
2009; Tang and Eidelberg, 2010). The abnormalities in the
CSPTC circuits are commonly associated with the clinical
manifestations of akinetic rigid in PD patients, but they
do not fully explain other disease manifestations, such as
tremors (Wichmann and Delong, 2007; Zaidel et al., 2009;
Wu et al., 2013). By contrast, relative hypermetabolism in the
cerebellum/dorsal pons, putamen, and primary motor cortex
captured the abnormal activity in the cerebello-thalamo-
cortical (CbTC) circuits, which was associated with the
generation of tremor (Timmermann et al., 2002; Wu et al.,
2013). Particularly, the cerebellum, pons, thalamus, and
putamen evident overlaps in both CSPTC and CbTC circuits
were considered as regions of severer involvement of these
circuits. In this study, the dysfunction of CSPTC circuits
was involved in functional network abnormalities of PDRP
topography. The premotor area receives less excitatory
impulses from the thalamus, resulting in a decrease in
parietal lobe metabolism (Wu et al., 2013). On the other
hand, posterior cortical dysfunction is considered as the
imaging marker of PD patients with the risk of dementia (Wu
et al., 2013; Peng et al., 2014a). However, understanding the
contributions of different brain regions to motor and cognitive
impairments requires more relevant cross-sectional and
longitudinal studies.

Structural PDRP Topography
We demonstrated for the first time that spatial covariance
analysis can reveal a wide range of regions affected by PD

using T1-weighted structural MRI. In this study, a reduced GM
volume in PD was observed in bilateral pons, bilateral transverse
temporal gyrus, left cuneus, right superior occipital gyrus, and
right superior parietal lobule, associated with preservation in
GM volume in bilateral pallidum and bilateral putamen. In
PD patients, more than 70% of dopamine (DA) terminals were
lost when motor symptoms occur (Fearnley and Lees, 1991),
and in the early stages of PD, human dyskinesia might be
due to the compensatory mechanism that promoted the release
and renewal of DA and reduced the uptake of DA so that
the DA concentration was stable at normal levels (Silverdale
et al., 2003). Besides, there are other possible compensatory
changes, including the increase or appearance of striatum TH+
neurons and enhanced DA synthesis by alternative biochemical
pathways, etc. These changes might preserve the GM volume
in pallidum and putamen in early PD patients (Blesa et al.,
2017). Pathological studies related to PD also indicated that
the progression of lesions begins with the brainstem (which
includes pons) and the substantia nigra (Braak et al., 2003). An
decrease in gray volume in the pons has also been reported in
previous studies (Jubault et al., 2009). Therefore, the finding
in this study is consistent with the pons as the anatomical
starting point of PD pathology according to Braak et al. (2003,
2004) and Jubault et al. (2009). In our study, morphological
abnormalities in other cortical regions were also found. In
cognitively intact PD patients, cortical morphology may be
normal (Tessitore et al., 2012) or abnormal in the frontal
lobe (Biundo et al., 2011) or in a wider range of cortical
regions, including the parietal, temporal, and occipital lobes
(Jubault et al., 2011). Uncoordinated results may be caused by
different experimental methodologies or the heterogeneity of
PD disease.
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FIGURE 7 | Node-to-node functional connectivity (FC) in the (A) HC, (B)
PD1, and (C) PD2 groups in the disease subspace and nondisease
subspace, and (D–F) network attributes. (A) Binary functional network in the
HC group at sparsity 38%. (B) Binary functional network in the PD1 group at
sparsity 38%. (C) Binary functional network in the PD2 group at sparsity
38%. (D) Comparison of the clustering coefficient among HC, PD1, and
PD2 groups in different spaces at sparsity 38%. (E) Characteristic path
length. (F) Small world coefficient. In (A–C), the nodes in the upper part of the
circle represent brain regions in the disease subspace (25 ROIs), and the
nodes in the lower part of circle represent brain regions in the nondisease
subspace (70 ROIs). Colors of nodes on the circle represent different
anatomical classifications of corresponding brain regions based on existing
literature (Wang et al., 2007; Bai et al., 2011). The lines within the circle
represent FC between pairs of nodes, where the red lines (within-disease
subspace edges) indicate FC between nodes within the disease subspace;
the green lines (within-nondisease subspace edges) indicate FC between
nodes within the nondisease subspace; the blue lines (trans-disease
subspace edges) indicate FC between the disease subspace nodes and the
nondisease subspace nodes. The asterisk refers to significant differences
between the PD compared to HC groups (p < 0.05).

Correlations Between PDRP and Clinical
Scale
There was no significant correlation between PET-PDRP and
MMSE, MRI-PDRP and MMSE, but there were significant
positive correlations with UPDRS and six motor items,
suggesting that the abnormal metabolic and structural
characteristics of nondemented PD patients are related to

their dyskinesias, but not to cognitive dysfunction. The injury
of PD patients on speech, facial expressions, tremors, rigidity,
and gait became worse with the increase in PD pathology, which
was consistent with clinical manifestations. Postural tremor is
associated with metabolic abnormalities, while stationary tremor
is associated with structural abnormalities, indicating that the
causes of postural tremor and stationary tremor in PD patients
may be different and therapeutic interventions for primary
tremor in PD patients need to distinguish postural tremor from
resting tremor.

Correlations Between PET-PDRP and
MRI-PDRP
The ROC curves revealed that PET-PDRP and MRI-PDRP
expressions significantly discriminated PD patients from the
control individuals with approving sensitivity and specificity.
Since PET-PDRP expression value was demonstrated reliable
diagnosis power, it revealed that MRI-PDRP may be also
a promising diagnostic biomarker for the non-inferiority
compared to PET-PDRP. However, further validation work
should be followed.

As expected, several overlapping regions were identified
between the metabolic PET-PDRP topography and the structural
MRI-PDRP topography, including the bilateral pons, bilateral
pallidum, and bilateral putamen. Surprisingly, the regional
weights between the two PDRPs identified in the two
imaging modalities were correlated within these regions
(r = −0.88, P = 0.02), and the two pattern expressions
were also correlated in patients and normal subjects. In a
structural MRI study in combination with deformation-based
morphometry and independent component analysis (ICA),
researchers identified that the PD-ICA atrophy pattern in a larger
number of participants showed a certain spatial topography
overlap with the metabolic PD-related pattern derived from
spatial covariance analysis using 18F-FDG PET (Zeighami
et al., 2015). These included the globus pallidus, thalamus,
putamen, premotor and supplementary motor regions. Our
study obtained a consistent result. The consistent findings
indicate a possible link between brain function and structure
dysfunction of the related anatomical and functional circuit
in PD, particularly the cortico-basal ganglia-thalamocortical
motor circuit. In addition, our study demonstrated the potential
value of the integration of different neuroimaging techniques to
improve the neuropathological understanding of PD. Consistent
abnormalities in brain structure and function, and causal
relationships between them, in patients with PD await further
investigation and understanding.

Structurally and Functionally Disrupted
Network Topology in PD
Brain connectome analysis can reveal abnormalities in network
characteristics associated with PD and the potential impact of the
disease network on brain information processing. We found that
the functional brain network in the two independent PD groups
exhibited a disrupted network topology in the disease subspace.
Compared with the HC group, the clustering coefficient for the
disease subspace was significantly increased, the characteristic
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path length in the PD1 group was significantly increased, and
the small-worldness attribute in the PD2 group was significantly
elevated. Similarly, we also found a significantly increased
characteristic path length for the brain structure network in
PD1 group. An earlier study has used 18F-FDG PET data to
identify an ROI-based metabolic PD-related pattern, and the
disrupted network topology (increased clustering coefficient,
reduced characteristic path length, and exaggerated small-
worldness attribute) in the disease network consisting of brain
regions with significant abnormalities in this pattern has also
been confirmed in four independent patient subjects and in
an experimental nonhuman primate model (Ko et al., 2017).
Consistent with our results, significantly increased clustering
coefficients in the disease space could be observed in both
studies. However, changes of characteristic path length in the
disease space in both studies were against. This may resulted
from different disease spaces in morphological topography and
nation differences between the western and eastern populations
in the two studies. Interestingly, these descriptor changes are
limited to the space occupied by the disease network, which
might correspond to the relatively intact anatomy of other spaces
(nondisease subspace and the whole brain).

LIMITATIONS

There are several issues that still need to be further considered
in this study. First, in the pattern analysis, we used the
ROI-based rather than the voxel-based SSM/PCA algorithm
for the subsequent determination of the disease subspace. The
effect of the two different analytical methods on the results
needs further investigation. Second, due to limited experimental
subjects, for prospective evaluation of PET-PDRP and MRI-
PDRP, we only used another new set of PD subjects but
did not include both HC and PD subjects. Third, we did
not further examine the intrinsic link between pattern and
connectome analyses, for example, to see whether the correlation
between the metabolic PET-PDRP pattern and structural
MRI-PDRP can be further explained from the perspective of
connectome analysis.

CONCLUSIONS

In this study, we investigated 18F-FDG PET-based metabolic
covariance pattern and MRI-based structural covariance pattern
associated with PD in the same patients. The metabolic pattern
is highly consistent with the disease-related metabolic brain
patterns previously described in different cohorts of PD patients.
This structural pattern was characterized by relative decreased
GM volume in bilateral pons, bilateral transverse temporal
gyrus, left cuneus, right superior occipital gyrus, and right
superior parietal lobule, associated with preservation in GM
volume in bilateral pallidum and bilateral putamen. Expectantly,
we found a significantly negative correlation regional weight
between metabolic and structural patterns in a set of salient
abnormal brain regions, which provides a new perspective for
insight into disrupted brain abnormal metabolism and structure
in PD patients. In order to verify the effectiveness of two

patterns, we used connectome analysis methods to explore the
brain metabolic network constructed by PET and the brain
structural network. The results showed that more obvious
changes could be found in these two patterns. In summary,
significant overlaps between metabolic and structural patterns,
as well as the convergence of metabolic network and structural
network disruption, provide new evidence for elucidating the
neuropathological mechanisms of the disease.
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