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Abstract

In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is
worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by
considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated
by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the
question ‘‘how likely must the shot be to go in before the player should take it?’’ and I show that this lower cutoff for shot
quality f depends crucially on the number n of shot opportunities remaining (say, before the shot clock expires), with larger
n demanding that only higher-quality shots should be taken. The function f (n) is also derived in the presence of a finite
turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical
prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA). The
comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly
reluctant to shoot the ball early in the shot clock.
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Introduction

In the game of basketball, the purpose of an offensive set is to

generate a high-quality shot opportunity. Thus, a successful play

ends with some player from the offensive team being given the

opportunity to take a reasonably high-percentage shot. At this final

moment of the play, the player with the ball must make a decision:

should that player take the shot, or should s/he retain possession of

the ball and wait for the team to arrive at a higher-percentage

opportunity later on in the possession?

The answer to this question depends crucially on three factors:

(i) the (perceived) probability that the shot will go in, (ii) the

distribution of shot quality that the offense is likely to generate in

the future, and (iii) the number of shot opportunities that the

offense will have before it is forced to surrender the ball to the

opposing team (say, because of an expired shot clock). In this

article I examine the simplest analytical model that accounts for all

three of these factors and use it to derive a rule for shot selection in

basketball.

Recent years have seen something of a revolution in analytical

methods in sports, with advanced ideas from game theory,

network theory, and statistical mechanics being used to highlight

interesting phenomena associated with individual or cooperative

performance [1–11]. The problem of shot selection in basketball

has been a particularly popular subject of study [6,7,10–15]. Thus

far, however, studies have generally focused on either the possible

existence of ‘‘hot hand’’ phenomena [7,10,12–14] or on the choice

between taking 2- and 3-point shots [6,7,15], and a general

theoretical description of the shot-selection process has not been

formulated. While the complex nature of decision-making in

basketball makes such a description seem prohibitively difficult, it

is nonetheless natural to describe the problem of shot selection in

basketball as belonging to the class of ‘‘optimal stopping problems’’

(including, for example, the well-known ‘‘secretary problem’’),

which are often the domain of finance and, more broadly, decision

theory and game theory [16].

A very recent work [11] has examined the shot selection

problem using the perspective of ‘‘dynamic’’ and ‘‘allocative’’

efficiency criteria. The former criterion requires that every shot be

taken only when its quality exceeds the expected point value of the

remainder of the possession. The second criteria stipulates that, at

optimum, all players on a team should have equal offensive

efficiency. This allocative efficiency criterion is a source of some

debate, as a recent paper [5] has suggested that the players’

declining efficiency with increased usage implies an optimal

shooting strategy that can violate the allocative efficiency criterion.

Nonetheless, Ref. [11] demonstrates that players in the National

Basketball Association (NBA) are excellent at shooting in a way

that satisfies dynamic efficiency. That is, players’ shooting rates

seem to be consistent with their shooting accuracy when viewed

from the requirement of maximizing dynamic efficiency. Still,

there is no general theoretical model for addressing the question

‘‘when should a shot be taken and when should it be passed up?’’.

Inspired by these recent discussions, in this article I construct a

simple model of the ‘‘shoot or pass up the shot’’ decision and solve

for the optimal probability of shooting at each shot opportunity.

Within this model, each shot opportunity is characterized by its

quality q, which is best defined as the expected number of points

that will be scored if the shot as taken; in other words, q is the

expected field goal percentage for a given shot multiplied by its

potential point value (usually, 2 or 3). If all shots are taken to be

worth 1 point, for example, then 0ƒf1ƒf2ƒ1. The possibility of

offensive rebounds – whereby the team retains possession of the

ball after a missed shot – is not considered explicitly in this article,

but one can think that this possibility is lumped into the expected

value of a given shot.
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Given this definition, I make two important assumptions about

the shot quality. The first assumption is that q is a random

variable, independent of all other shot opportunities, and is

therefore described by some time-independent probability

distribution. While this assumption remains somewhat contro-

versial, thus far scoring trends have been shown to be

predominately consistent with the assumption of statistical

independence between successive shots [7,10,12,17], with a weak

‘‘hot hand’’ effect having been seen only between successive free

throw attempts [13,14]. The second major assumption of the

model, following Ref. [11], is that the probability distribution for

q is a flat distribution: that is, at each shot opportunity q is chosen

randomly between some minimum shot quality f1 and some

maximum f2. This assumption is somewhat arbitrary, and is

chosen primarily for the sake of clarity and mathematical

simplicity. In principle, however, one can generalize all results

presented in this article to the case of a different statistical

distribution for q. Some discussion about generalizations and

limitations of the model is given at the end of this article in the

Discussion section.

The primary concern of this article is calculating a rule for

optimizing the shot selection process. That is, this article seeks to

derive the optimal minimal value f of the shot quality such that if

players shoot if and only if the quality q of the current shot satisfies

qwf , then their team’s expected score per possession will be

maximized. It should be noted that this goal of maximizing points

per possession is appropriate for ‘‘risk neutral’’ situations, where

teams are relatively evenly-matched and a significant amount of

time remains in the game. The optimum strategy for end-game or

‘‘underdog’’ situations, where the team tries to maximize (or

minimize) the probability of an unlikely upset, is considered in Ref.

[15].

One can first note that this ‘‘lower cutoff’’ for shot quality f
must depend on the number of plays n that are remaining in the

possession. For example, imagine that a team is running their

offense without a shot clock, so that they can reset their offense as

many times as they want (imagine further, for the time being, that

there is no chance of the team turning the ball over). In this case

the team can afford to be extremely selective about which shots

they take. That is, their expected score per possession is optimized

if they hold on to the ball until an opportunity presents itself for a

shot that is essentially certain to go in. On the other hand, if a

team has time for only one or two shot opportunities in a

possession, then there is a decent chance that the team will be

forced into taking a relatively low-percentage shot.

So, intuitively, f (n) must increase monotonically with n. In the

limit n~0 (when the current opportunity is the last chance for the

team to shoot), we must have f (0)~f1; the team should be willing

to take even the lowest quality shot. Conversely, in the limit n??
(and, again, in the absence of turnovers), f (n??)~f2; the team

can afford to wait for the ‘‘perfect’’ shot. As I show below, the

solution for f (n) at all intermediate values of n constitutes a non-

trivial sequence that can only be defined recursively. I call this

solution, f (n), ‘‘the shooter’s sequence’’; it is the main result of the

present article.

In the following Results section, I present the solution for f (n),
use it to derive a relation for the optimal shooting rate as a

function of shot clock time, and then compare this theoretical

result to data collected from NBA games. The Discussion section

uses this comparison to suggest possible suboptimal behaviors

among NBA players, and the limitations of the theoretical model

are discussed along with some possible generalizations. Finally, the

Methods section describes the collection and processing of the

NBA data.

Results

1 The shooter’s sequence
In this subsection I calculate the optimal lower cutoff for shot

quality, f (n), for a situation where there is enough time remaining

for exactly n additional shot opportunities after the current one. I

also calculate the expected number of points per possession, F (n),
that results from following the optimal strategy defined by f (n).
The effect of a finite probability of turning the ball over are

considered in subsections 2–3.

To begin, we can first consider the case where the team is facing

its last possible shot opportunity (n~0). In this situation, the team

should be willing to take the shot regardless of how poor it is,

which implies f (0)~f1. The expected number of points that

results from this shot is the average of f1 and f2 (the mean of the

shot quality distribution):

F (0)~
f1zf2

2
ð1Þ

Now suppose that the team has enough time to reset their

offense one time if they choose to pass up the shot; this is n~1. If

the team decides to pass up the shot whenever its quality q is below

some value y, then their expected number of points in the

possession is

Fy(1)~
f2{y

f2{f1

: yzf2

2
z 1{

f2{y

f2{f1

� �
F(0): ð2Þ

In Eq. (2), the expression (f2{y)=(f2{f1) corresponds to the

probability that the team will take the shot, so that the first term on

the right hand side corresponds to the expected points per

possession from shooting and the second term corresponds to the

expected points per possession from passing up the shot. The

optimal value of q, which by definition is equal to f (1), can be

found by taking the derivative of Fy(1) and equating it to zero:

dFy(1)

dy

����
y~f (1)

~0: ð3Þ

Combining Eqs. (2) and (3) gives f (1)~F (0)~(f1zf2)=2. In

other words, the team should shoot the ball whenever the shot

opportunity has a higher quality q than the average of what they

would get if they held the ball and waited for the next position.

This is an intuitive and straightforward result. It can be extended

to create a more general version of Eqs. (2) and (3). Namely,

Fy(nz1)~
f2{y

f2{f1

: yzf2

2
z 1{

f2{y

f2{f1

� �
F (n): ð4Þ

and

dFy(n)

dy

����
y~f (n)

~0: ð5Þ

Together, these two equations imply
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f (nz1)~F (n): ð6Þ

This is the general statement that a team should shoot the ball only

when the quality of the current opportunity is greater than the

expected value of retaining the ball and getting n more shot

opportunities. In this sense Eq. (6) is quite general, and it is

independent of any assumptions about the distribution of available

shot opportunities.

The conclusion of Eq. (6) allows one to rewrite Eq. (4) as a

recursive sequence for f (n):

f (nz1)~
½f (n)�2{2f1f (n)zf 2

2

2(f2{f1)
: ð7Þ

Along with the initial value f (0)~f1, Eq. (7) completely defines

‘‘the shooter’s sequence’’. Surprisingly, considering the simplicity

of the problem statement, this sequence f (n) has no exact

analytical solution. Its first few terms and its asymptotic limit are as

follows:

f (0)~f1

f (1)~(f1zf2)=2

f (2)~(3f1z5f2)=8

f (3)~(39f1z89f2)=128

f (4)~(8463f1z24305f2)=32768

f (n??)~f2

Note that in the limit where the team has infinite time, their

shooting becomes maximally selective (only shots with ‘‘perfect’’

quality f2 should be taken) and maximally efficient (every

possession scores f2 points).

Since Eq. (7) constitutes a recursive, quadratic map, it has no

general solution [18]. Nonetheless, the expression for f (n) can be

simplified somewhat by writing it in the form

f (n)~a(n)f1zb(n)f2, ð8Þ

where a(n) and b(n) are separate recursive sequences defined by

a(nz1)~a(n){a(n)2=2, a(0)~1 ð9Þ

and

b(nz1)~
1zb(n)2

2
, b(0)~0, ð10Þ

respectively. While a(n) and b(n) have no analytical solution, in

the limit of large n they have the asymptotic behavior

a(n)^2=nzO(1=n2) and b(n)^1{2=nzO(1=n2).

2 Optimal shooting without a shot clock
In this subsection I consider situations in which there is no

natural time limit to a possession, such as informal ‘‘pick-up’’

games. In this case, the number of shot opportunities that the team

can generate is limited only by their propensity to turn the ball

over – if the team attempts to continually reset the offense in

search of a perfect shot they will eventually turn the ball over

without taking any shots at all.

Thus, in these situations there is no natural definition of n,

which implies that the solution for the optimal shot quality cutoff f

is a single number rather than a sequence. Its value depends on the

upper and lower values of the distribution, f1 and f2, and on the

probability pt that the team will turn the ball over between two

subsequent shot opportunities. To calculate f , one can consider

that the team’s average number of points per possession, F , will be

the same at the beginning of every offensive set, regardless of

whether they have just chosen to pass up a shot. The team’s

optimal strategy is to take a shot whenever that shot’s quality

exceeds F ; i.e., f ~F as in Eq. (6). This leads to the expression

f ~pt|0z(1{pt)
f2{f

f2{f1

: f zf2

2
z 1{

f2{f

f2{f1

� �
f

� �
: ð11Þ

In this equation, the term proportional to pt represents the

expected points scored when the team turns the ball over (zero)

and the term proportional to 1{pt represents the expected points

scored when the team does not turn the ball over. As in Eq. (4), the

two terms inside the bracket represent the points scored when the

shot is taken and when the shot is passed up.

Eq. (11) is a quadratic equation in f , and can therefore be solved

directly to give the optimal lower cutoff for shot quality in

situations with no shot clock. This process gives

f ~
f2{f1pt{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt(f2{f1) 2f2{pt(f1zf2)½ �

p
1{pt

: ð12Þ

For 0ƒptv1 and 0ƒf1ƒf2, f is real and positive. In the limit

pt?0, Eq. (12) gives f?f2 (perfect efficiency), as expected.

3 The shooter’s sequence in the presence of turnovers
In this subsection I reconsider the problem of deriving the

shooter’s sequence while including the effect of a finite turnover

probability pt. This constitutes a straightforward generalization of

Eqs. (4) and (11). Namely,

F (nz1)~(1{pt)|

f2{f (n)

f2{f1

: f (n)zf2

2
z 1{

f2{f (n)

f2{f1

� �
F (n)

� �
:

ð13Þ
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Simplifying this expression and using Eq. (6) gives the recurrence

relation

f (nz1)~(1{pt)
f (n)2{2f1f (n)zf 2

2

2(f2{f1)
: ð14Þ

Together with the condition f (0)~f1, Eq. (14) completely defines

the sequence f (n).

Unfortunately, the sequence f (n) is unmanageable algebraically

at all but very small n. It can easily be evaluated numerically,

however, if the values of f1, f2, and pt are known. The first few

terms of f (n) and its limiting expression are as follows:

f (0)~f1

f (1)~(1{pt)(f1zf2)=2

f (2)~
1{pt

8(f2{f1)
½5{(2{pt)pt�f 2

2

�

{2f1f2(1{pt)
2{f 2

2 (1{pt)(3zpt)
	

f (n??)~
f2{f1pt{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt(f2{f1) 2f2{pt(f1zf2)½ �

p
1{pt

Notice that f (n) approaches the result of Eq. (12) in the limit

where many shot opportunities remain (i.e. the very long shot clock

limit).

Overall, the sequence f (n) has two salient features: (i) it

increases monotonically with n and ultimately approaches the ‘‘no

shot clock’’ limit of Eq. (12), and (ii) it generally calls for the team

to accept lower-quality shots than they would in the absence of

turnovers, since the team must now factor in the possibility that

future attempts will produce turnovers rather than random-quality

shot opportunities.

4 Shooting rates of optimal shooters
The preceding subsections give the optimal shot quality cutoff as a

function of the number of shots remaining. In this sense, the results

presented above are useful for a team trying to answer the question

‘‘when should we take a shot?’’. However, these results do not directly

provide a way of answering the question ‘‘is the team shooting

optimally?’’. In other words, it is not immediately obvious how the

shooter’s sequence should manifest itself in shooting patterns during

an actual game, where shot opportunities arise continuously in time.

When analyzing the shooting of a team based on collected (play-

by-play) data, it is often instructive to look at the team’s ‘‘shooting

rate’’ R(t). The shooting rate (also sometimes called the ‘‘hazard

rate’’ [11]) is defined so that R(t)dt is the probability that a team with

the ball at time t will shoot the ball during the infinitesimal interval of

time (t{dt,t). Here, t is defined as the time remaining on the shot

clock, so that t decreases as the possession goes on. In this subsection

I calculate the optimum shooting rate R(t) implied by the results for

f (n). This calculation provides a means whereby one can evaluate

how much a team’s shooting pattern differs from the optimal one.

In order to calculate optimal shooting rate as a function of time,

one should assume something about how frequently shot opportu-

nities arise. In this subsection I make the simplest natural

assumption, namely that shot opportunities arise randomly with

some uniform rate 1=t. For example, t~4 seconds would imply

that on average a team gets six shot opportunities during a 24-

second shot clock. The assumption of a uniform rate of shot

opportunities is, in fact, unlikely to describe real data over the entire

range of the shot clock, as discussed below in the Discussion section.

Nonetheless, it allows one to derive analytically a number of

important results. Possible generalizations from this assumption are

discussed further at the end of this article in the Discussion section.

I also make the assumption that there is some uniform turnover

rate 1=tt. This assumption can easily be validated by examining

turnover rates from NBA games, as discussed below in subsection

5.

Under this set of assumptions, one can immediately write down

the probability P(t,n; t) that at a given instant t the team will have

enough time for exactly n additional shot opportunities. Specif-

ically, P(t,n; t) is given by the Poisson distribution:

P(n,t; t)~
t

t


 �ne{t=t

n!
: ð15Þ

The probability pt of a turnover between successive shot

opportunities is given by

pt~

ð?
0

1{e{t’=tt


 �
e{t’=t dt’

t
~

t

ttzt
: ð16Þ

The integrand in Eq. (16) contains the probability that there is at

least one turnover during a time interval t’ multiplied by the

probability that there are no shot attempts during the time t’
multiplied by the probability that a shot attempt arises during

(t’,t’zdt’), and this is integrated over all possible durations t’
between subsequent shot attempts. While the upper integration

limit in Eq. (16) should in principle be replaced by the total shot

clock length t0, for t%t0 this limit can safely be set equal to ?.

In general, for a team deciding at a given time t whether to

shoot, the rate of shooting should depend on the proscribed

optimal rate for when there are exactly n opportunities left,

multiplied by the probability P(n,t; t) that there are in fact n

opportunities left, and summed over all possible n. More

specifically, consider that a team’s optimal probability of taking

a shot when there are exactly n opportunities remaining is given by

½f2{f (n)�=(f2{f1), where f (n) is the shooter’s sequence defined

by Eq. (14). The probability that the team should shoot during the

interval (t{dt,t) is therefore given by

R(t)dt~
dt

t

X?
n~0

P(n,t; t)
f2{f (n)

f2{f1
: ð17Þ

Inserting Eq. (15) gives

R(t)~
X?
n~0

tne{t=t

tnz1n!
: f2{f (n)

f2{f1
: ð18Þ
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Since the sequence f (n) has no analytical solution, there is no

general closed-form expression for R(t).

The expected average efficiency (points/possession) of a team

following the optimal strategy defined by R(t) can be derived as

follows. For a shot taken at time t, the optimal lower cutoff for shot

quality, f (t), is given by f (t)~f2{R(t)t(f2{f1). The correspond-

ing average shot quality �qq(t)~½f2zf (t)�=2 is given by

�qq(t)~f2{
f2{f1

2
R(t)t: ð19Þ

To find the expected number of points per possession, one needs

to know the probability that a shot will be taken during a given

time interval (t{dt,t). This quantity can be written as

S(t; t0)R(t)dt, where S(t; t0) is the probability that the team still

has the ball at time t given that it gained possession at time t0 (the

beginning of the shot clock).

S(t; t0) can be derived by noting that the rate at which the

current possession ends, dS=dt, is given by the sum of the shooting

rate and the turnover rate multiplied by the probability that the

possession has not ended already:

dS

dt
~S(t; t0)

1

tt

zR(t)

� �
: ð20Þ

Rearranging this equation and integrating gives

S(t; t0)~ exp {

ð t0

t

R(t’)z
1

tt

� �
dt’

� �
: ð21Þ

Given this expression for S(t; t0) one can calculate the expected

number of points scored during the possession, F , by integrating

the average shot quality at time t multiplied by the probability of a

shot being taken during (t{dt,t) over all times t. That is,

F~

ð t0

0

�qq(t)S(t; t0)R(t)dt: ð22Þ

While a closed-form analytical expression for F is not possible, Eq.

(22) can easily be evaluated numerically.

As an example to illustrate optimal shooting behavior, consider

a team that encounters shot opportunities with rate 1=t~
1=(4 seconds) and turns the ball over with rate 1=tt~
1=(50 seconds). Using the sequence defined in Eq. (14), one can

evaluate numerically the shooting rate implied by Eq. (18). This

result is plotted as the black, solid line in Fig. 1a, using f2~1 and

f1~0. In Fig. 1a the optimal shooting rate is plotted as the

dimensionless combination R(t)t, which can be thought of as the

probability that a given shot should be taken if the opportunity

arises at time t (as opposed to R(t), which is conditional on an

opportunity presenting itself). For reference, I also plot the case

where there are no turnovers, tt??. One can note that the finite

turnover rate causes the optimal shooting rate to increase

appreciably early in the shot clock. In other words, when there

is a nonzero chance of turning the ball over the team cannot afford

to be as selective with their shots.

The rule for optimal shooting can also be expressed in terms of

the optimal lower cutoff for shot quality, f , as a function of time.

Since R(t)t is the probability that a shot at t should be taken, f can

be expressed simply as f (t)~f2{R(t)t(f2{f1). This optimal

lower cutoff is plotted in Fig. 1b. A team that follows the optimal

shooting strategy shown in Fig. 1 can be expected to score 0:64
points per possession during games with a 24-second shot clock

[see Eq. (22)], a significant enhancement from the value 0:5 that

might be naively expected by taking the average of the shot quality

distribution.

In the limit of large time t (or when there is no shot clock at all),

as considered in subsection 2, the shooting rate R(t) becomes

independent of time and Eq. (18) has the following simple form:

R~
1

t

f2{f

f2{f1
, (no shot clock)

~
1

tt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2f2

f2{f1

tt

t

s
{1

" #
:

ð23Þ

Notice that when turnovers are very rare, tt??, the shooting rate

goes to zero, since the team can afford to be extremely selective

about their shots.

Eq. (23) also implies an intriguingly weak dependence of the

shooting rate on the average time t between shot opportunities.

Figure 1. Optimal shooting rate and shot quality cutoff. a)
Optimal shooting rate for a hypothetical team with f2~1, f1~0, t~4
seconds, and tt~50 seconds, as given by Eq. (18). The shooting rate
R(t) is plotted in the dimensionless form R(t)t, which can be thought of
as the probability that a given shot that has arisen should be taken. The
dashed line shows the hypothetical shooting rate for the team in the
absence of turnovers. b) Optimal lower cutoff for shot quality, f , as a
function of time for the same hypothetical team, both with and without
a finite turnover rate.
doi:10.1371/journal.pone.0030776.g001
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Imagine, for example, two teams, A and B, that both turn the ball

over every 50 seconds of possession and both have shot

distributions characterized by f2~1, f1~0. Suppose, however,

that team A has much faster ball movement, so that team A arrives

at a shot opportunity every 4 seconds while team B arrives at a

shot opportunity only every 8 seconds. One might expect, then,

that in the absence of a shot clock team A should have a shooting

rate that is twice as large as that of team B. Eq. (23), however,

suggests that this is not the case. Rather, team B should shoot on

average every 19 seconds and the twice-faster team A should shoot

every 12 seconds. The net result of this optimal strategy, by Eqs.

(12) and (16), is that team A scores 0:67 points per possession while

team B scores 0:57 points per possession. In other words, team A’s

twice-faster playing style buys them not a twice-higher shooting

rate, but rather an improved ability to be selective about which

shots they take, and therefore an improved offensive efficiency.

5 Comparison to NBA data
Given the results of subsection 4, one can examine the in-game

shooting statistics of basketball teams and evaluate the extent to

which the teams’ shooting patterns correspond to the ideal

optimum strategy. In this subsection I examine data from NBA

games and compare the measured shooting rates and shooting

percentages of the league as a whole to the theoretical optimum

rates derived above. The data are described in more detail in the

Methods section.

The average shooting rate and shot quality (points scored per

shot taken) for NBA players are plotted as the symbols in Fig. 2a

and b, respectively, as a function of time. Open symbols

correspond to shots taken during the first seven seconds of the

shot clock, which generally correspond to ‘‘fast break’’ plays

during which the offense is not well-described by the theoretical

model developed in this article.

In order to compare this data with the theoretical optimum

behavior proscribed by the theories of the subsections 1 – 3, one

should determine the values f1, f2, t, and tt that best describe the

average NBA offense. This last parameter, the average time

between turnovers, can be extracted directly from the data:

tt~100:3 seconds, as illustrated in Fig. 3. The other parameters

can be determined only implicitly, by fitting the observed shooting

rates and percentages to the theoretical model.

For the curves shown in Fig. 2, the following approach is

employed. First, the average shot quality for NBA teams is

determined from the data as a function of time (Fig. 2b). Then, the

theoretical average shot quality ½f2zf (t)�=2 of an optimal-

shooting team is fit to this data in order to determine the best-fit

values of f1, f2, and t, assuming optimal behavior. This procedure

gives f1~0:5, f2~1:1, and t~2:8 seconds. The corresponding fit

line is shown as the solid curve in Fig. 2b. The shooting rate R(t)
implied by these parameter values is then calculated and

compared to the shooting rate measured from NBA games

(Fig. 2a). In this way one can compare whether the measured

shooting rates of NBA teams are consistent with their shooting

percentages, within the assumptions of the theoretical model.

The result, as shown in Fig. 2a, is that NBA teams have a

noticeably lower shooting rate during the early stages of the shot

clock than is proscribed by the theoretical model. With 15 seconds

remaining on the shot clock, for example, the average NBA team

has a probability of only about 4% of shooting the ball during the

next second, whereas the optimal strategy suggests that this

probability should be as high as 12%. This observation is in

qualitative agreement with the findings of Ref. [11], which

concludes that under-shooting is far more common in the NBA

than over-shooting. At small t, the large gap between the observed

and theoretical shooting rates suggests a breakdown of the

theoretical model, as discussed in the following section.

The difference between the actual and optimal shooting rates is

also reflected in the average scoring efficiency F . For NBA teams,

the expected number of points per possession is 0:86, or 0:83 if one

considers only possessions lasting past the first seven seconds of the

shot clock. In contrast, the optimal shooting strategy shown by the

solid lines in Fig. 2 produces 0:91 points/possession for a 24-

second shot clock and 0:88 points/possession for a 17-second clock

[see Eq. (22)], even though it corresponds to the same distribution

of shot quality. This improvement of 0:05 points/possession

translates to roughly 4:5 points per game. According to the

established ‘‘Pythagorean’’ model of a team’s winning percentage

in the NBA [19], such an improvement could be expected to

produce more than 10 additional wins for a team during an 82-

game season.

Discussion

If one operates under the assumption that the theoretical

prediction derived in the previous section indeed provides a

meaningful comparison with NBA data, then one natural way to

interpret the discrepancy between the observed and the theoret-

ically optimal shooting behavior of NBA teams is as a sign of

overconfident behavior. That is, NBA players may be unwilling to

Figure 2. A comparison between the theoretical optimum
shooting strategy and data from NBA games. a) The shooting rate
as a function of shot clock time t. The solid black line corresponds to the
parameters f1~0:5, f2~1:1, t~2:8 s, which are determined by a best fit
to the shot quality data, using the NBA average turnover rate tt~100:3
seconds. The dashed blue line corresponds to the same parameters
except with the turnover rate 1=tt set to zero. b) The average quality
(points per shot) of shots taken as a function of the shot clock time t.
The solid line corresponds to the best fit curve to the filled symbols,
from which the parameters for the solid black line in a) are determined.
doi:10.1371/journal.pone.0030776.g002
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settle for only moderately high-quality shot opportunities early in

the shot clock, believing that even better opportunities will arise

later. Part of the discrepancy can also be explained in terms of

undervaluation of turnover rates. If the players believe, for

example, that their team has essentially no chance of turning the

ball over during the current possession, then they will be more

likely to hold the ball and wait for a later opportunity. This effect is

illustrated by the dashed blue line in Fig. 2a, which shows the

optimal shooting rate for the hypothetical case tt~? (the absence

of turnovers). This line is in significantly better agreement with the

observed shooting rates at large t, which suggests the possibility

that when NBA teams make their shooting decisions early in the

shot clock they do not account for the probability of future

turnovers.

Of course, it is possible that much of the disagreement between

the observed and theoretically optimum shooting rates can be

attributed to an inaccuracy in the theory’s assumption (in

subsection 4 above) that shot opportunities arise randomly in

time. The breakdown of this assumption can be seen in particular

at small t in Fig. 2a, where the shooting rate exceeds 1=t, the

supposed rate at which shot opportunities arise. This discrepancy

can be seen as an indication that NBA teams often run their

offense so as to produce more shot opportunities as the clock winds

down, which results in shooting rates that are weighted more

heavily toward later times. It is also likely that at very small time t
the theory’s assumption of a uniform distribution of shot quality

becomes invalid. Indeed, in these ‘‘buzzer-beating’’ situations the

teams’ shots are often forced, and their quality is likely not chosen

from the same random distribution as for shots much earlier in the

shot clock.

In this sense, the theoretical result of Eq. (18) cannot be

considered a very exact description of the shooting rates of NBA

teams. In order to improve the applicability of the model for real-

game situations, one should account for the possibility of time

dependence in the shot quality distribution (f1 and f2) and the rate

of shot opportunities (1=t). Such considerations are beyond the

scope of the present work.

More generally, a major limitation of the model presented here

is its reliance on somewhat arbitrary assumptions about the

distribution of shot quality q and about the rate at which these shot

opportunities arise. This article has made the simplest set of

assumptions – a uniform, time-independent distribution and a

uniform rate – but real game situations are likely to be more

complex. Unfortunately, the shot quality distribution and rate of

generation of shot opportunities cannot be extracted in a

straightforward way from existing data. Specifically, game data

records only the outcome of shots that were taken, and not the

quality of opportunities that were passed up. In this way there is no

obvious way to gain information about which shot opportunities

present themselves without making some assumptions about the

players’ decision making.

Nonetheless, it should be noted that the model presented here

can easily be extended to accommodate different assumptions

about the the shot quality distribution and the rate of shot

opportunities. Generally speaking, if one assumes that the shot

quality distribution is characterized by some probability density

function h(q), then the recurrence relation of Eq. (22) becomes

f (nz1)~(1{pt)

ð?
f (n)

qh(q)dqzf (n) 1{

ð?
f (n)

h(q)dq

� �� �
, ð24Þ

so that the entire shooter’s sequence can be calculated

recursively. [Inserting the flat distribution h(q)~1=(f2{f1) into

Eq. (24) reproduces Eq. (14).] The corresponding optimal

shooting rate as a function of time can also be calculated by

replacing the Poisson distribution P(n,t; t) in Eq. (18) with some

other distribution that is assumed to describe the rate at which

shot opportunities arise.

Notwithstanding these complications, the model presented in

this article nonetheless provides a useful first approach to

describing theoretically the problem of shot selection in basketball,

and it may be helpful in predicting how optimal strategy should

adapt to changing features of the offense – e.g. an altered pace of

play (t) or an improving/declining team shooting ability (f1 and f2)

or a changing turnover rate (tt). If nothing else, the theory

developed in this article may pave the way for a more complex and

accurate theoretical model in the future. In this way the problem

of shot selection in basketball should be added to the interesting

and growing literature on optimal stopping problems. More

broadly, the question of optimal behavior in sports continues to

provide an interesting, novel, and highly-applicable playground

for mathematics and statistical mechanics.

Figure 3. The probability distribution for the time between successive turnovers for NBA teams. The recorded distribution (thin blue
line) is well described by the theoretical distribution Pt(t)~e{t=tt=tt (thick black dashed line) corresponding to a uniform turnover rate
1=tt~(100:3 s){1 .
doi:10.1371/journal.pone.0030776.g003
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Methods

The data presented in Figs. 3 and 2 is based on recorded play-

by-play data from 4,720 NBA games during the 2006–2007–

2009–2010 seasons. These data are available publicly at http://

www.basketballgeek.com/data/. From these data, shots taken and

points scored are sorted for all possessions based on how much

time remains on the shot clock at the time of the shot. Following

Ref. [11], possessions that occur within the last 24 seconds of a

given quarter or within the last six minutes of a game are

eliminated from the data set, since these are less likely to

correspond to risk-neutral situations. I also exclude from the data

set all shots for which the shot clock time cannot be accurately

inferred. These include shots that immediately follow an offensive

rebound, defensive foul, or timeout.

The data presented in Figs. 2 and 3 correspond to the average

behavior for the NBA as a whole. While a systematic breakdown of

shooting rates by team is outside the scope of this article, I note

briefly that the shooting rate R(t) is essentially invariant between

NBA teams to within statistical noise.
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