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Abstract

Purpose: To investigate the impact of computed tomography (CT) image acquisition

and reconstruction parameters, including slice thickness, pixel size, and dose, on

automatic contouring algorithms.

Methods: Eleven scans from patients with head‐and‐neck cancer were recon-

structed with varying slice thicknesses and pixel sizes. CT dose was varied by adding

noise using low‐dose simulation software. The impact of these imaging parameters

on two in‐house auto‐contouring algorithms, one convolutional neural network

(CNN)‐based and one multiatlas‐based system (MACS) was investigated for 183

reconstructed scans. For each algorithm, auto‐contours for organs‐at‐risk were com-

pared with auto‐contours from scans with 3 mm slice thickness, 0.977 mm pixel

size, and 100% CT dose using Dice similarity coefficient (DSC), Hausdorff distance

(HD), and mean surface distance (MSD).

Results: Increasing the slice thickness from baseline value of 3 mm gave a progres-

sive reduction in DSC and an increase in HD and MSD on average for all structures.

Reducing the CT dose only had a relatively minimal effect on DSC and HD. The rate

of change with respect to dose for both auto‐contouring methods is approximately

0. Changes in pixel size had a small effect on DSC and HD for CNN‐based auto‐con-
touring with differences in DSC being within 0.07. Small structures had larger devia-

tions from the baseline values than large structures for DSC. The relative

differences in HD and MSD between the large and small structures were small.

Conclusions: Auto‐contours can deviate substantially with changes in CT acquisition

and reconstruction parameters, especially slice thickness and pixel size. The CNN

was less sensitive to changes in pixel size, and dose levels than the MACS. The

results contraindicated more restrictive values for the parameters should be used

than a typical imaging protocol for head‐and‐neck.
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1 | INTRODUCTION

The advancement of radiation treatment techniques has allowed pre-

cise delivery of radiation to a target with minimal toxicity to normal

tissue. A crucial step in achieving precise treatment delivery is the

accurate delineation of normal structures. This delineation process is

prone to inter‐ and intraobserver variabilities.1,2 This could con-

tribute substantially to the amount of variation in patient planning

using advanced radiation techniques, such as intensity‐modulated

radiation therapy, which strive for subcentimeter accuracy.3 Further-

more, manual delineation is time‐consuming, and studies have shown

that experts need at least 60 min to manually delineate the targets

and organs‐at‐risk structures for an average patient with head‐and‐
neck cancer.4 Delineation is expected to take longer if disease stage‐
specific modifications are taken into consideration.

There has been much research aimed at reducing the overhead

time and producing more consistent contours.5 There are two main

categories of automatic segmentation systems for normal tissues:

atlas‐based and deep learning‐based segmentation. One example of

an atlas‐based tool, the multiatlas contouring system (MACS), has

been clinically used in our institution for several years.6–10 More

recently, deep learning‐based algorithms have been found to outper-

form atlas‐based algorithms in contouring some normal structures

from CT images.5,11–13 In order to take advantage of these advances,

Rhee et al.14 recently developed an auto‐contouring algorithm for

head‐and‐neck normal structures using convolutional neutral net-

works (CNNs). Both of these tools (MACS and CNN‐based algo-

rithms) are expected to be deployed as part of the radiation planning

assistant (RPA) system. The RPA system aims to automate the entire

treatment planning process including contouring, planning, and dose

calculation with minimal user interactions.15 In this framework, these

tools will likely be used with CT images from a wide range of CT

scanners, using a wide range of imaging protocols.

It is known that CT image quality affects the performance of

expert contour delineations.16,17 Thus, the performance of auto‐con-
tour algorithms could also depend on the quality of CT images. How-

ever, to the best of our knowledge, the impact of CT image quality on

auto‐contouring algorithm performance has not been assessed. The

CT acquisition and reconstruction parameters investigated are slice

thickness, pixel size, and CT dose. Previous studies from Ger et al. and

Berthelet et al. have shown quantitative image analyses such as radio-

mics analysis and segmentation are impacted by different choice in

slice thickness, pixel size, and CT dose.18,19 The purpose of this study

is to provide reasonable expectations of the deviations in the contours

produced by two independent auto‐contouring systems providing

specific CT acquisition and reconstruction parameters.

2 | MATERIALS AND METHODS

2.A | Image datasets

This study was performed retrospectively and did not directly

involve and pose risk to study participants. The study was compliant

with health insurance portability and accountability act and approved

by institutional review board under protocol #PA6‐0379. This study

used CT sinograms from 11 patients with head‐and‐neck cancer. Six

of the CT sinograms were acquired at a Philips Brilliance Big Bore

scanner with 16 × 0.75 mm slice collimation and reconstructed at

the console using a range of reconstruction settings (Philips Health-

care, Netherlands). The other five patient scans were acquired at a

Siemens Somatom Definition Flash scanner with 64 × 0.6 mm slice

collimation and reconstructed using proprietary software ReconCT

(v14.1.0.30238, Siemens Healthineers, Forchheim, Germany). Sie-

mens scans with lower doses were simulated by adding noise in the

raw projection domain prior to reconstruction using ReconCT. The

methodology has been previously described and validated.20–22

Computed tomography scans were reconstructed from the sino-

grams with varying slice thicknesses, pixel sizes, and simulated mAs

ranged from 10% to 100% of the original dose level. The slice spacing

for all the reconstructed scans had the same value as the slice thick-

ness. The number of patients and CT scans used for each parameter

evaluation is summarized in Table 1 (both sets of data). The number of

CT scans was not a multiple of the number of patients, because differ-

ent options were offered by console and ReconCT at the time of

reconstruction for each parameter. The range of CTDIvol 16 cm for the

scans was 48.1 to 61.1 mGy and tube voltage was 120 kVp. In our

institution, protocols are designed such that difference from our scan-

ners is minimized for radiological purposes. The standard clinical soft

tissue kernel was applied during reconstruction, specifically, Siemens

used SAFIRE‐Standard iterative reconstruction with J30S kernel and

strength 3, and Philips used B or UB. UB is a slightly sharper kernel

than B but it would not have a significant effect on soft tissues. Our

experience, based on creating, testing and using auto‐contouring mod-

els with images from multiple scanners is that differences in scanners

do not noticeably affect the contouring.

2.B | Automated contouring

Normal tissues on all images were contoured using two approaches,

MACS and a CNN‐based auto‐contouring tool. MACS used a set of

12 CT scans as atlases with structures carefully delineated and

TAB L E 1 The number of patients, CT scans and the levels
evaluated for each parameter. Due to the availability of levels
offered by console and ReconCT, the number of CT scans is not a
multiple of the number of patients.

Number of

Levels evaluated for each parameterPatients
CT
scans

Slice

thickness

11 105 0.6, 0.75, 0.9, 1, 1.5, 1.8, 2, 3, 4, 5,

6, 7, 8, 10 mm

Pixel size 10 53 0.49, 0.59, 0.68, 0.78, 0.88, 0.98,

1.07, 1.17 mm

Dose 5 25 10%, 25%, 50%, 75%, 100% of

original dose

Total 183
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independently validated by physicians.6 All of the atlases used typical

clinical protocols for head and neck with either 2.5 or 3 mm slice

thickness, 0.98 to 1.17 mm pixel spacing, and 22.8 to 59.4 mGy

CTDIvol 16 cm. These values were within the investigated range for

each parameter evaluated in this study. For MACS, CT is registered

with each atlas using a dual‐force “Demons” deformable registration

algorithm proposed.23 The resulting deformation vector fields are

then used to deform the contours from each atlas to the new CT

scan, creating multiple segmentations of one structure. These multi-

ple segmentations, corresponding to each atlas, are then fused to

produce the final contours on the input CT scan using a modified

STAPLE algorithm.7

The CNN‐based tool was trained, validated, and tested on CT

scans from 3495 patients with head‐and‐neck cancers. For all of the

CT scans used for training the CNN‐based tool, the pixel spacing

ranged from 0.53 to 1.37 mm, the slice thickness ranged from 1 to

3 mm, and CTDIvol 16 cm ranged from 5.8 to 72.0 mGy. All of the

scans used typical clinical protocols for imaging head‐and‐neck and

brain tumors. The CNN‐based tool employs a two‐step process: (a) a

classification model detects the existence of a structure and (b) a

segmentation model delineates the detected structures in each CT

slice. The classification model uses inception‐residual network (Incep-

tion‐ResNet‐v224) architecture and the segmentation model uses

both 3D‐VNet25 and a 2D fully convolutional network (FCN‐8s26)
architecture depending on the structure size.14

Both the MACS and the CNN‐based tool resampled all the input

data into the same voxel size of 0.98 mm × 0.98 mm × 2.5 mm with

bilinear interpolation before prediction. Sixteen structures were

auto‐contoured on the available images using both the MACS

and the CNN‐based tools. These auto‐contours including large

structures — the brain, brainstem, spinal cord, left and right eyes,

mandible, and left and right parotid glands, and small structures —
the left and right cochlea, esophagus, optic chiasm, left and right

lenses, left and right optic nerves. Structures with predicted average

volumes larger than 9 cm3 were classified as large.

2.C | Contour evaluation

The normal tissue contours produced with CT images with varying

reconstruction parameters were then compared against the contours

produced when using clinical baseline values (i.e., baseline values

standard in our clinic) with a resampling voxel of 1 mm3. The tool

for contour comparison was validated with virtual phantoms such as

boxes and spheres with known ground‐truth values. The metrics for

comparisons were the Dice similarity coefficient (DSC), maximum

distance Hausdorff distance (HD), and mean surface distance

(MSD).27 Specifically for investigating the effects of slice thickness

variations, auto‐contours from scans with varied slice thickness were

compared with the corresponding auto‐contours from scans with

3 mm slice thickness. The slice thickness of 3 mm is the

F I G . 1 . Comparison of DSC, MSD, and HD for the auto‐contours produced for varying slice thickness and those from a control of slice
thickness of 3 mm. Figure parts (a) and (d) show the average values of all patients and structures. Figure parts (b) and (e) show the average
values of all patients and large structures. Figure parts (c) and (f) show the average values of all patients and small structures. Large structures
included the brain, brainstem, spinal cord, left and right eyes, mandible, and left and right parotid glands, and small structures included the left
and right cochlea, esophagus, optic chiasm, left and right lenses, left and right optic nerves.
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aforementioned baseline value. Similarly for pixel size, baseline value

was 0.977 mm. All of the contours from CT images with added noise

were compared to the contours from the original CT images with a

100% dose level. The baseline values were selected based on most

common clinical values for each parameter used at our institution.

The evaluated ranges were the full range of values provided by the

ReconCT software and the imaging console for the Philips scanner.

Similar values were reported by Kisling et al based on a survey made

to the medical physics community.28

3 | RESULTS

The MACS and CNN‐based tool took approximately 26 and 3 min

per scan, respectively, to produce contours. Figures 1–3 show the

mean DSC, MSD, and HD for auto‐contours produced when varying

parameter values, with the results shown separately for large, small,

and all structures. The figures showed results for scans with parame-

ter values smaller and larger than the baseline values, leaving the

lines disconnected at the baseline values. This was because the con-

tours from scans for baseline values compared to themselves had

DSC of 1 and distance measures of 0 mm. Connecting the lines

through perfect DSC and distance measures would create artificial

peaks in figures, thus the regions were left void.

Table 2 shows the slope of a linear fit for averaged values with

all structures before and after baseline. The corresponding values

were plotted in (a) and (b) subfigures of Figs. 1–3. The baseline val-

ues (perfect DSC and distance measures) were not included in calcu-

lating the slope of the linear fit. Based on the slopes, the deviations

in dose were smallest amongst the three parameters. Overall, the

rates of change for DSC, HD, and MSD were higher for MACS than

those for CNN, except for distance measures from slice thickness

parameter, in which case the slopes were comparable.

4 | DISCUSSION

In this study, we investigated two in‐house algorithms: a CNN‐based
and a MACS‐based auto‐contouring tools. The exact impact of image

resolution on an individual auto‐contouring tool might be subject to

details of implementation. Overall, for the specific implementation in

this study, we have demonstrated that auto‐contours can deviate

with changes in CT acquisition and reconstruction parameters, espe-

cially slice thickness and pixel size. The changes in DSC were more

stable for large structure than small structures.

A deviation from the perfect score (in Figs. 1–3) should be care-

fully interpreted. In this study, the ground truth was the results as

auto‐contoured on the CT images with standard image parameters

(pixel size, etc.). For example, we may expect to see an improvement

in contouring quality as slice thickness is reduced, but this may not

be realized in the current study because of the use of the 3 mm slice

data as the baseline, which may not be perfect. The values

F I G . 2 . Comparison of DSC, MSD, and HD for the auto‐contours produced for varying pixel thickness and those from a control of pixel
thickness 0.977 mm. Figure parts (a) and (d) show the average values of all patients and structures. Figure parts (b) and (e) show the average
values of all patients and large structures. Figure parts (c) and (f) show the average values of all patients and small structures. Large structures
included the brain, brainstem, spinal cord, left and right eyes, mandible, and left and right parotid glands, and small structures included the left
and right cochlea, esophagus, optic chiasm, left and right lenses, left and right optic nerves.
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presented in this study demonstrated the amount of deviation from

the results of baseline, and were not necessarily indicative of

improvements or deteriorations in performance compared with the

results of baseline. In future work digital phantoms with a known

ground truth could be developed and evaluated.

Both MACS and CNN resampled input data to a fixed resolution.

For MACS, input data would be resampled to the resolution of

atlases. Therefore, input data with much finer resolution did not

have pronounced advantage as the information would be lost in the

resampling step. However, even with the same resolution, the

resulting data slices may shift due to different implementations of

where the image origin should be. This might contribute in part to

the deviation for metrics in the figures due to image resolution.

Additionally, there were uncertainties associated with the con-

tour comparison tool. These uncertainties mainly stem from the vol-

ume calculation especially at the beginning and tailing slices of the

structures. Therefore, by setting the reference voxel to a standard of

1 mm3, the impact of uncertainties from the comparison tool to the

final results was minimal.

Specifically, for slice thickness, large structures could achieve

DSC values of more than 80%. Overall, small structures had lower

DSC values compared to large structures. Additionally, the trend

was amplified in slice thicknesses larger than 3 mm compared to

smaller. For head‐and‐neck CT simulations, slice thickness is recom-

mended to be no more than 3 mm.29,30 A reference protocol for

head CT from manufacturer can have slice thickness range from

0.5 to 6 mm depending on the machine specifications.31 Both

results for DSC and distance measures indicated larger deviations

when the slice thickness is larger than 6 mm. The variation for the

slice thickness smaller than 3 mm (0.6–3 mm) may be explained in

part by image resampling within the auto‐contouring algorithm. The

slight increase in trend as the slice thickness decreases from 3 to

0.6 mm could result from missing slices in the most cranial and

caudate parts of the structures. The variation for values smaller

than 3 mm is more stable than the upward trend for values larger

than 3 mm. Overall, the results did not indicate a more restrictive

TAB L E 2 The slope of a linear fit for averaged values for all
structures smaller and larger than baseline. There were only two
data points for calculating the slope for pixel size larger than
baseline.

Pixel size Slice thickness
Dose

Smaller
than
baseline

Larger
than
baseline

Smaller
than
baseline

Larger
than
baseline

Smaller
than
baseline

MSD MACS −1.301 0.046 −0.026 0.020 −0.001

CNN −0.056 −0.124 −0.014 0.022 0.000

HD MACS −2.396 0.161 −0.110 0.059 −0.002

CNN −0.426 −0.118 −0.116 0.111 −0.002

Dice MACS 0.623 −0.110 0.037 −0.032 0.002

CNN 0.103 0.131 0.031 −0.030 0.000

F I G . 3 . Comparison of DSC, MSD, and HD for the auto‐contours produced for varying dose and those from a control of 100% of original
dose. Figure parts (a) and (d) show the average values of all patients and structures. Figure parts (b) and (e) show the average values of all
patients and large structures. Figure parts (c) and (f) show the average values of all patients and small structures. Large structures included the
brain, brainstem, spinal cord, left and right eyes, mandible, and left and right parotid glands, and small structures included the left and right
cochlea, esophagus, optic chiasm, left and right lenses, left and right optic nerves.
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value for slice thickness to be implemented than what has been

recommended by guidelines.

In regards to pixel size variations, CNN‐based solution produced

more stable results compared to the corresponding values from

MACS. When the pixel size decreases, the images become noisier

and the interpolation in resampling process might be negatively

impacted causing deteriorated predictions. The amplified response of

MACS compared to CNN due to small pixel sizes may be partly

caused by limited range of pixel size in the atlases. Even though all

of the input data would be resampled, no atlases used a pixel size

smaller than 0.98 mm, whereas CNN‐based tool was trained on a

much wider range of pixel sizes (from 0.53 to 1.37 mm). Even with

the same resolution, more variations in the training data might have

contributed to the relatively more robust result from CNN‐based
tool. Further studies with varying standard resampling grid in the

auto‐contouring tools are required to systematically evaluate the

impact of resampling on contour results.

As for changes in dose levels, CNN‐based solution was less sen-

sitive to the change in dose compared to MACS. This may in part

due to the wider range of CTDIvol values in the training dataset for

CNN‐based tool. The decrease in dose affects DSC values of the

small structures more than the large structures, especially for MACS.

In terms of distance measures, both HD and MSD increased as dose

decreases. The HD values from CNN for large structures were larger

than those for the smaller structures. This may be explained by post-

processing in CNN algorithm would only retain the largest predicted

volume if there are more than one volume predicted for one struc-

ture. If there were discontinuities in predictions, postprocessing

would remove smaller volumes, making predicted volumes much

smaller than the other scans for comparison. The details of the post-

processing in algorithms may vary considerably based on the specific

implementations.

For CNN‐based method, small and large structures used different

architectures. For the atlas‐based method, both large and small struc-

tures used the same set of atlases and registration process. It is possi-

ble some of the differences in the evaluation results for CNN‐based
method may be attributed to the segmentation networks used. How-

ever, the results from MACS‐based method follow the same trend and

are amplified compared to the corresponding data from CNN‐based
method. Therefore, it is reasonable to conclude the contribution of dif-

ferent networks to the discrepancies between large and small struc-

tures are minimal. One of the limitations of this study is the only two

specific auto‐contouring algorithms were investigated. These two

algorithms have been implemented clinically in our institution. How-

ever, the specific details of implementation vary between various

auto‐contouring tools. Thus, the results of this study may not be gen-

eralized to other auto‐contouring tools without further investigation.

5 | CONCLUSIONS

We investigated the impact of CT image quality parameters including

slice thickness, pixel size, and dose levels, on auto‐contouring

algorithms. The results showed that CNN‐based tool was less

impacted by the change of pixel size and dose levels as compared to

MACS. The results do not indicate more restrictive values for the

image resolutions should be used than a typical imaging protocol for

head‐and‐neck. The assessment of the impact of CT image quality

parameters is warranted before commissioning auto‐contouring algo-

rithms for clinical uses.
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