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Numerous neuroimaging studies demonstrated that the auditory cortex tracks ongoing
speech and that, in multi-speaker environments, tracking of the attended speaker is
enhanced compared to the other irrelevant speakers. In contrast to speech, multi-
instrument music can be appreciated by attending not only on its individual entities
(i.e., segregation) but also on multiple instruments simultaneously (i.e., integration).
We investigated the neural correlates of these two modes of music listening using
electroencephalography (EEG) and sound envelope tracking. To this end, we presented
uniquely composed music pieces played by two instruments, a bassoon and a cello,
in combination with a previously validated music auditory scene analysis behavioral
paradigm (Disbergen et al., 2018). Similar to results obtained through selective listening
tasks for speech, relevant instruments could be reconstructed better than irrelevant ones
during the segregation task. A delay-specific analysis showed higher reconstruction
for the relevant instrument during a middle-latency window for both the bassoon and
cello and during a late window for the bassoon. During the integration task, we did
not observe significant attentional modulation when reconstructing the overall music
envelope. Subsequent analyses indicated that this null result might be due to the
heterogeneous strategies listeners employ during the integration task. Overall, our
results suggest that subsequent to a common processing stage, top-down modulations
consistently enhance the relevant instrument’s representation during an instrument
segregation task, whereas such an enhancement is not observed during an instrument
integration task. These findings extend previous results from speech tracking to
the tracking of multi-instrument music and, furthermore, inform current theories on
polyphonic music perception.

Keywords: polyphonic music, auditory scene analysis, auditory stream segregation, envelope tracking, EEG,
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INTRODUCTION

Listening to a sound of interest in an environment with multiple
competing sounds represents a common though challenging
task that the auditory system solves seemingly without effort.
When this sound of interest is music, our auditory system
segregates it further into its individual components (or streams)
which represent, for example, multiple simultaneously playing
instruments. The perceptual mechanisms for analyzing and
resolving auditory (and musical) scenes have been described
in a comprehensive theoretical framework by Bregman (1990).
Research inspired by Bregman’s theory has detailed the
conditions under which acoustical scene elements are segregated
or integrated, the processes of which are driven by physical
differences between sounds (i.e., bottom-up) as well as by
top-down mechanisms, among which is the listener’s focus of
attention (Bregman, 1990; Brochard et al., 1999; Cusack et al.,
2004; Carlyon and Cusack, 2005; Besle et al., 2011; Lakatos et al.,
2013; Riecke et al., 2016). Here, we focus on the contributions of
top-down attentive processes to auditory scene analysis (ASA) in
the context of multi-instrument music listening (e.g., McAdams
and Bregman, 1979; Bregman, 1990; Bey and McAdams, 2003).

Most studies investigating ASA mechanisms have employed
simple auditory scenes such as pure tones in noise or alternating
tone sequences (Bregman, 1990, 2015; Ciocca, 2008; Alain and
Bernstein, 2015). Since the auditory system has been optimized
to process sounds that are relevant for behavior, naturalistic
auditory scenes with ecologically valid stimuli are valuable
to gain a better understanding of ASA (for a review see,
Theunissen and Elie, 2014). To date, most research on ASA with
naturalistic stimuli has focused on language and employed multi-
speaker environments in combination with selective attention
tasks. Several studies used these paradigms in conjunction
with magnetoencephalography (MEG), electroencephalography
(EEG), or electrocorticography (ECoG) and identified effects of
selective attention using sound envelope reconstruction methods
(referred to as tracking; e.g., Nourski et al., 2009; Kerlin et al.,
2010; Ding and Simon, 2012b; Kubanek et al., 2013; Crosse
et al., 2015; Dijkstra et al., 2015; O’Sullivan et al., 2015). This
research showed that – for scenes containing two simultaneous
speakers – attended speech could be better reconstructed as
compared to unattended speech (Ding and Simon, 2012a,b;
Mirkovic et al., 2015) at delays of approximately 100 ms or
more (Power et al., 2012; O’Sullivan et al., 2015; Hausfeld
et al., 2018). These results suggest an attention-mediated biasing
mechanism, which enhances the neural representation of the
relevant speech stream, following an initial acoustically driven
analysis of the sound mixture.

This investigation of multi-speaker scenes has provided
insights into the processing of speech. A generalization of
these mechanisms to auditory scenes including sounds other
than speech, however, is not straight-forward and requires
further investigations (e.g., Alho et al., 2014). We argue that
music, especially when containing multiple instruments (i.e.,
polyphonic), is very well suited for the investigation of ASA in
naturalistic and complex listening scenarios. This type of music
contains rich but acoustically well-controlled sound mixtures

with a continuously varying degree of spectral and temporal
overlap. Furthermore, multi-instrument music allows for the
study of both the typical segregation aspect of ASA and the less
investigated integration condition.

Using EEG, previous research demonstrated, in musically
experienced participants, that there is a high correlation between
the evoked response potentials (ERPs) and the envelopes of 3-s
musical stimuli, peaking at 100 ms after sound-onset (Schaefer
et al., 2011). They proposed that these correlations are mostly
representative of bottom-up processing and potentially occur
outside the focus of attention. Treder et al. (2014) reported
similar effects, even though during later delays around 200 ms
post-stimulus onset. They compared ERP responses for attended
and unattended instruments within multi-instrument music that
contained standard or deviant structures within the individual
instruments. Their results suggest that higher-level cortical
processing influenced the ongoing sound representations,
specifically of the to-be-attended instrument. Taken together,
these studies indicate that music envelopes are represented in the
EEG signal and are, similarly to speech, modulated by attention
during middle to late time-windows. These studies should be
interpreted with caution since investigations of music stream
representation and attentive modulation have mostly focused
on expert musicians, who typically display modified listening
behavior as compared to non-musicians (Coffey et al., 2017; e.g.,
Puschmann et al., 2018). Very few studies have investigated the
processes involved in auditory stream integration, and even less
have used music stimuli (Sussman, 2005; Uhlig et al., 2013; Ragert
et al., 2014; Disbergen et al., 2018).

A functional magnetic resonances imaging (fMRI) study
employing a music ASA paradigm (Disbergen, 2020, chapter 3)
demonstrated that segregating or integrating music instrument
resulted in differential cortical activity patterns in a large frontal-
temporal network of sound-responding cortical regions. This
network included several regions early in the auditory processing
hierarchy, such as Heschl’s gyrus (HG). Even though fMRI is
well suited to localize the effects of attention, it is less well
able to determine the time-course and order of effects. For
example, results in HG could have originated from both an
early modulation of the initial bottom-up driven sound analysis
as well as later top-down driven mechanisms that influence
sustained responses in HG through feedback connections. In
this study, we investigated these attention effects with a high
temporal resolution to identify the temporal development of
these attentive effects. To this end, we employed the previously
validated psychophysical paradigm (Disbergen et al., 2018) in
combination with an EEG-based envelope-based neural tracking
method (O’Sullivan et al., 2015; Crosse et al., 2016). Non-
musicians performed listening tasks which required them to
segregate or integrate auditory streams formed by custom-
composed polyphonic music pieces, attending either a single
instrument or integrating across both melodies, respectively.

During the segregation condition, we expected higher tracking
accuracy when an instrument was attended to as opposed to
unattended. Effects were predicted at delays beyond 100 ms due
to earlier time-windows mostly representing initial bottom-up
mechanisms, driving the stimulus processing based on acoustical
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features. In general, early windows are not expected to be
strongly biased by attentive mechanism, albeit modulations may
already take place (Poghosyan and Ioannides, 2008). Integration
of instruments was hypothesized to differ from segregation
mostly regarding its timing, since integration can typically
be understood as a cognitively higher-level task as compared
to segregation, hence potential differences are expected to
emerge during later delay-windows for instrument integration as
compared to segregation.

MATERIALS AND METHODS

Participants
Nineteen adult volunteers (10 women; age 23.9 ± 3.3 years,
mean ± standard deviation) with self-reported normal motor
and vision abilities participated in this study. All participants
displayed normal hearing thresholds (<25 decibels Hearing
Level), as measured by pure-tone audiometry in both ears at
frequencies of 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, and 6.0 kHz.
None of the participants spoke a tonal language and all had
less than 2 years of (formal) musical training on a lifetime
basis with instruments which were not included in this study,
i.e., bassoon or cello, as assessed via the Montreal Music
History Questionnaire (Coffey et al., 2011). Volunteers were
students from Maastricht University who provided written
informed consent prior to the experiment in accordance with the
protocol as approved by the Maastricht University Ethics Review
Committee Psychology and Neuroscience (#167_09_05_2016).
Four participants were excluded from the EEG analysis due to low
behavioral performance metrics in one or multiple conditions,
hence subsequent analyses were performed on 15 participants
(Supplementary Table 1). More specifically, accuracy of task
performance were inspected as well as the false alarm (FA) rates
in “no-target” and “opposite voice target” trials (see “Stimuli”
and “Results” sections) to better ensure no response bias between
these trial categories. Such response biases (high FA rates for
“opposite voice targets” in combination with low FA rates for
trials without targets or vice versa) potentially indicate strategies
not relying on instrument segregation and paying attention to
the relevant instrument but attention to temporal features in
either instrument (see Supplementary Table 1). Participants with
accuracy values lower than the lower quartile − interquartile
range (i.e., Q1-IQR) and differences in FA rates higher than
the upper quartile + interquartile range (i.e., Q3+IQR) were
considered as outliers. None of the participants took part in
the previous studies using the same paradigm and stimuli (i.e.,
Disbergen et al., 2018; Disbergen, 2020, chapter 3).

Stimuli
In this experiment, we employed a previously validated
psychophysical paradigm for the study of ASA with multi-
instrument music (Disbergen et al., 2018). An in-depth
discussion of task and training as well as a demonstration of the
paradigm’s validity also in non-musically trained participants can
be found in Disbergen et al. (2018). Twenty custom-composed
polyphonic counterpoint music pieces (28 s duration) consisting

of two instrument voices were synthesized for bassoon (treble
clef) and cello (bass clef) at a tempo of 60 beats per minute.
Melodies were synthesized independently for bassoon and cello
from musical instrument digital interface (MIDI) files, with a
sampling rate of 44.1 kHz and a 16 Bits resolution in Logic
Pro 9 (Apple Inc., Cupertino, CA, United States). Resulting
stimuli were combined post-hoc into polyphonic pieces with
root mean square (RMS) equalization across the full length of
compositions for each instrument (i.e., each instrument had
the same RMS in each composition) and their onsets and
offsets exponentially ramped with a rise-fall time of 100 ms. All
stimulus processing and manipulation aside from synthesizing
was performed with custom-developed MATLAB codes (The
MathWorks Inc., Natick, MA, United States).

We examined the neural modulations of musical instrument
tracking both during the integration versus segregation
conditions as well as within the segregation condition where we
compared attended versus unattended tracking. To achieve these
different listening contexts within a fixed acoustic setting, we
varied the listener’s focus of attention using a temporal detection
task which was implemented through rhythmic modulations
that were incorporated within the polyphonic music (see
Disbergen et al., 2018). Rhythmic modulations in the music
comprised four consecutive triplets with a total duration of 4 s,
each containing three eighth notes played in one single beat
and carefully integrated into the melodic structure (Figure 1).
Patterns of four consecutive triplets were located in the upper
voice melody (i.e., bassoon; Figure 1A, blue notes), lower voice
(i.e., cello; Figure 1A, green notes), across voices (Figure 1A, red
notes), or not present.

If triplets were located across instruments, they started
randomly in bassoon or cello and alternated voices accordingly,
while patterns present in a single voice were only located within
that respective instrument. Triplets were always incorporated
in the second half of the melodies, pseudo-randomly starting
between 14 and 19 s after music onset, resulting in stimuli
which were physically identical up until triplet occurrence.
Rhythmic (i.e., temporal) modulations in the form of triplets were
chosen due to their orthogonality toward pitch-based segregation
mechanisms, facilitating their detection by listeners with little to
no musical training.

Paradigm
Due to the limited musical education of participants, they were
first subjected to a separate training session which took place
between one to 5 days before the main experiment. During
the training session, participants listened to music of slowly
increasing complexity; initiating with scales including individual
triplets and completing with melodies containing triplet patterns
at equal complexity as the actual experiment. During the final
training blocks a performance of 85% accuracy was required
to proceed to the next block with more complex stimuli. The
training session concluded with a pre-test including 24 trials
similar to the ones in the main experiment (i.e., eight trials for
each attention task) and an accuracy of 85% was required for
participants to enter the main experiment; for training details
see Disbergen et al. (2018).
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FIGURE 1 | Experiment design. Different triplet versions for each music composition (A): upper voice (i.e., bassoon; blue notes), lower voice (i.e., cello; green notes),
crossing voices (red notes), no triplets. Trial buildup (B) with 28 s stimulus, 2 s response window, and 1.5 s silence. Trials were presented in attentive blocks of 10
stimuli each and preceded by a visual attention instruction and silence (C).

During the test session including EEG acquisition, listeners
were instructed to complete a forced-choice delayed-response
target detection task within or across instruments, attending the
same instrument(s) during an attention block of 10 consecutive
trials (Figure 1C). Each trial comprised the music stimulus of
28 s, a 2-s response window, and a 1.5-s silence (Figure 1B).
A visual instruction was presented before the beginning of each
attention block, cuing which instrument(s) to attend: bassoon,
cello, or aggregate (i.e., both instruments; Figure 1C). After
the stimulus ended, listeners responded via a button-press
whether the triplet pattern was present in those instrument(s)
they were instructed to attend. Stimuli were presented pseudo-
randomly in sets of three consecutive attention blocks of 10
trials each, covering all three attention conditions. This three-
block scheme was repeated four times, covering all stimuli
under all attention conditions twice, hence resulting in two fully
balanced experiment repetitions. Each attention block of 10 trials
contained 5 target trials and 5 non-target trials in random order.
For the bassoon and cello tasks, blocks included five target trials
with triplets in the task-relevant instrument (i.e., in the upper or
lower voice during the bassoon or cello task, respectively) and five
non-target trials. Of these five non-target trials two or three trials
contained triplets in the task-irrelevant instrument (i.e., in the
lower or upper voice for the bassoon or cello task, respectively)
and two or three trials did not contain triplets. The number
of these two types of non-target trials per block was pseudo-
randomized across blocks and alternated between experiment
repetitions. For the aggregate task, blocks included five trials with
triplets crossing voices (i.e., target) and five trials without triplets
(see also Disbergen, 2020).

EEG Data Acquisition and
Pre-processing
Electroencephalographic data was recorded in an electrical
insulated and sound attenuated chamber from 63 electrodes
using BrainAmp amplifiers (Brain Products, Munich, Germany)
in a modified 10–20% electrode system (EasyCap, montage 11)
and referenced to electrode TP9. The vertical and horizontal
electrooculograms (EOG) were recorded from electrodes placed

below and next to the right eye. During acquisition, the
electrodes’ impedance was kept below 5 k. The EEG signal
was bandpass filtered with an analog filter at cutoffs 0.01 and
200 Hz and digitized at a 500 Hz sampling rate. EEG data pre-
processing was performed using the EEGLAB toolbox (Delorme
and Makeig, 2004) in MATLAB and custom MATLAB codes.
Pre-processing steps included band-pass filtering with a finite
impulse response (FIR) filter at cutoffs 0.5 and 45 Hz, re-
referencing to an average electrode reference, and epoching
from 1 to 28 s relative to the onset of the auditory stimulus.
An independent component analysis (ICA), as implemented in
the EEGLAB runica.m function, was used on the epoched data
for artifact removal. This component estimation was followed
by a manual definition of artifact components containing eye
movements, blinks, muscle activity, and channel noise. EOG and
component statistics were employed to aid artifact identification
in addition to visual inspection of component time courses,
weight topographies and spectra. For each participant, artifact
components were removed (4.7 ± 1.9, group mean ± standard
deviation) and data from remaining components was back-
projected into sensor space. Finally, the pre-processed EEG data
was re-epoched from 2 to 14 s to exclude activity related to both
initial streaming processes and motor responses as well as any
possible modulations caused by the presence of triplets in the
second half of the stimulus.

Analysis
Behavioral Analysis and Sound Envelope Estimation
Behavioral responses were classified as hits, misses, false alarms,
and correct rejections per condition, and, due to possibly
differing number of trials across participants, reported as
percent accuracy. Sound onset envelopes were extracted from
the music stimuli and used in combination with EEG data
to train a sound-envelope model E (i.e., decoder) separately
for bassoon (Eb) and cello (Ec; Figure 2). Sound envelopes
were extracted by determining the absolute Hilbert transform of
each instrument independently and passing the resulting signal
through a low-pass filter with a cutoff of 8 Hz, of which the
derivative was taken and half-wave rectified; see Hausfeld et al.
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FIGURE 2 | Sound envelope tracking method. Envelopes were extracted from each instrument’s waveform via an absolute Hilbert transform, its derivative was
employed to estimate both single-delay and multi-delay envelope models on N-1 training trials. To assess generalization, the estimated envelope model was used to
predict the sound envelope of the single unseen trial and its output correlated with the trial’s actual sound envelope. Multi-delay models provided output in a single
correlation value encompassing the evidence of all delays between 0 and 400 ms, while the single-delay models generated a correlation value for each individual
delay between –200 and 500 ms (10-ms step size).

(2018) for a similar approach. Such processing emphasizes short-
term sound intensity fluctuations, salient in both the ongoing
low-frequency EEG signals as well as in music (Sturm et al., 2015;
Fiedler et al., 2017; Petersen et al., 2017); for brevity, we will
refer to sound onset envelopes as sound envelopes unless further
specification is required.

Sound Envelope Modeling
Similar to previous EEG studies investigating envelope tracking
(Mirkovic et al., 2015; O’Sullivan et al., 2015; Fuglsang et al.,
2017), we adopted a deconvolution approach which fits, for each
trial k, a multi-delay model g using the sound envelope Ek and
EEG data Xk from 63 channels across 41 delays between 0 and
400 ms (i.e., 10 ms step-size). Analyses were performed in Matlab
(The MathWorks Inc., Natick, MA, United States) using the
mTRF toolbox (Crosse et al., 2016) and custom-made scripts.
The convolution kernel gk was estimated by L2-regularized least-
squares regression:

gk =
(

XT
k Xk + λI

)−1
XT

k Ek.

Regularization was performed using the identity matrix I, with
the regularization parameter set to λ = 104 for both tasks and
for all participants; this choice was based on a previous study
by Hausfeld et al. (2018) using the same EEG setup. The EEG
data matrix Xk was constructed by concatenating the responses
of all EEG channels and delays for the presented sound envelope
at each individual time-point t, resulting in gk with dimension
1201 (time points) × 2583 (channels × delays). Independent
test data and sounds were employed to evaluate models on their

generalization capacity to reconstruct/predict the onset envelopes
from unseen bassoon, cello, or aggregate tracks (Êb, Êc, and Êa,
respectively). Model prediction and matches to sound envelopes
from the test data sets were assessed with Pearson’s correlation
coefficient r (Ding and Simon, 2012a; O’Sullivan et al., 2015).
Generalization performance was tested within a leave-one-trial-
out scheme, averaging the N-1 decoders of the training trials and
applying this to the EEG data of the remaining test trial; this
procedure was repeated for all trials and the correlations were
averaged. The decoder gi applied to test trial i was estimated as

gi =
1

N − 1

∑
j6=k

gj

reconstructing the unseen trial’s envelope Êi by convolution

Êi = giXT
i .

Envelope Model Estimation and
Statistical Comparison
Within the segregation conditions, we computed models for
bassoon and cello independently across all respective trials. This
resulted in four different decoders: bassoon in the bassoon task
(Êb

b), cello in the bassoon task (Êb
c ), and vice versa (Êc

b and Êc
c,

respectively). For the aggregate (Êa), we estimated the decoder
based on the envelope of the waveform derived from adding the
waveforms of the two instruments for each of the three tasks (i.e.,
bassoon, cello, and aggregate task).

Statistical comparisons of task or decoder differences for the
multi-delay models were performed by non-parametric Wilcoxon
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signed-rank tests. Effect sizes for this test were defined as reff =
|z| /
√

N, where z is the test statistic (normal approximation)
of the sign-rank test; values of 0.5, 0.3, and 0.1 are considered
as large, medium and small effects, respectively (Fritz et al.,
2012). In order to gain further insight into those EEG delays
which contribute to envelope decoding, we adopted an identical
approach as above, only restricting training and testing to single
delays as opposed to multiple ones. This single-delay approach
similarly employed Xk, the measurements of all channels for
all time points although only at a single delay. In comparison
to the analysis with the multi-delay model that provides a
single value indicating overall tracking performance, an analysis
with many single-delay models results in a tracking profile
which indicates the tracking performance for each individual
delay. In total 71 single delays were tested between −200
and 500 ms; differences between models were assessed by
employing a Wilcoxon signed-rank test and subsequent multiple
comparison correction by a cluster-size based permutation test
(Maris and Oostenveld, 2007). More specifically, we tested for
each delay whether two conditions differed significantly using
Wilcoxon’s sign-rank test (p < 0.05) and then summed the
corresponding z-values of consecutively significant delays to
obtain for each cluster its zsum. These values were then compared
to an empirical null distribution obtained by permuting labels
of conditions for each participant (nperm = 214). For each
permutation, clusters of significant differences were determined
and the maximal zsum values were extracted. This process was
repeated for all permutations, each contributing a single measure
to the distribution of zsum values under chance given the data.
Comparison of true-label values with this distribution, resulted
in a probability estimate corrected for multiple comparison, and
those clusters which passed the p < 0.05 threshold were labeled
as significant. This cluster-based multiple comparison correction
was done separately for each tracking profile.

Empirical chance level performance of the decoding models
was estimated by performing the analysis as discussed, albeit
with phase-scrambled versions of the stimuli (nscramble = 104).
Such an approach keeps the frequency components of the
envelopes constant. Average model performance obtained from
these scrambled envelopes was compared to the non-scrambled
tracking performance. Note that if instrument envelopes were
to be permuted, chance level would be overestimated due to
the preservation of temporal note onsets between trials (cf.
“Stimulus” section, Disbergen et al., 2018).

In order to gain further insight into active mechanisms
during the integrative condition, we fitted the aggregate single-
delay tracking profile (ragg) for each participant from a linear
combination of the individual instrument tracking profiles
obtained during the aggregate task (ra

b and ra
c ) using ordinary

least-squares estimation:

ragg = β0 + βbra
b + βcra

c + ε

where βb, and βc are coefficients of the instrument time courses,
β0 a constant and ε∼ N(0, σ2) the error term.

Channel Contributions
To further disentangle which EEG channels potentially
contributed to the segregation condition’s tracking performance,
we adopted a leave-one-channel-out approach for the single-
delay models. The tracking of sound envelopes was achieved
identically as above, only leaving one channel out for each
iteration. Single-delay decoders for trial k were trained on data
Xc

k (1201 [time points]× 2542 [62 channels× 41 delays]), where
c denotes the index of the left-out channel. Tracking correlations
of the leave-one-channel-out datasets were subtracted from the
performance achieved with the full dataset and visualized as
scalp topographies. A lower tracking performance of the left-out
model, i.e., negative values in the topographies, indicates that the
respective channel possesses information relevant for the model’s
observed sound envelope tracking.

EEG Prediction Analysis
To take co-variation of instrument envelopes into account,
we performed a cross-validated encoding analysis (i.e., EEG
prediction) with models differing in their complexity including
single, pairs or all envelope predictors of the bassoon and cello
instruments to model the single channel EEG signal. Similar
to the reconstruction by multi-delay models, we provide an
interval of potential lags between 0 and 400 ms and perform
the encoding analysis with the mTRF toolbox (Crosse et al.,
2016). Encoding models are trained in a leave-trial out manner
and their performances are tested with the unseen trial similar
to the tracking/decoding analysis. Given the model’s complexity
and following the previous analysis, models were trained with
regularized least-squares regression using grid search to optimize
the regularization parameter λ = 10x where x = {−5, −4, . . ., 0,
1, . . ., 5}.

RESULTS

Based on their low accuracy (i.e., [hits + correct
rejections]/#trials) and high differences in FA rates during
selection tasks, we removed four participants (Figure 3, red
crosses) from further analysis (note that re-analyzing EEG data
did not change findings qualitatively). Overall, participants
completed the experiment at high accuracy for all attention
tasks: bassoon (0.875 [0.138], median [interquartile range]), cello
(0.925 [0.131]) and aggregate (0.900 [0.138]; Supplementary
Table 1). We observed differences between tasks for both
accuracy (χ2(2) = 6.83, p = 0.033; Friedman test) and FA rates
(χ2(2) = 10.86, p = 0.004). Post-hoc tests indicated lower accuracy
for triplet detection during the bassoon task versus the cello task
(z = −2.701, pFDR = 0.021; Wilcoxon sign-rank test, multiple
comparison corrected using false discovery rate (Benjamini
and Hochberg, 1995) as well as lower false alarms rates for the
integration versus segregation tasks (aggregate versus bassoon:
z = −2.841, p = 0.014; aggregate versus cello: z = −2.252,
p = 0.037). The higher FA rate could be due to triplets in the
task-irrelevant instrument for segregation tasks. The participant’s
criterion C (computed after loglinear transformation) did not
differ between tasks (χ2(2) = 4.96, p = 0.084, Friedman test)
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FIGURE 3 | Group Behavioral Results. Accuracies of triplet detection across
all tasks (blue boxes) and FA differences between trials with triplets in the
other instrument and trials without triplets (black boxes) for the bassoon and
cello task for all participants (box = 25th percentile–median–75th percentile).
Gray lines denote performances of single participants, red crosses indicate
participants excluded from further analysis.

indicating a similar response behavior across tasks. Furthermore,
for segregation tasks, no difference was observed in FA rates
during trials that contained triplets in the unattended instrument
as compared to trials without triplets (z = 1.366, p = 0.172,
Supplementary Table 1).

Sound Envelope Tracking of Music
To examine the neural representation of the attended instrument
in the segregation conditions, we analyzed the data pooled
across both instruments when attended versus unattended.
Correlating the envelope predictions from the multi-delay
models with actual envelopes of test-trials revealed that–during

segregation trials–the attended instruments (rz = 0.107 ± 0.007;
mean ± s.e.m) displayed significantly better tracking versus
unattended instruments (rz = 0.096 ± 0.006; z = 2.329,
p = 0.020, x̄att−unatt = 0.011, reff = 0.60; Wilcoxon signed-rank
test; Figure 4A). Analysis of the same data with single-delay
models indicated significantly higher tracking for the attended
instruments at 150–210 ms (p = 0.002) and at late 320–360 ms
(p = 0.028) as well as 410–450 ms (p = 0.024) delay windows
(cluster-size based permutation test; Figure 4B).

Further investigations were performed into whether attended
versus unattended tracking effects differed per instrument.
Models were estimated separately for each instrument when
attended or unattended. For example, reconstructing the
envelope of the bassoon during the bassoon task versus the
cello task. Overall, multi-delay tracking resulted in significantly
higher envelope tracking for the bassoon compared to the cello
instrument, both when instruments were attended to (z = 3.408,
p < 0.001, reff = 0.88, x̄bassoon−cello = 0.084) or unattended
(z = 3.408, p < 0.001, reff = 0.88, x̄bassoon−cello = 0.079).
For instrument tracking with multi-delay models, significantly
higher tracking was found for the bassoon during the bassoon
task versus the cello task (z = 2.613, p = 0.009, reff = 0.68,
x̄att−unatt = 0.014; Figure 5A, left-hand columns), while the
attention effect for the cello was not significant (z = 1.420,
p = 0.0156, reff = 0.34, x̄att−unatt = 0.008; Figure 5A, right-
hand columns). Tracking profiles from the single-delay analysis
showed that the bassoon was reconstructed better when attended
during two delay windows at 160–220 ms (p = 0.008) and 320–
380 ms (p = 0.012; Figure 5B, left frame). The cello displayed a
higher tracking when attended at the delay window 150–210 ms
(p = 0.003; Figure 5B, center frame), which is comparable to the
first interval for the bassoon. Please note that differences in the
envelopes of bassoon and cello (Supplementary Figure 1) might
have affected these latencies. However, although differences
exist, the decoded envelopes are rather similar between the
instruments in contrast to other features related to timbre.
Further understanding of the topographical contribution of EEG
channels to the tracking of sound envelopes per instrument was
obtained with a leave-one-channel-out approach, demonstrating
that channels at temporal sites contributed most to the tracking
(Figure 5C). Additionally, topographies were very similar when
an instrument was attended versus unattended (Figure 5C).

Contrary to our hypothesis, tracking of the aggregate envelope
was not significantly higher during the aggregate task compared
to the segregation tasks, neither for multi-delay (aggregate
versus bassoon task: z = −1.988, pFWE = 0.094; aggregate
versus cello task: z = −0.114, pFWE = 0.910) nor single-delay
models (Figure 6).

Next, we tested for each participant how the bassoon and
cello envelopes contributed to the tracking of the aggregate.
To this end, we fitted the individual aggregate single-delay
tracking profile with a linear combination of the individual
instrument tracking profiles obtained during the aggregate
task (Supplementary Figure 2). Our results showed that the
aggregate tracking profile was best fitted by higher coefficients
of the tracking profile for the bassoon (βbassoon = 0.695) in
comparison to the cello instrument (βcello = 0.440) across
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FIGURE 4 | Envelope Tracking during the Segregation Tasks. Multi-delay model tracking performance (A) for attended (dark gray) and unattended (light gray)
instruments, showing a significant difference between the two listening conditions. The average empirical chance-level is displayed as superimposed black waves.
Single-delay tracking profiles (B) showing a significant delay-resolved difference between attended (thick black solid line) or unattended (thick black dashed line)
instruments during 150–220 ms, 320–360 ms, and 410–450 ms. The thin purple line shows the difference between attended and unattended tracking; the thin solid
black (attended) and thin dashed black (unattended) lines present the average empirical chance-level.

participants (z = 3.012, p = 0.003, reff = 0.78). This suggests
that tracking profiles for the aggregate resemble more the
profiles of the bassoon than the cello instrument. This might
be due to the tendency of higher similarity of the aggregate
envelope to the bassoon as compared to cello envelopes
(rbassoon/aggregate = 0.719 versus rcello/aggregate = 0.648, t(39) = 1.93,
p = 0.06; across 40 stimuli).

Finally, to take co-variation of instrument envelopes into
account, we performed a cross-validated encoding analysis (i.e.,
EEG prediction) with models differing in their complexity
including single, pairs or all envelope predictors of the bassoon
and cello instruments. Notably, across tasks, the model including
the bassoon and cello envelopes explained EEG data best and
the full models (i.e., adding the aggregate envelope) showed
lower EEG prediction performance (Figures 7A–C). This might
be due to underlying neural processes or the different feature
space in combination with the regularization strategy or both.
In addition, we did not find differences in EEG prediction
between tasks (Figure 7D, p > 0.11, uncorrected, sign-rank
test, two-tailed) but tendencies were similar to decoding results
(e.g., Figures 6A,B) likely reflecting the higher sensitivity of
decoding analyses that pools information across EEG channels.
The distribution of EEG prediction performance across channels
was consistent across tasks and encoding models (Figures 7A–
C, upper left panels) suggesting similar neural processing sites
located in temporal cortex.

DISCUSSION

In this work, we combined a previously validated ASA behavioral
paradigm employing polyphonic music (Disbergen et al., 2018)
with EEG-based sound-envelope tracking methods (see, for a
comparable approach, Hausfeld et al., 2018) to investigate the
contribution of top-down attention mechanisms to ASA. During
EEG recordings, participants were presented with polyphonic
music and asked to detect a triplet pattern located within or across
a bassoon and cello instrument (Figure 1).

Results indicated that the EEG signal tracked the sound
envelope of musical instruments. For the segregation tasks, we
found that the envelopes of the attended instruments were
reconstructed better than those of the unattended ones as has
also been reported for a music-in-noise task similar to the
present one but with more complex distractors (Greenlaw et al.,
2020). These effects were restricted to the delay windows of
150–220 ms, 320–360 ms, and 410–450 ms (Figure 4). Further
comparisons for each individual instrument revealed that for
our multi-delay models, only the envelopes of the bassoon
were reconstructed better when attended to versus unattended
(Figure 5A). Results of the time-resolved (i.e., single-delay)
analyses showed that both bassoon and cello representations
were modulated by the task during a middle-latency window of
160–220 ms for bassoon and 150–210 ms for cello (Figure 5B).
Additionally, the bassoon envelope tracking was modulated by
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FIGURE 5 | Envelope tracking during the segregation tasks per instrument. Multi-delay model tracking performance (A) for attended (dark gray) and unattended
(light gray) instruments. The tracking of bassoon and cello envelopes is displayed at left and right two bars, respectively. Horizontal lines and values above denote
results of significance testing between attended and unattended conditions for the bassoon and an interaction between attended and reconstructed instrument. The
average empirical chance-level is superimposed as black waves. Single-delay tracking profiles (B) for the bassoon envelope (left panel) and cello envelope (right
panel). Significant tracking differences between attended and unattended instruments are indicated by the purple lines. Attention effects for bassoon tracking were
found during the 160–220 ms (I) and 320–380 ms (G) delay windows and for cello tracking only during a 150–210 ms delay window (I). Differences between
attended and unattended tracking are presented as thin pink lines. Thin horizontal lines within the plot indicate the average empirical chance-level. Horizontal lines in
the negative indicate time-points which significantly differed from chance. Topographical representation (C) of tracking differences for the leave-one-electrode out
analysis of both the attended and unattended conditions for each instrument during the significant delay-windows indicated in panel (B).

task during a late-latency window at 320–380 ms (Figure 5B).
While the tracking profile of the bassoon showed overall higher
envelope reconstruction, the shape of the profiles was similar
with two peaks of high reconstruction at ∼80–100 ms and
160–180 ms. We interpret significant reconstruction at negative
delays as reflecting envelope auto-correlations and/or a general
temporal attention effect to facilitate processing of the upcoming
note (thus reflecting the predictability of the music’s temporal
structure). A leave-channel-out analysis indicated the relevance
of each EEG channel for envelope tracking, which indicated that
temporal channels contributed strongest to the envelope tracking
(Figure 5C); topographies were similar for the envelope tracking
of the bassoon and cello both when attended to or unattended.
For the aggregate task, in contrast to our hypothesis, we did
not find any attention effect for aggregate tracking. That is,
for both multi-delay and single-delay models, we did not find
a difference in the tracking of the aggregate envelope between
integration and segregation tasks (Figure 6). An additional EEG

prediction analysis showed that, for all tasks, the best fitting
model among seven model alternatives was one that included
predictors of both the bassoon and cello instrument but not the
aggregate (Figure 7).

Stream Segregation of Instruments and
Speakers
Most previous studies employing an EEG-based tracking of
sound envelopes examined speech segregation in multi-speaker
environments and found that acoustically driven mechanisms
dominate effects at delays below approximately 100 ms. For
example, those examining temporal response functions (e.g.,
Crosse et al., 2015), indicated that initial peaks below 100 ms
were not modulated by attention, whereas they were by
acoustical changes (Ding and Simon, 2012a). In addition,
research examining the processing of multiple unattended
sounds provided evidence that during delays below 100 ms,
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FIGURE 6 | Aggregate tracking during integration and segregation tasks. Multi-delay model tracking performance (A) for the aggregate during the aggregate (gray),
bassoon (blue), and cello (green) tasks, displaying no significant differences between model tracking capacities. The average empirical chance-level is displayed as
superimposed black waves. Single-delay aggregate tracking profiles (B) showing tracking performance for the aggregate (black solid line), bassoon (blue dashed
line), and cello (green dashed line) tasks. Differences between attention to aggregate and the attention to bassoon of tracking are shown by thin light-gray and
dark-gray lines, respectively. Thin horizontal wavy lines within the plot indicate the average empirical chance-level. Horizontal lines at negative tracking values at the
bottom of the graph indicate those time-points which displayed significant tracking performance.

unattended sounds remain segregated based on their acoustics,
while they get merged based on other factors only during later
processing stages (Puvvada and Simon, 2017; Hausfeld et al.,
2018). Consistently, the present study found that modulation
by attention mainly occurred during later stages of auditory
processing. In early processing windows, envelope tracking
performance was high but was not modulated by attention. This
result is in agreement with the aforementioned speech-based ASA
studies and provides a complimentary observation, suggesting
similarities between speech and music regarding the early late
bisection of attentional selection.

At those time-points during which a significant difference
was observed between the attended and unattended envelope
tracking of individual instruments, we did not observe changes
in the importance of EEG-channels to this envelope tracking
when an instrument was attended to or not. The single-delay
tracking profiles, both for general as well as instruments specific
effects, were very similar between the attended and unattended
condition, appearing to be enhanced when sources were attended
to. Taken together, these observations suggest that observed
effects reflect modulations of a very similar cortical network,
which possibly relates to the temporal-frontal network observed
in a previous fMRI study (Disbergen, 2020, chapter 3). Their
results showed that the listener’s attended instrument could be
decoded above chance at the individual subject level from the
activity of frontal-temporal auditory networks, comprising large
sections of the superior and medial temporal gyrus (STG, MTG),
including the HG, planum polare (PP), and planum temporale

(PT), sections of the inferior parietal lobe including the angular
gyrus (AG), as well as varying portions of the medial and inferior
frontal cortex among which the inferior frontal gyrus (IFG).
Based on these observations, the attention modulations detected
in the present study are potentially located in auditory cortex and
arise from signals originating from the medial and inferior frontal
cortical regions.

Observations made here concerning the relatively late
first occurrence of attention effects suggests that there are
contributions of feedback processes at play to the representation
and processing of music streams within a multi-instrument
environment. One possible interpretation of this points toward
a dual-stage contribution of the (early) auditory areas, a
first acoustically (i.e., bottom-up) driven feed-forward analysis
followed by further top-down feedback modulations from
higher-level auditory or frontal areas. Providing sufficient
physical differences between sounds, stimulus segregation would
represent the initial feed-forward driven analysis, after which
attention may interact with these ongoing bottom-up processes
in these areas. Results demonstrated here may support the re-
entrant activity model of stimulus representation, where active
listening modulates feedback interactions between the primary
and non-primary areas, driving adaptive neuronal selection (for
a review see, Gilbert and Sigman, 2007). On a network-scale,
ASA probably involves a task-dependent multi-level analysis of
the stimulus with a dynamic interplay between the bottom-
up and, among others, attentive mechanisms (for a review see,
Sussman, 2017).
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FIGURE 7 | Overview of EEG prediction performance. (A) Encoding models prediction performance for EEG data acquired during the bassoon task. Boxplots show
the average model performance of different encoding models across all 63 channels. Boxes indicate the interquartile range, red lines indicate the median and
whiskers reach to the most extreme data point up to 1.5 interquartile from the lower or upper quartile. Gray lines and dots denote encoding performance for
individual participants. Encoding results are presented as a function of models reflecting the envelope the bassoon, cello or the aggregate or their combination with 2
or 3 predictors. Best models for individual participants are indicated by star symbols. Topographic plots show prediction performance for single channels. Right:
matrices show comparisons of different models. Asterisks and open circles indicate the significant differences for model pairs at pFDR < 0.01 and pFDR < 0.05,
respectively (two-sided, false-discovery-rate adjusted p-values across 21 paired comparisons). a, b, c denote the aggregate, bassoon and cello predictors to identify
different encoding models. Panels (B,C) same as panel (A) but for the cello and aggregate task, respectively. (D) Right: task comparisons of encoding model
prediction averaged across channels indicated as in panels (A–C) for single-predictor models and the two-predictor model with bassoon and cello envelope. Left:
prediction differences for models with the bassoon and cello predictors between tasks for single channels. Neither the average prediction across channels nor the
predictions for single channels were significantly different between any pair of tasks (two-sided, uncorrected).
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Polyphonic Music Perception
Different theories of polyphonic music perception have been
proposed, among which are the divided attention (Gregory, 1990)
and the figure-ground model (Sloboda and Edworthy, 1981).
The former suggests that music listeners truly divide attentional
resources over the different melodic lines, while the latter poses
that undivided attention is focused only on single melodic lines
and polyphonic perception is achieved by rapidly alternating
between melodic streams. A third dominant theory, which may
co-exist with the previous, suggests that listeners perform a true
integration of the melodies leading to merged perception (Bigand
et al., 2000). Prominent bottom-up cues which are employed in
the formation of music streams are (instrument) pitch and timbre
(Bregman and Pinker, 1978; Wessel, 1979; Cusack and Roberts,
2000; Deutsch, 2013; Marozeau et al., 2013; McAdams, 2013).
Musical notes of the same instrument are potentially first grouped
based on combinations of these specific bottom-up cues, followed
by interactions with top-down mechanisms.

The single-delay envelope tracking profile from the aggregate
condition very much resembled that of the bassoon instrument,
suggesting a perceptual dominance for this instrument. From
a music-theoretical perspective, the lower voice, in our case
the cello, tends to be perceptually subordinate (Crawley et al.,
2002), which potentially explains such observations. Even though
we cannot directly investigate how participants performed the
listening tasks, the aggregate tracking results hint at potential
perceptual strategies.

During aggregate tracking we did not find an attention
effect. In a second step, we determined for each participant
the weighting of single instrument tracking profiles from
the aggregate task when fitting their aggregate tracking
profile (Supplementary Figure 2). While few participants
displayed equivalent weighting for each instrument, most
participants showed a stronger bassoon versus cello instrument
weighting. This fits the perceptual dominance explanation of
the aggregate decoding results mentioned above given that a
higher contribution of the upper voice would be required to
reflect the neural processing of the perceptually more dominant
upper voice (i.e., bassoon). However, this observation may also
point at different task strategies employed by the participants for
performing the aggregate task. In addition, the higher similarity
between the aggregate envelopes and bassoon versus cello
envelopes might have contributed to the stronger weighting of
the upper voice. Thus, it remains unclear whether the participants
focused more on the bassoon but also, in an alternating or
integrative manner, the cello instrument. Similar paradigms and
stimuli controlling for other acoustic features like loudness or
timbre could shed more light on cortical processes during multi-
instrument music listening.

Limitations and Considerations
No behavioral differences were observed between segregation
and integration tasks, neither here, during fMRI (Disbergen,
2020 chapter 3), or in a psychoacoustical study (Disbergen
et al., 2018). This might, however, be related to an insensitivity
and/or ceiling effect of the performance metric; please see

Disbergen et al. (2018) for a more elaborate discussion on this
as well as other task-related considerations. While most results
are derived from an EEG tracking analysis (i.e., decoding or
backward modeling), we performed an EEG prediction analysis
(i.e., encoding or forward modeling) to account for co-variation
between instrument predictors. However, encoding analyses do
not account for co-variation between EEG channels. Methods
like canonical correlation analysis canonical correlation analysis
or Regularized Reduced Rank Regression (de Cheveigné et al.,
2018; Svanera et al., 2019) that take correlations both at the
predictor/feature and channel level into account could provide
further insights. Across EEG analyses, we found less tracking
performance for models representing envelopes of the lower
music voice (i.e., cello), when compared to the upper music voice
(i.e., bassoon). Such differences may be related to a general upper-
voice dominance effect in the perception of polyphonic music,
caused by, for example, its higher pitch (salience) or general
loudness effects (Palmer and Holleran, 1994; Fujioka et al., 2005).
Perceptually, there may be a continuous loudness difference
between voices due to our equalization method based on RMS,
as opposed to perceptual matching. In addition, our analysis
focused on rapid sound envelope fluctuations which are more
pronounced for the bassoon as its envelope slopes are typically
steeper than those of cello due to its faster attack and decay times.
Even though such factors may contribute to tracking capacity
differences between instruments, they do not impact the observed
attention effects since these represent task-modulations on the
model tracking performance of the same instrument.

In the present study, no attention effect was found for
the tracking of the aggregate envelope. Detection of such an
effect might be impeded by the specific task performed during
the aggregate condition. Assuming that the same neuronal
populations represent both instruments during segregation
as well as the integration tasks, the difference between
segregation and integration tasks may result only in very minor
neural differences. During the integration task, neurons could,
for example, pool attentional resources more equally across
those instrument-specific neuronal populations, which during
segregation conditions are up- and/or down-regulated. This may
result in small changes which are difficult to detect with EEG in
combination with our analysis method. We did observe a within-
instrument attention effect, showing that the method is sensitive
to attentional changes per se, albeit the differences between
attending and ignoring sound sources are expected to be larger.

Because the listening tasks did not require continuous
attention allocation toward the required instrument, participants
may not have paid attention to the instructed instrument(s)
during the full stimulus duration. Alternatively, they could
have been rapidly alternating attention between the different
instruments, especially in the integration task, supported by
the observation that for most participants best-fitting encoding
models included bassoon and cello predictors but not the
aggregate predictor (Figure 7). Based on previous experiments
employing this paradigm, we believe that the capacity to detect
triplets both within and across voices indicates that participants
were capable of segregating and integrating the instruments.
Triplet detectability under both conditions provides evidence
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that they managed to segregate the instruments into their
individual streams. In case segregation would not have taken
place, they would not have been able to respond correctly
whether triplets were present within individual instruments
or not. Without segregation, instruments would only differ
concerning their tone on and offsets (i.e., rhythmic cues), making
it impossible to assign triplets to a single voice. In general,
with this paradigm we aimed at investigating which neural
mechanisms permit listeners to perceive segregated or integrated
melodic voices even though the acoustical signal arriving in their
ear consists of the same identical mixed waveform under all
conditions (see also Disbergen et al., 2018).

CONCLUSION

Employing an envelope tracking method for EEG data, we
showed that within a music ASA paradigm the attended
music instruments can be significantly better reconstructed
than the unattended ones. Attention effects were found during
delays indicative of top-down driven modulations onto the
ongoing stimulus representations. Effects were shown both
when testing a generalized attention effect across instruments
as well as for all the individual instruments. No attention effect
was found for aggregate tracking, even though two distinct
subgroups of participants emerged when fitting the aggregate
single-delay tracking profile by a linear combination of the
instrument tracking profiles. Our results extend the attentive
modulation of speech envelopes in ASA into the domain of
music stimuli. Furthermore, these findings suggest that similar
effects previously observed with fMRI are potentially driven by
top-down modulations, possibly modulating the later processing
in (early) auditory cortical areas. Further research with MEG
or ECoG promises sufficient localization of neural effects while
preserving the temporal precision needed to shed further light
onto the underlying neuronal processes of those effects which
were observed both here with EEG and, previously, with fMRI.

DATA AVAILABILITY STATEMENT

The data supporting the conclusions of this article are available at
DataVerseNL (https://doi.org/10.34894/9ITCNN).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Review Committee Psychology and
Neuroscience (#167_09_05_2016), Faculty of Psychology and
Neuroscience, Maastricht University. The participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

LH, ND, and RZ contributed to the conception and design of the
study. ND, RZ, EF, and GV provided the stimuli and learning

paradigm. LH performed the data acquisition and processing.
LH and ND performed the statistical analyses and wrote the first
draft of the manuscript. LH, ND, GV, RZ, and EF contributed to
manuscript revision. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by The Dutch Research Council
(NWO) Veni grant (451-17-033 to LH), NWO Research Talent
grant (406-12-126 to ND and EF), NWO Vici grant (453-12-002
to EF), Maastricht University, operating funds to RZ from the
Canadian Institutes for Health Research, and the Dutch Province
of Limburg (EF).

ACKNOWLEDGMENTS

We would like to thank Shalina Görg for help with data
acquisition and Scott Rubin for composing the music.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2021.
635937/full#supplementary-material

Supplementary Figure 1 | Example stimuli and decoding predictors. (A) Isolated
quarter and eighth notes typical of the note range used in the compositions
(bassoon A4, cello E3); notes are synthesized with the same settings as the
compositions. Dotted and solid lines show the envelope and its rectified derivative
used in the analyses, background light-colored areas denote the sounds’
waveforms for bassoon (blue) and green (cello). Black lines denote the time
interval that a note was “on” according to the midi information. (B) 10-s example
waveforms (light colored area) and their envelope derivative of bassoon and cello.
(C) Lines denote the autocorrelation of bassoon, cello and the aggregate
predictors (i.e., rectified envelope derivatives) extracted from the waveforms.
These reflect the computation of the envelope derivative, which is slowly changing
introducing a high correlation between neighboring samples (low-pass filter) for all
waveforms. In addition, a high autocorrelation at ±0.5 and ±1 s is observed,
which is due to the design of the stimuli (duration/onsets of eighth and quarter
notes at 60 bpm).

Supplementary Figure 2 | Aggregate tracking results. Fitting the single-delay
aggregate tracking profile (a) during the aggregate task from a linear combination
of the bassoon and cello instrument tracking profile during this task. Symbols
denote the beta coefficients of the linear fit for the bassoon (x-axis) and cello
instrument (y-axis) for each participant. Applying a criterion (bassoon-cello
coefficient > 0.01) displays that the statistically higher bassoon versus cello
instrument weighting across participants (see text) can be found in most
individuals (G2, squares, N = 10).

Supplementary Table 1 | Overview behavioral results during testing session. This
table shows the participants’ performances for both the integration and
segregation tasks (i.e., aggregate task and bassoon/cello tasks, respectively). In
addition to accuracy, false alarm (FA) rates and their absolute differences are
presented (“FA difference”). Both accuracy and FA differences were used to
identify outliers (see section “Participants” and Figure 3). The latter were used for
potential response biases indicative of undesired strategies during task
performance. Black and gray fonts denote included and excluded participants,
respectively. Red font indicates values important for exclusion decision. “AVG 19”
and “AVG 15” indicate average performance values with all participants and five
participants excluded, respectively.

Frontiers in Neuroscience | www.frontiersin.org 13 September 2021 | Volume 15 | Article 635937

https://doi.org/10.34894/9ITCNN
https://www.frontiersin.org/articles/10.3389/fnins.2021.635937/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.635937/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-635937 September 22, 2021 Time: 13:45 # 14

Hausfeld et al. EEG-Tracking Polyphonic Music Listening

REFERENCES
Alain, C., and Bernstein, L. J. (2015). Auditory scene analysis: tales from cognitive

neurosciences. Music Percept. Interdiscip. J. 33, 70–82. doi: 10.1525/mp.2015.33.
1.70

Alho, K., Rinne, T., Herron, T. J., and Woods, D. L. (2014). Stimulus-dependent
activations and attention-related modulations in the auditory cortex: a meta-
analysis of fMRI studies. Hear. Res. 307, 29–41. doi: 10.1016/j.heares.2013.08.
001

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57,
289–300. doi: 10.2307/2346101

Besle, J., Schevon, C. A., Mehta, A. D., Lakatos, P., Goodman, R. R., McKhann,
G. M., et al. (2011). Tuning of the human neocortex to the temporal dynamics
of attended events. J. Neurosci. 31, 3176–3185. doi: 10.1523/JNEUROSCI.4518-
10.2011

Bey, C., and McAdams, S. (2003). Postrecognition of interleaved melodies as an
indirect measure of auditory stream formation. J. Exp. Psychol. Hum. Percept.
Perform. 29, 267–279. doi: 10.1037/0096-1523.29.2.267

Bigand, E., Foret, S., and McAdams, S. (2000). Divided attention in music. Int. J.
Psychol. 35, 270–278. doi: 10.1080/002075900750047987

Bregman, A. S. (1990). Auditory Scene Analysis. Cambridge, MA: MIT Press, doi:
10.1121/1.408434

Bregman, A. S. (2015). Progress in understanding auditory scene analysis. Music
Percept. Interdiscip. J. 33, 12–19. doi: 10.1525/mp.2015.33.1.12

Bregman, A. S., and Pinker, S. (1978). Auditory streaming and the building
of timbre. Can. J. Psychol.Rev. Can. Psychol. 32, 19–31. doi: 10.1037/h008
1664

Brochard, R., Drake, C., Botte, M. C., and McAdams, S. (1999). Perceptual
organization of complex auditory sequences: effect of number of simultaneous
subsequences and frequency separation. J. Exp. Psychol. Hum. Percept. Perform.
25, 1742–1759. doi: 10.1037//0096-1523.25.6.1742

Carlyon, R. P., and Cusack, R. (2005). “Effects of attention on auditory perceptual
organization,” in Neurobiology of Attention, eds L. Itti, G. Rees, and J. K.
Tsotos (Cambrige, MA: Elsevier), 317–323. doi: 10.1016/B978-012375731-9/
50056-2

Ciocca, V. (2008). The auditory organization of complex sounds. Front. Biosci.
Landmark 13:148–169. doi: 10.2741/2666

Coffey, E. B. J., Mogilever, N. B., and Zatorre, R. J. (2017). Speech-in-noise
perception in musicians: a review. Hear. Res. 352, 49–69. doi: 10.1016/j.heares.
2017.02.006

Coffey, E. B. J., Scala, S., and Zatorre, R. J. (2011). “Montreal music history
questionnaire: a tool for the assessment of music-related experience,” in
Proceedings of the Neurosciences and Music IV Learning and Memory,
(Edinburgh).

Crawley, E. J., Acker-Mills, B. E., Pastore, R. E., and Weil, S. (2002). Change
detection in multi-voice music: The role of musical structure, musical training,
and task demands. J. Exp. Psychol. Hum. Percept. Perform. 28, 367–378. doi:
10.1037//0096-1523.28.2.367

Crosse, M. J., Butler, J. S., and Lalor, E. C. (2015). Congruent visual speech enhances
cortical entrainment to continuous auditory speech in noise-free conditions.
J. Neurosci. 35, 14195–14204. doi: 10.1523/JNEUROSCI.1829-15.2015

Crosse, M. J., Di Liberto, G. M., Bednar, A., and Lalor, E. C. (2016). The multivariate
temporal response function (mTRF) toolbox: A MATLAB Toolbox for relating
neural signals to continuous stimuli. Front. Hum. Neurosci. 10604. doi: 10.3389/
fnhum.2016.00604

Cusack, R., and Roberts, B. (2000). Effects of differences in timbre on sequential
grouping. Percept. Psychophys. 62, 1112–1120.

Cusack, R., Decks, J., Aikman, G., and Carlyon, R. P. (2004). Effects of location,
frequency region, and time course of selective attention on auditory scene
analysis. J. Exp. Psychol. Hum. Percept. Perform. 30, 643–656. doi: 10.1037/0096-
1523.30.4.643

de Cheveigné, A., Wong, D. D. E., Di Liberto, G. M., Hjortkjær, J., Slaney, M.,
and Lalor, E. (2018). Decoding the auditory brain with canonical component
analysis. Neuroimage 172, 206–216. doi: 10.1016/j.neuroimage.2018.01.033

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Deutsch, D. (2013). “Grouping mechanisms in music,” in The Psychology of Music
Third Edition, ed. D. Deutsch (London: Elsevier), 183–248. doi: 10.1016/B978-
0-12-381460-9.00006-7

Dijkstra, K. V., Brunner, P., Gunduz, A., Coon, W., Ritaccio, A. L., Farquhar, J., et al.
(2015). Identifying the attended speaker using electrocorticographic (ECoG)
signals. Brain Comput. Interf. 2, 161–173. doi: 10.1080/2326263X.2015.1063363

Ding, N., and Simon, J. Z. (2012a). Emergence of neural encoding of auditory
objects while listening to competing speakers. Proc. Natl. Acad. Sci. 109, 11854–
11859. doi: 10.1073/pnas.1205381109

Ding, N., and Simon, J. Z. (2012b). Neural coding of continuous speech in
auditory cortex during monaural and dichotic listening. J. Neurophysiol. 107,
78–89.

Disbergen, N. R. (2020). Music to the Brain: Investigating Auditory Scene Analysis
with Polyphonic Music. Enschede: Ipskamp Printing BV, doi: 10.26481/dis.
20200401nd

Disbergen, N. R., Valente, G., Formisano, E., and Zatorre, R. J. (2018). Assessing
top-down and bottom-up contributions to auditory stream segregation and
integration with polyphonic music. Front. Neurosci. 12:70. doi: 10.3389/fnins.
2018.00121

Fiedler, L., Wöstmann, M., Graversen, C., Brandmeyer, A., Lunner, T., and Obleser,
J. (2017). Single-channel in-ear-EEG detects the focus of auditory attention
to concurrent tone streams and mixed speech. J. Neural Eng. 14:036020. doi:
10.1088/1741-2552/aa66dd

Fritz, C. O., Morris, P. E., and Richler, J. J. (2012). Effect size estimates: current
use, calculations, and interpretation. J. Exp. Psychol. General 141, 2–18. doi:
10.1037/a0024338

Fuglsang, S. A., Dau, T., and Hjortkjær, J. (2017). Noise-robust cortical tracking
of attended speech in real-world acoustic scenes. Neuroimage 156, 435–444.
doi: 10.1016/j.neuroimage.2017.04.026

Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., and Pantev, C. (2005). Automatic
encoding of polyphonic melodies in musicians and nonmusicians. J. Cogn.
Neurosci. 17, 1578–1592. doi: 10.1162/089892905774597263

Gilbert, C. D., and Sigman, M. (2007). Brain states: top-down influences in sensory
processing. Neuron 54, 677–696. doi: 10.1016/j.neuron.2007.05.019

Greenlaw, K. M., Puschmann, S., and Coffey, E. B. J. (2020). Decoding of envelope
versus fundamental frequency during complex auditory stream segregation.
Neurobiol. Lang. 1, 268–287.

Gregory, A. H. (1990). Listening to polyphonic music. Psychol. Music 18, 163–170.
doi: 10.1177/0305735690182005

Hausfeld, L., Riecke, L., Valente, G., and Formisano, E. (2018). Cortical tracking of
multiple streams outside the focus of attention in naturalistic auditory scenes.
Neuroimage 181, 617–626. doi: 10.1016/j.neuroimage.2018.07.052

Kerlin, J. R., Shahin, A. J., and Miller, L. M. (2010). Attentional gain control of
ongoing cortical speech representations in a “cocktail party”. J. Neurosci. 30,
620–628. doi: 10.1523/JNEUROSCI.3631-09.2010

Kubanek, J., Brunner, P., Gunduz, A., Poeppel, D., and Schalk, G. (2013). The
Tracking of Speech Envelope in the Human Cortex. PLoS One 8:e53398. doi:
10.1371/journal.pone.0053398

Lakatos, P., Musacchia, G., O’Connel, M. N., Falchier, A. Y., Javitt, D. C., and
Schroeder, C. E. (2013). The spectrotemporal filter mechanism of auditory
selective attention. Neuron 77, 750–761. doi: 10.1016/j.neuron.2012.11.034

Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and
MEG-data. J. Neurosci. Methods 164, 177–190. doi: 10.1016/j.jneumeth.2007.03.
024

Marozeau, J., Innes-Brown, H., and Blamey, P. J. (2013). The effect of timbre
and loudness on melody segregation. Music Percept. Interdiscip. J. 30, 259–274.
doi: 10.1525/mp.2012.30.3.259

McAdams, S. (2013). “Timbre as a structuring force in music,” in Proceedings of the
ICA 2013, (Montreal), doi: 10.1121/1.4799391

McAdams, S., and Bregman, A. S. (1979). Hearing musical streams. Comput. Music
J. 3, 26–43.

Mirkovic, B., Debener, S., Jaeger, M., and De Vos, M. (2015). Decoding the attended
speech stream with multi-channel EEG: implications for online, daily-life
applications. J. Neural Eng. 12:046007. doi: 10.1088/1741-2560/12/4/046007

Nourski, K. V., Reale, R. A., Oya, H., Kawasaki, H., Kovach, C. K., Chen,
H., et al. (2009). Temporal envelope of time-compressed speech represented
in the human auditory cortex. J. Neurosci. 29, 15564–15574. doi: 10.1523/
JNEUROSCI.3065-09.2009

Frontiers in Neuroscience | www.frontiersin.org 14 September 2021 | Volume 15 | Article 635937

https://doi.org/10.1525/mp.2015.33.1.70
https://doi.org/10.1525/mp.2015.33.1.70
https://doi.org/10.1016/j.heares.2013.08.001
https://doi.org/10.1016/j.heares.2013.08.001
https://doi.org/10.2307/2346101
https://doi.org/10.1523/JNEUROSCI.4518-10.2011
https://doi.org/10.1523/JNEUROSCI.4518-10.2011
https://doi.org/10.1037/0096-1523.29.2.267
https://doi.org/10.1080/002075900750047987
https://doi.org/10.1121/1.408434
https://doi.org/10.1121/1.408434
https://doi.org/10.1525/mp.2015.33.1.12
https://doi.org/10.1037/h0081664
https://doi.org/10.1037/h0081664
https://doi.org/10.1037//0096-1523.25.6.1742
https://doi.org/10.1016/B978-012375731-9/50056-2
https://doi.org/10.1016/B978-012375731-9/50056-2
https://doi.org/10.2741/2666
https://doi.org/10.1016/j.heares.2017.02.006
https://doi.org/10.1016/j.heares.2017.02.006
https://doi.org/10.1037//0096-1523.28.2.367
https://doi.org/10.1037//0096-1523.28.2.367
https://doi.org/10.1523/JNEUROSCI.1829-15.2015
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.1037/0096-1523.30.4.643
https://doi.org/10.1037/0096-1523.30.4.643
https://doi.org/10.1016/j.neuroimage.2018.01.033
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/B978-0-12-381460-9.00006-7
https://doi.org/10.1016/B978-0-12-381460-9.00006-7
https://doi.org/10.1080/2326263X.2015.1063363
https://doi.org/10.1073/pnas.1205381109
https://doi.org/10.26481/dis.20200401nd
https://doi.org/10.26481/dis.20200401nd
https://doi.org/10.3389/fnins.2018.00121
https://doi.org/10.3389/fnins.2018.00121
https://doi.org/10.1088/1741-2552/aa66dd
https://doi.org/10.1088/1741-2552/aa66dd
https://doi.org/10.1037/a0024338
https://doi.org/10.1037/a0024338
https://doi.org/10.1016/j.neuroimage.2017.04.026
https://doi.org/10.1162/089892905774597263
https://doi.org/10.1016/j.neuron.2007.05.019
https://doi.org/10.1177/0305735690182005
https://doi.org/10.1016/j.neuroimage.2018.07.052
https://doi.org/10.1523/JNEUROSCI.3631-09.2010
https://doi.org/10.1371/journal.pone.0053398
https://doi.org/10.1371/journal.pone.0053398
https://doi.org/10.1016/j.neuron.2012.11.034
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1525/mp.2012.30.3.259
https://doi.org/10.1121/1.4799391
https://doi.org/10.1088/1741-2560/12/4/046007
https://doi.org/10.1523/JNEUROSCI.3065-09.2009
https://doi.org/10.1523/JNEUROSCI.3065-09.2009
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-635937 September 22, 2021 Time: 13:45 # 15

Hausfeld et al. EEG-Tracking Polyphonic Music Listening

O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-
Cunningham, B. G., et al. (2015). Attentional selection in a cocktail party
environment can be decoded from single-trial EEG. Cereb. Cortex 25, 1697–
1706. doi: 10.1093/cercor/bht355

Palmer, C., and Holleran, S. (1994). Harmonic, melodic, and frequency height
influences in the perception of multivoiced music. Percept. Psychophys. 56,
301–312. doi: 10.3758/BF03209764

Petersen, E. B., Wöstmann, M., Obleser, J., and Lunner, T. (2017). Neural tracking
of attended versus ignored speech is differentially affected by hearing loss.
J. Neurophysiol. 117, 18–27. doi: 10.1152/jn.00527.2016

Poghosyan, V., and Ioannides, A. A. (2008). Attention modulates earliest responses
in the primary auditory and visual cortices. Neuron 58, 802–813.

Power, A. J., Foxe, J. J., Forde, E.-J., Reilly, R. B., and Lalor, E. C. (2012). At what
time is the cocktail party? A late locus of selective attention to natural speech.
Eur. J. Neurosci. 35, 1497–1503. doi: 10.1111/j.1460-9568.2012.08060.x

Puschmann, S., Baillet, S., and Zatorre, R. J. (2018). Musicians at the cocktail party:
neural substrates of musical training during selective listening in multispeaker
situations. Cereb. Cortex 29, 3253–3265. doi: 10.1093/cercor/bhy193

Puvvada, K. C., and Simon, J. Z. (2017). Cortical representations of speech
in a multitalker auditory scene. J. Neurosci. 37, 9189–9196. doi: 10.1523/
JNEUROSCI.0938-17.2017

Ragert, M., Fairhurst, M. T., and Keller, P. E. (2014). Segregation and integration
of auditory streams when listening to multi-part music. PLoS One 9:e0084085.
doi: 10.1371/journal.pone.0084085

Riecke, L., Peters, J. C., Valente, G., Kemper, V. G., Formisano, E., and Sorger,
B. (2016). Frequency-Selective attention in auditory scenes recruits frequency
representations throughout human superior temporal cortex. Cereb. Cortex 27,
3002–3014.

Schaefer, R. S., Farquhar, J., Blokland, Y., Sadakata, M., and Desain, P. (2011). Name
that tune: decoding music from the listening brain. Neuroimage 56, 843–849.
doi: 10.1016/j.neuroimage.2010.05.084

Sloboda, J., and Edworthy, J. (1981). Attending to two melodies at once: the of key
relatedness. Psychol. Music 9, 39–43. doi: 10.1177/03057356810090010701

Sturm, I., Dähne, S., Blankertz, B., and Curio, G. (2015). Multi-Variate EEG analysis
as a novel tool to examine brain responses to naturalistic music stimuli. PLoS
One 10:e0141281. doi: 10.1371/journal.pone.0141281

Sussman, E. S. (2005). Integration and segregation in auditory scene analysis.
J. Acoust. Soc. Am. 117, 1285–1298. doi: 10.1121/1.1854312

Sussman, E. S. (2017). Auditory scene analysis: an attention perspective. J. Speech
Lang. Hear. Res. 60, 2989–3000. doi: 10.1044/2017_JSLHR-H-17-0041

Svanera, M., Savardi, M., Benini, S., Signoroni, A., Raz, G., Hendler, T., et al. (2019).
Transfer learning of deep neural network representations for fMRI decoding.
J. Neurosci. Methods 328:108319. doi: 10.1016/j.jneumeth.2019.108319

Theunissen, F. E., and Elie, J. E. (2014). Neural processing of natural sounds. Nat.
Publish. Group 15, 355–366. doi: 10.1038/nrn3731

Treder, M. S., Purwins, H., Miklody, D., Sturm, I., and Blankertz, B. (2014).
Decoding auditory attention to instruments in polyphonic music using single-
trial EEG classification. J. Neural Eng. 11:026009. doi: 10.1088/1741-2560/11/2/
026009

Uhlig, M., Fairhurst, M. T., and Keller, P. E. (2013). The importance of integration
and top-down salience when listening to complex multi-part musical stimuli.
Neuroimage 77, 52–61. doi: 10.1016/j.neuroimage.2013.03.051

Wessel, D. L. (1979). Timbre space as a musical control structure. Comput. Music
J. 3, 45–52. doi: 10.2307/3680283

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Hausfeld, Disbergen, Valente, Zatorre and Formisano. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 September 2021 | Volume 15 | Article 635937

https://doi.org/10.1093/cercor/bht355
https://doi.org/10.3758/BF03209764
https://doi.org/10.1152/jn.00527.2016
https://doi.org/10.1111/j.1460-9568.2012.08060.x
https://doi.org/10.1093/cercor/bhy193
https://doi.org/10.1523/JNEUROSCI.0938-17.2017
https://doi.org/10.1523/JNEUROSCI.0938-17.2017
https://doi.org/10.1371/journal.pone.0084085
https://doi.org/10.1016/j.neuroimage.2010.05.084
https://doi.org/10.1177/03057356810090010701
https://doi.org/10.1371/journal.pone.0141281
https://doi.org/10.1121/1.1854312
https://doi.org/10.1044/2017_JSLHR-H-17-0041
https://doi.org/10.1016/j.jneumeth.2019.108319
https://doi.org/10.1038/nrn3731
https://doi.org/10.1088/1741-2560/11/2/026009
https://doi.org/10.1088/1741-2560/11/2/026009
https://doi.org/10.1016/j.neuroimage.2013.03.051
https://doi.org/10.2307/3680283
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Modulating Cortical Instrument Representations During Auditory Stream Segregation and Integration With Polyphonic Music
	Introduction
	Materials and Methods
	Participants
	Stimuli
	Paradigm
	EEG Data Acquisition and Pre-processing
	Analysis
	Behavioral Analysis and Sound Envelope Estimation

	Sound Envelope Modeling
	Envelope Model Estimation and Statistical Comparison
	Channel Contributions

	EEG Prediction Analysis

	Results
	Sound Envelope Tracking of Music

	Discussion
	Stream Segregation of Instruments and Speakers
	Polyphonic Music Perception
	Limitations and Considerations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


