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Ophidian envenomation is an important health problem in Brazil and other South American countries. In folk medicine, especially
in developing countries, several vegetal species are employed for the treatment of snakebites in communities that lack prompt access
to serum therapy. However, the identification and characterization of the effects of several new plants or their isolated compounds,
which are able to inhibit the activities of snake venom, are extremely important and such studies are imperative. Snake venom
contains several organic and inorganic compounds; phospholipases A

2
(PLA

2
s) are one of the principal toxic components of

venom. PLA
2
s display a wide variety of pharmacological activities, such as neurotoxicity, myotoxicity, cardiotoxicity, anticoagulant,

hemorrhagic, and edema-inducing effects. PLA
2
inhibition is of pharmacological and therapeutic interests as these enzymes are

involved in several inflammatory diseases. This review describes the results of several studies of plant extracts and their isolated
active principles, when used against crude snake venoms or their toxic fractions. Isolated inhibitors, such as steroids, terpenoids,
and phenolic compounds, are able to inhibit PLA

2
s from different snake venoms. The design of specific inhibitors of PLA

2
s might

help in the development of new pharmaceutical drugs, more specific antivenom, or even as alternative approaches for treating
snakebites.

1. Introduction

Venomous snakebites represent an important risk for public
health worldwide, especially in tropical regions where these
accidents are more common. Snake venom is composed
by a mixture of inorganic ions (calcium potassium, iron,
cobalt, copper, and magnesium), organic compounds like
carbohydrate, serotonin, histamine, bradykinin potentiating
peptide, disintegrins, and proteins with or without catalytic
activity (L-amino acid oxidases, lectins, hyaluronidases, ser-
ine proteases, metalloproteases, and phospholipases A

2
) [1].

The phospholipase A
2
enzymes (PLA

2
s, E.C. 3.1.1.4, and

phosphatide sn-2 acylhydrolases) are one of the most impor-
tant enzymes for its effect. The PLA

2
class includes several

polypeptides with similar enzymatic functions; however,
these proteins exert a variety of relevant toxic actions, such
as neurotoxicity and myotoxicity [2].

Secreted phospholipases A
2
(sPLA

2
s) catalyze the hydrol-

ysis of glycerophospholipids in sn-2 position and promote
the release of lysophospholipids and fatty acids, such as
the arachidonic acid. The arachidonic acid is a precursor
of prostaglandins and leukotrienes, and it is involved in
inflammatory process characterized by increase bymicrovas-
cular permeability and oedema formation, leukocyte recruit-
ment into tissues, nociception, and release of inflammatory
mediators which mimic a number of systemic and local
inflammatory disorders in humans [1–5]. In addition, the
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excess levels of sPLA
2
s were associated with many phys-

iopathological processes as cerebral illnesses, cardiovascular
disorders, cancers, asthma, respiratory distress syndrome,
and progression of tonsillitis [4–8]. On the other hand, the
increased sPLA

2
activity is observed in some brain tumours,

in chronic neurological disorders associated with neurode-
generative diseases, such as neural trauma, Alzheimer’s, and
Parkinson’s diseases, andmay serve as amarker of increases in
permeability of the blood-cerebrospinal fluid barrier [9, 10].

PLA
2
s show considerable identity in their amino acid

sequence [11, 12], but the three-dimensional structure sim-
ilarity among group II sPLA2s is considerably higher, and
this fact shows the importance of the 3D structure for the
biological activities [2, 13–16]. Venom of different snake
species is used as sources of PLA

2
, due to the abundance

of these enzymes and the fact that the purification of these
molecules is relatively simple [17–19].

The apparent contradiction between structural unifor-
mity and functional diversity, exhibited by PLA

2
s, has

attracted much interest from the scientific community.
According to Ohno and collaborators [20], this diversity of
pharmacological and toxic effects may have been evolution-
arily acquired by positive Darwinian selection of the coding
exons of these activities.

Due to a high degree of structural similarity between the
sPLA
2
s from snake venom and the human, it is a prerequisite

to use the snake venom PLA
2
inhibitors for the design of

new drugs for human diseases because the new inhibitory
drugs must be related to the transitional state of the enzyme
[2, 21]. Small variations among PLA

2
isoforms may be used

for the study of structural and functional relationships of
these proteins. Moreover, research regarding natural and
synthetic inhibitors that are able to neutralize the toxic
effects promoted by these enzymes is being carried out in
an attempt to explain the physiopathological mechanisms of
these molecules [22–24]. Furthermore, knowledge about the
mechanism of toxicity exhibited by these proteins may assist
the discovery and development of new anti-inflammatory
drugs, cellular lesions, and therapies for several diseases,
including Parkinson’s, Alzheimer’s, and even cancer [12, 25–
29].

Treatment of snakebites is still carried out using tradi-
tional antivenom therapy [30]. However, although antivenom
therapy is effective for the majority of cases, some side effects
exist for these treatments, including adverse reactions on the
skin, gastrointestinal tract, and respiratory and circulatory
systems [31, 32]. Moreover, snake antivenom therapy is
usually unable to prevent the progress of local effects [30].
Given the limitations of traditional therapy, research focusing
on the interactions between PLA

2
s and their natural or

synthetic inhibitors could allow the development of alterna-
tive treatments for the toxic and pharmacological effects of
snake bites [23, 33]. Plant extracts have become a promising
alternative to substitute traditional snake antivenom, which
often are unavailable in emergency situations [34, 35]. After
studying plants commonly used to treat snakebites in South
America, Soares and collaborators [34] reported 56 vegetal
species that exhibited anti-inflammatory activity caused by
crude snake venom or by their isolated components.

2. PLA
2

Inhibitors Isolated from Plants

Plants are used in traditional medicine to treat the effects of
venomous snake bites. Pharmacological studies have shown
that fractions of these plant extracts have anti-inflammatory,
antiviral, and antivenomproperties [36, 37].The effect of spe-
cific molecules from these plant extracts may be attributed to
the presence ofmultiple factors, such as lowmolecular weight
of chemical compounds and the abundance of chemical and
pharmacological properties [33].

Borges et al. [38] reported that the aqueous extract of
Casearia sylvestris (Flacourtiaceae), a native vegetal species
found in Brazilian open pastures, had the ability to inhibit
myotoxic, anticoagulant, and edema-inducing activities from
Bothrops moojeni, B. pirajai, B. neuwiedi, and B. jararacussu
venom and its Asp49 and Lys49-PLA

2
isolated toxins. In

addition, Borges and collaborators [39] emphasized that C.
sylvestris was able to neutralize hemorrhagic activity caused
by the B. pirajai, B. jararacussu, B. asper, B. moojeni, and B.
neuwiedi venom. Cavalcante and collaborators [22] showed
that the C. sylvestris aqueous extract demonstrated protec-
tive effects against muscle damage induced by two Lys49-
PLA
2
toxins (PrTX-I from B. pirajai and BthTX-I from B.

jararacussu snake venom) and prevented the neuromuscular
blockage induced by all PLA

2
toxins.

Mandevilla velutina (Apocynaceae) is a perennial plant
from the Brazilian cerrado that has been studied for its
anti-inflammatory activity, as well as its antagonist effect on
bradykinin, a vasodilator [40]. These authors reported that
the aqueous extract of this plant was an effective inhibitor
of phospholipase A

2
activity and some toxic effects, such as

hemorrhage, caused by venom from snakes of the Bothrops
and Crotalus genus. In a posterior study, the same research
group reported that extracts from Mandevilla illustris were
able to completely inhibit the activity of the Crotoxin B, the
basic Asp49-PLA

2
, isolated from Crotalus durissus terrificus

venom [41].
The antihemorrhagic properties of the aqueous extract of

Pentaclethra macroloba (Fabaceae), an ethnomedicinal plant
found in the Amazon region, were evaluated against snake
venom and displayed a full inhibition of hemorrhagic and
nucleolytic activities induced by several snake venom. Addi-
tionally, a partial inhibition of myotoxic, lethal, enzymatic
and edema activities of snake venom, and their isolatedPLA

2
s

was observed [42].
Almeida and collaborators [43] showed that the aqueous

extract of Tabernaemontana catharinensis (Apocynaceae),
which is encountered in some countries of South America,
was able to inhibit the crotoxin complex, isolated from C.
d. terrificus venom, and was also able to partially neutralize
the myotoxicity of B. jararacussu snake venom and its basic
PLA
2
s [44].

The aqueous extract of the aerial parts of Bauhinia
forficate (Fabaceae), a species native to Asia and well adapted
anddeveloped in several regions of Brazil, was assayed against
the fibrinogenolytic and coagulant activities of C. d. terrificus
and B. jararacussu crude venom and was found to neutralize
these effects. Moreover, the extract efficiently inhibited the
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edema induced byC. d. terrificus venom and its isolated PLA
2

[45].
Mendes and collaborators [46] reported that the aqueous

extract of Schizolobium parahyba (Fabaceae), a plant found
in the Mata Atlântica of southeastern Brazil, contains com-
pounds that can inhibit some enzymatic and biological activ-
ities induced by Bothrops pauloensis (current Bothropoides
paulensis) and C. d. terrificus snake venom as well as by
their isolated neuwiedase toxins (metalloproteinase), BnSP-
7 (basic Lys49-PLA

2
from B. paulensis venom), and Crotoxin

B.
The ethanolic extract of the aerial parts of Blutaparon

portulacoides (Amaranthaceae), an herbaceous plant that
occurs mainly in the Atlantic bush, caused a reduction in
edema formation and in the leukocyte influx induced by
Lys49-PLA

2
and isolated from B. jararacussu venom [47].

In 2005, Maiorano and collaborators [48] evaluated
aqueous extracts prepared from dried or fresh roots, stems,
or leaves of Mikania glomerata (Asteraceae), a plant found
in the Mata Atlântica in Southeastern Brazil and popularly
known as “Guaco.” The M. glomerata extract efficiently
neutralized different toxic, pharmacological, and enzymatic
effects induced by Bothrops and Crotalus snake venom. The
phospholipase A

2
activity and the edema induced byC. d. ter-

rificus venom were inhibited by approximately 100 and 40%,
respectively, and this inhibition was also partially observed
with the Bothrops venom. The hemorrhagic activities of B.
alternatus, B. moojeni, B. neuwiedi, and B. jararacussu venom
were significantly inhibited by M. glomerata extract, while
the clotting activities of C. d. terrificus, B. jararacussu, and B.
neuwiedi venom were totally inhibited. In addition, Floriano
and collaborators [49] reported clinical and laboratory alter-
ations inmice caused by the combination ofM. glomerata leaf
extract and antiophidian serum againstC. d. terrificus venom.

Nazato and collaborators [50] found that the methanolic
extract of the bark from Dipteryx alata (Fabaceae) (a native
species of the Brazilian Savanna, found principally in Minas
Gerais, Goiás, Federal District, and Mato Grosso) decreased
the neurotoxicity and myotoxicity of B. jararacussu crude
venom. In another study by Puebla and collaborators [51],
the extract fromD. alatawas fractionated and its compounds
were evaluated against the neuromuscular blockade caused
by B. jararacussu venom.

The ability of the ethanolic extract of Hypericum
brasiliense (Hypericaceae), a plant found mainly in the
southeastern and southern regions of Brazil, to neutralize
some effects induced by B. jararaca venom was investigated
using biological assays. H. brasiliense extracts were able to
inhibit some pharmacological effects such as lethality, edema,
hemorrhage, hemolysis and, proteolysis, as well as fibrinogen
or plasma clotting [52].

In 2012, Dey and De [53] published a review that
evaluated several pharmacological studies on plant efficacies
against snakebites. The authors compiled studies from a
number of plants or their fractionsthat were active against
snake venom and concluded that folk knowledge is relevant.
However, clinical tests should be performed with these plant
extracts or fractions to assess the effect of the compounds
used for the treatment of snakebites.

Recently, Samy et al. [54] published an extensive revi-
sion on the therapeutic application of natural inhibitors
of snake venom PLA

2
s, covering molecules from the pri-

mary metabolism of different organisms, such as glyco-
proteins (PLIs), peptides, and lipids, as well as from sec-
ondary metabolism, exemplified by terpenoids, alkaloids,
flavonoids, and other molecules. These authors concluded
that the biotechnological potential of PLA

2
inhibitors may

provide therapeutic molecular models with antiophidian
activity to supplement conventional serum therapy or for the
development of novel antivenom therapeutics. Additionally,
inhibitors isolated from medicinal plants may also be an
essential tool in isolated communities [23, 54].

3. Structural Characterization of
PLA
2

Inhibitors

The main classes of PLA
2
inhibitors are the phenolic com-

pounds, which include flavonoids, coumestans and alkaloids,
steroids and terpenoids (mono-, di-, and triterpenes), and
polyphenols (vegetable tannins).There is also mention in the
literature of other molecules such as carbohydrates, lipids,
and proteins, although this paper emphasizes molecules
originating from plant secondary metabolism.

3.1. Phenolic Compounds

3.1.1. Flavonoids. Polyphenolic secondary metabolites are
commonly able to bind to biological polymers, and some
of these have been shown to inhibit PLA

2
s. Examples

include quercetin, a strong lipoxygenase inhibitor, narin-
genin, artemetin, kaempferol, and galangin, among several
other flavonoids. Primetin (Figure 1), 5,8-dihydroxyflavone,
isolated from Primula sp. (Primulaceae), is known for its
ability to inhibit toxins from snake venom; its structural
form may be seen in Figure 1. Flavonoids usually exert their
inhibitory effect via hydrophobic interactions with the A and
B rings and aromatic or hydrophobic amino acid residues in
the protein [36, 55, 56].

3.1.2. Coumestans. Eclipta alba (Asteraceae) is a native plant
from Brazil and other tropical and subtropical areas of the
world whose medicinal properties are widely known. E. alba
was genetically engineered using Agrobacterium rhizogenes
LB9402 to enhance the production of secondary wedelo-
lactone metabolites, which are coumestan compounds with
activity against basic PLA

2
s. This mutant strain was found to

reduce the phospholipaseA
2
activities andmyotoxic andneu-

rotoxic effects of the C. d. terrificus and B. jararacussu snake
venom [37, 57]. Analogs of wedelolactonemolecule (Figure 1)
were able to antagonize the release of creatine kinase induced
by B. jararacussu venom even at concentrations as low as
30 𝜇M [58, 59].

3.1.3. Alkaloids. Batina and collaborators [60] isolated an
alkaloid fromTabernaemontana catharinensis (Apocynaceae)
named 12-methoxy-4-methylvoachalotine (Figure 1) and
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Figure 1: Structures of bioactive compounds with inhibitory potential against the snake venom or its phospholipase A
2
fraction. Draw using

ACD/ChemSketch program (http://www.acdlabs.com/).

reported a strong inhibitory effect against lethality and
myotoxic activities induced by C. d. terrificus venom.

3.1.4. Other Phenolic Compounds. Ar-Turmerone (Figure 1)
is a phenolic compound isolated from the Curcuma longa
(Zingiberaceae) plant that has a strong effect against the
hemorrhage and lethality caused by B. jararaca and C. d.
terrificus snake venom [61].

Extracts from Piper umbellatum and P. peltatum (Piper-
aceae)were shown to inhibit the myotoxic activities of PLA

2
s

isolated from Bothrops snake venom [62]. Fractionation

of these plant extracts revealed that 4-nerolidylcatechol, a
hydroxylated phenolic compound (Figure 1), was responsible
for at least part of the inhibitory effect against groups I, II, and
III of PLA

2
s.

In 2008, Da Silva and collaborators [63] studied the
half maximal inhibitory concentration (IC

50
) of ellagic acid

(Figure 1), extracted from C. sylvestris, against BthTX-II, a
basic Asp49-PLA

2
from B. jararacussu snake venom, and

concluded that this compound was effective at competitively
inhibiting the induction of edema, myotoxicity, and enzy-
matic activities, incurred by this PLA

2
.

http://www.acdlabs.com/
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The first structural analysis of aristolochic acid (Figure 1),
isolated from Aristolochia sp. (Aristolochiaceae), was per-
formed by Vishwanath and Gowda [64]. In this study,
the interaction of aristolochic acid, an alkaloid, with PLA

2

from Vipera russelli was characterized as noncompetitive
inhibitive. This compound has also been shown to reduce
the induction of edema by this enzyme. Additionally, Vish-
wanath et al. [65] emphasized that the interaction between
aristolochic acid, from Aristolochia radix, and three PLA

2
s

from Trimeresurus flavoviridis resulted in the inhibition of
hemolytic and edema induction by competitive inhibition.
Chandra and collaborators [66] reported the crystal structure
of the complex formed between the PLA

2
isolated from V.

russelli venom and aristolochic acid. In this study, the interac-
tion between aristolochic acid andPLA

2
was competitive, and

the final model consists of a dimer of PLA
2
and one molecule

of aristolochic acid located in the binding site of molecule A;
this interaction was stabilized by three hydrogen bonds and
hydrophobic contacts.

Chlorogenic and caffeic acids (Figure 1) can interact
with proteins via hydrophobic contacts and hydrogen bonds,
inhibiting enzyme function and acting as antidotes. Strong
interactions may induce conformational changes in the pro-
tein structure [26]. In 2011, Shimabuku and collaborators [67]
crystallized PrTX-I (basic Lys49-PLA

2
from B. pirajai snake

venom) in the presence of the inhibitor, caffeic acid, and
the electron-densitymapwhich unambiguously indicated the
presence of three caffeic acid molecules interacting with the
C-terminus of the protein.

Rosmarinic acid (Figure 1) is a hydroxylated phenolic
compound isolated from Cordia verbenacea (Boraginaceae).
This compound demonstrates antimyotoxic properties and
inhibits edema induced by crude B. jararacussu snake venom
and its basic PLA

2
s [36, 55].The three-dimensional structure

of the PrTX-I, rosmarinic acid complex, was elucidated
by Santos and collaborators [68], where rosmarinic acid
was observed located at the entrance of the hydrophobic
channel monomer A of the PrTX-I dimer via an interaction
between hydrogen bonds and hydrophobic contacts in the
same monomer. Interactions were also observed between
rosmarinic acid and a residue of the C-terminal region of
the monomer B.The interaction between the rosmarinic acid
molecule with the hydrophobic channel (monomer A) and
the C-terminal region (myotoxic site, monomer B) suggests
two mechanisms of myotoxicity inhibition [68].

3.2. Steroid Compounds. Sterol and cholesterol molecules
present well-known antidote activities against snake venom.
Steroids can form complexes that are stabilized via Van der
Waals interactions, as well as by hydrophobic interactions
[37]. Antimyotoxic and antihemorrhagic effects of the Eclipta
prostrata (Asteraceae) extract and its components, sitosterol
and stigmasterol (Figure 1), were observed againstB. jararaca,
B. jararacussu, and Lachesis muta snake venom [37, 69]. Pre-
viously, Mors [70] reported that sitosterol and stigmasterol,
isolated from E. prostrata, prevented the lethality of the C. d.
terrificus venom in a dose-dependent manner.

3.3. Terpenoids. The neoclerodane, diterpenoid, isolated
from the aerial parts of Baccharis trimera (Asteraceae), de-
monstrate anti-hemorrhagic and antiprotolithic properties
against Bothrops snake venom [71]

Several pentacyclic triterpenes, such as oleanolic acid,
lupeol, ursolic acid, taraxerol, taraxasterol, 𝛼,𝛽-amyrin, and
friedeline, exhibit activity against snake venom [37]. Triter-
penoids, isolated from Betula alba (Betulaceae), including
pentacyclic triterpenes betulin and betulinic acid (Figure 1),
exhibited antiphospholipasic A

2
activity. Docking (in silico

experiments) indicated betulinic acid as the best PLA
2

inhibitor, due to its direct insertion in the catalytic site on the
enzyme, with a very low energy value [55].

3.4. Synthetic Inhibitors. Edunol (Figure 1) is a pterocarpan
with a chemical structure similar to those of the inhibitors
extracted from the roots of Harpalyce brasiliana (Fabaceae).
Edunol was obtained via chemical synthesis, and the com-
pound showed anti-myotoxic, anti-proteolytic, and anti-
PLA
2
activities against B. jararacussu crude venom [55, 72].

Elaidoylamide, the amide of trans-9-octadecenoic acid
(Figure 1), is a powerful synthetic inhibitor of a neurotoxic
Asp49-PLA

2
from Vipera ammodytes meridionalis venom.

In 2003, Georgieva and collaborators [73] isolated the neu-
rotoxic complex from V. a. meridionalis venom, dissoci-
ated the basic PLA

2
from the complex, and crystallized

it with elaidoylamide. This final structure contained two
identical homodimers and one molecule of elaidoylamide
bound simultaneously to the substrate-binding sites of each
homodimer [74].

Villar and collaborators [33] demonstrated that synthetic
inhibitor derivatives from nitrostyrene that contain typical
nitro groups at the ortho-, meta-, and para- positions on the
aromatic ring were more efficient against the enzymatic, ede-
matogenic, and myotoxic activities of PLA

2
s from B. jarara-

cussu venom. Da Silva and collaborators [75, 76], performing
molecular modeling studies between Asp49-PLA

2
from C.

adamanteus venom and synthetic derivatives polyhydroxy
phenolic compounds, concluded that some conformations of
these groups might positively influence enzymatic activity
inhibition.

Isolated inhibitors (natural or synthetic) can be important
tools for understanding the mechanisms of action of PLA

2
s

from snake venom, and, consequently, these results might
be helpful for the design of a drug that specifically inhibits
PLA
2
s. However, the synthesis of compounds analogous to

their natural equivalents, based on chemical characteristics or
with minor structural modifications, is often necessary. The
synthesis of compounds could be justified by the low amount
of these compounds available in vegetal extracts or to adjust
some specific chemical characteristics. For this reason, some
researchers have isolated and characterized new compounds
or produced synthetic analogues for use in the commercial
production of pharmaceutical drugs.
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e terapêutica dos acidentes, Sarvier, São Paulo, Brazil, 2003.

[18] D. C. S. Damico, M. A. C. Höfling, M. Cintra et al., “Pharma-
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