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Feature selection and classification 
of urinary mRNA microarray data 
by iterative random forest to 
diagnose renal fibrosis: a two-stage 
study
Le-Ting Zhou1, Yu-Han Cao1, Lin-Li Lv1, Kun-Ling Ma1, Ping-Sheng Chen1, Hai-Feng Ni1, 
Xiang-Dong Lei2 & Bi-Cheng Liu1

Renal fibrosis is a common pathological pathway of progressive chronic kidney disease (CKD). However, 
kidney function parameters are suboptimal for detecting early fibrosis, and therefore, novel biomarkers 
are urgently needed. We designed a 2-stage study and constructed a targeted microarray to detect 
urinary mRNAs of CKD patients with renal biopsy and healthy participants. We analysed the microarray 
data by an iterative random forest method to select candidate biomarkers and produce a more accurate 
classifier of renal fibrosis. Seventy-six and 49 participants were enrolled into stage I and stage II studies, 
respectively. By the iterative random forest method, we identified a four-mRNA signature in urinary 
sediment, including TGFβ1, MMP9, TIMP2, and vimentin, as important features of tubulointerstitial 
fibrosis (TIF). All four mRNAs significantly correlated with TIF scores and discriminated TIF with high 
sensitivity, which was further validated in the stage-II study. The combined classifiers showed excellent 
sensitivity and outperformed serum creatinine and estimated glomerular filtration rate measurements 
in diagnosing TIF. Another four mRNAs significantly correlated with glomerulosclerosis. These findings 
showed that urinary mRNAs can serve as sensitive biomarkers of renal fibrosis, and the random forest 
classifier containing urinary mRNAs showed favourable performance in diagnosing early renal fibrosis.

Chronic kidney disease (CKD) is a worldwide public health problem, affecting 12% of all adults in the United 
States and 10.8% in China1,2. Renal fibrosis is a common pathological pathway of progressive CKD, which is 
characterized as a relentless deposition of extracellular matrix (ECM) with concomitant loss of the parenchyma.

Renal biopsy is the gold standard for measuring fibrosis. Tubulointerstitial fibrosis (TIF) and glomerular 
sclerosis (GS) quantification are considered the best available pathological markers of chronic kidney injury3. 
Unfortunately, such invasive examination may cause bleeding and other complications, which impede its repeated 
application. In clinical practice, kidney function estimations such as serum creatinine (SCr) and SCr-based esti-
mated glomerular-filtration rate (eGFR) measurements are most widely used to evaluate renal fibrosis. However, 
SCr usually changes little at the onset of fibrosis4. Although demonstrated to provide a good estimation of kidney 
function, eGFR calculated by the Cockcroft–Gault or MDRD (Modification of Diet in Renal Disease) formula is 
less accurate in early kidney disease and underestimates the GFR of healthy individuals5. Thus, it is imperative to 
develop validated biomarkers to monitor early fibrosis with minimal damage.

Recently, analysing the mRNAs of urinary sediment has raised great interest as one feasible strategy. Urinary 
mRNAs have been reported to increase sharply at an early stage in a rat model of human diphtheria toxin recep-
tor progression6. Vimentin, NKCC2, E-cadherin, and 18S rRNA mRNA in urinary sediment correlated with 
the severity of renal fibrosis in human kidney allografts7. We demonstrated that urinary podocalyxin, CD2-AP, 
α -actin4, and podocin mRNAs correlated with SCr in patients with diabetic nephropathy (DN)8. Recently, 
microarrays have been used as a high-throughput screening platform to discover potential mRNA biomarkers. 
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Using targeted microarrays, our previous study showed that urinary vimentin mRNA was significantly upreg-
ulated in moderate-to-severe fibrosis9. However, whether urinary mRNAs can efficiently identify patients with 
renal fibrosis in the context of CKD has not been investigated yet.

Another problem is that datasets generated by microarrays are often noisy, multicollinear, and high dimen-
sional, which make it difficult to process. Machine learning is a subfield of computer science that evolved from 
artificial intelligence. Machine learning can be used to process much more complex data than traditional sta-
tistical methods and make predictions with higher accuracy10. Random forest (RF) methods, constructed from 
decision tree predictors, represent one of the most prevalent supervised machine learning methods, which was 
first introduced by Breiman in 200111. RF methods return measures of variable importance and have superior 
performance with respect to the problems that microarray data bring, making it well suited for microarray analy-
sis12. An empirical study by Archer et al. showed that RF is a robust method for making an accurate classifier and 
evaluating the discriminative ability of individual predictors in classification problems13.

Patients who undergo renal biopsy are usually at the early stages of CKD, which is the ideal target popula-
tion. The primary objective of this two-stage study was to test and validate the hypothesis that mRNAs from 
urinary sediment could provide useful information of early renal fibrosis. To our knowledge, this is the first 
machine-learning analysis of the diagnostic performance of urinary mRNAs in renal fibrosis. By iterative random 
forest analysis of a targeted microarray, we aimed to discover a panel of mRNAs and develop a more powerful 
classifier for improved diagnosis of renal fibrosis.

Results
Characteristics of the study population. Sixty-two biopsy-proven CKD patients and 14 healthy partici-
pants were included in the stage-I study. The primary diseases of the enrolled patients included IgA nephropathy 
(IgAN, n =  39), membranous nephropathy (MN, n =  10), minimal change disease (MCD, n =  5), non-IgA mesan-
gioproliferative glomerulopathy (non-IgA MsPGN, n =  1), and focal segmental glomerulosclerosis (FSGS, n =  7).

Forty-one biopsy-proven CKD patients and 8 healthy participants, who were screened according to the same 
criteria used for stage I, were enrolled in the validation set (Table 1). Primary glomerulonephritis was still the 
leading cause of CKD, and 16 IgAN, 7 non-IgA MsPGN, 3 MCD, 3 MN, 1 FSGS, 1 IgM, and 1 C1q nephropathy 
cases were found. Other causes of CKD included lupus nephritis (n =  3), DN (n =  2), Alport’s syndrome (n =  2), 
and ANCA-associated vasculitis (n =  3). The basic clinical characteristics of all participants, with or without TIF, 
are shown in Table 1.

Four mRNAs were identified as important features of TIF by RF. As shown in Fig. 1, the initial 
out-of-bag (OOB) estimates of the error rates were 0.329 and 0.306 in the test set and validation set, respectively. 
After the first four iterations, the OOB error decreased as the noisy mRNAs were eliminated. The error rates of 
both sets rebounded at the fifth iteration; thus, the “early stop” strategy was applied and the final OOB error was 
0.210 in the test set and 0.183 in the validation set. Consequently, four mRNAs including TGFβ 1 (TGB1), MMP9, 
TIMP2, and vimentin (VIM) were identified as important features of TIF by RF (Fig. 1).

Use of four selected mRNAs to diagnose TIF with a high sensitivity. We first examined the basic 
statistical associations between the selected mRNAs and TIF in the test set. The relative expression levels of the 
four mRNAs in the TIF group were significantly higher than those in the group without TIF (Fig. 2). In addition, 
the TIF score (the healthy participants were not included in this analysis) and relative expression levels of TGFβ 
1 (r =  0.281, p =  0.028), MMP9 (r =  0.338, p =  0.007), TIMP2 (r =  0.326, p =  0.009), and vimentin (r =  0.397, 
p =  0.001) were significantly correlated (Fig. 3).

Then, we assessed the individual diagnostic power of the four mRNA biomarkers in the test set by 
receiver-operating characteristic (ROC) curve analysis. As shown in Fig. 4, all biomarkers showed moderate 
performance in discriminating TIF, with areas under the ROC curve (AUCs) ranging from 0.727 to 0.757. The 
best cut-off of the four mRNAs yielded good sensitivity (0.762 to 0.976) but poor specificity (0.471 to 0.647), 
indicating the screening value of these biomarkers. Their performance was further validated in the stage-II study 
(AUCs between 0.668 and 0.748) (Fig. 4). In the test set, eGFR and SCr yielded better overall performance than 
did the individual mRNAs with AUCs of 0.781 (95% CI, 0.672–0.890, p <  0.001) and 0.775 (95% CI, 0.669–0.881, 

Test Set Validation Set

Total(n = 76) TIF(n = 42) no TIF(n = 34) P value Total(n = 49) TIF(n = 28) no TIF(n = 21) P value

Age 41.4 ±  14.4 39.1 ±  11.9 43.4 ±  16.0 0.198 39.7 ±  13.8 40.1 ±  14.1 39.1 ±  13.6 0.811

Gender (male/female) 40/36 24/18 16/18 0.381 27/22 42720 42684 0.74

SCr (μ mol/L) 78.3 
[61.0–107.9]

100.1 
[68.8–131.0]

63.3 
[57.0–80.0] < 0.001* 68  

[59–116]
96.5 

[65.0–151.0]
60  

[54.5–70.0] 0.001*

eGFR (ml/min/1.73 m2) 88.6 ±  33.7 74.6 ±  34.8 105.9 ±  22.9 < 0.001* 93.5 ±  41.0 79.9 ±  43.2 111.7 ±  30.1 0.006*

24 h urinary protein (g/d) 2.17 
[0.59–4.44]

2.48 
[1.26–3.77]

1.21 
[0.10–4.72] 0.092 1.2  

[0.08–3.09]
1.61 

[0.44–3.38]
0.97 

[0.03–2.85] 0.245

SBP (mmHg) 132.1 ±  14.6 136.1 ±  16.1 127.2 ±  10.7 0.051 132.3 ±  15.3 133.8 ±  17.5 130.2 ±  12.1 0.43

DBP (mmHg) 81.4 ±  8.7 82.9 ±  9.8 79.5 ±  6.6 0.177 80.5 ±  8.5 81.9 ±  9.2 78.5 ±  7.1 0.171

Table 1.  Basic characteristics of the participants with and without TIF in stage-I and stage-II studies. 
Values for continuous variables are given as mean ±  SD or median [25th–75th percentile].
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p <  0.001), respectively. The best cut-off values for both eGFR and SCr yielded excellent specificity (0.912 for 
eGFR and 0.903 for SCr), but poor sensitivity (0.690 for eGFR and 0.622 for SCr). In contrast, 24 urine pro-
teins failed to discriminate TIF, both in the test set (AUC =  0.613, p =  0.092) and validation set (AUC =  0.598, 
p =  0.245).

mRNA classifier trained by RF outperformed SCr and eGFR in diagnosing TIF. As shown in 
Table 2, the best cut-offs of SCr and eGFR obtained from the test set (87.1 μ​mol/L​for​SCr​and​86.2​ml•​min•​
1.73 m2 for eGFR) had diagnostic accuracy of 0.673 (sensitivity of 0.536 and specificity of 0.857 for SCr) and 0.694 
(sensitivity of 0.607 and specificity of 0.810 for eGFR), respectively. The diagnostic accuracy of the individual 
mRNA ranged from 0.633 to 0.693. However, the combined mRNA classifier outperformed kidney function 
parameter testing in the validation set, yielding an accuracy of 0.796 (sensitivity of 0.929 and specificity of 0.619). 
We further tested whether the RF classifier consisted of combined mRNAs and kidney function parameters had 
better performance. Impressively, the accuracy was further elevated to 0.877 (sensitivity of 0.964 and specificity 
of 0.762) and 0.857 (sensitivity of 0.964 and specificity of 0.714) when eGFR and SCr were added, respectively.

Urinary mRNAs correlated with glomerular sclerosis. Based on the % IncMSE values of RF regression, 
we identified vimentin, TGFβ 1, RANTES, and PODXL as the most important genes associated with GS in the test 
set. The GS score (the healthy participants were not included in this analysis) and the relative mRNA-expression 
levels of PODXL (r =  0.264, p =  0.037), RANTES (r =  0.263, p =  0.037), TGFβ 1 (r =  0.322, p =  0.009), and vimen-
tin (r =  0.406, p =  0.001) (Fig. 5) were significantly correlated.

Discussion
A major challenge for early detection of renal fibrosis is the lack of early and noninvasive biomarkers. However, 
previous evidence revealed that kidney function parameters were suboptimal for detecting early fibrosis owing to 
the compensatory effect14. Moreover, these markers reveal limited information regarding the underlying molec-
ular mechanism. Recent data have shown that measuring transcriptional differences in urine sediment from 
patients with CKD may provide a novel means for early and sensitive diagnosis7–9.

Figure 1. Feature selection and classification by iterative random forest. (A) the changes of OOB 
errorestimates during iterations in the test set and validation set. (B,C) OOB error estimates and confusion 
matrices for prediction of TIFby selected mRNAsin test set (B) and validation set (C).
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As microarray data is high-dimensional and reflects gene–gene interactions, univariate selection methods 
may generate less accurate classifiers and fail to capture these interactions15. In this study, we applied RF, a novel 
and powerful gene selection strategy, to discover renal fibrosis biomarkers.

Here, we identified a four-mRNA signature in urinary sediment including TGFβ 1, MMP9, TIMP2, and 
vimentin, which were important features of TIF. We showed that these four mRNAs could individually serve as 
sensitive diagnostic biomarkers for TIF. We also found that a classifier containing all four mRNAs had favourable 
performance in diagnosing TIF. Impressively, the combined classifiers outperformed SCr and eGFR in the vali-
dation set, with excellent sensitivity. We also investigated correlations between urinary mRNAs and GS severity 
by RF regression. As a secondary result, four mRNAs showed significant correlations with the GS score. These 
findings extended our previous findings on the diagnostic value of urinary mRNAs in renal fibrosis.

Far from being a simple disposition of collagen, renal fibrosis is modulated by a complex signalling network16. 
The role of TGFβ 1 in renal fibrosis has been well established17. Accumulating evidence has shown that both 
circulating and urinary TGFβ 1 levels can serve as biomarkers for CKD18,19. Recently, TGFβ 1 mRNA expres-
sion in urinary sediment was found to correlate with the degree of tubulointerstitial scarring in a small scale 
observational study20. Our study further tested the diagnostic value of urinary TGFβ 1 mRNA levels on a larger 
sample. A vast array of additional molecules has also been demonstrated to serve modulatory roles. Metal matrix 
proteinases (MMPs) and tissue inhibitor of metalloprotease (TIMP) proteins are recognized as the major cellular 
factors mediating matrix turnover16. In addition to ECM proteins, growth factor receptors and cell-adhesion 
molecules are also MMP substrates. Friese et al. reported that MMP-9 was up-regulated in hypertension and 
hypertensive end-stage kidney disease (ESKD)21. Recent findings have implied that TEC, MMP-9, and TIMP-2 
expression can be upregulated by TGF-β  in disease models22,23. We previously reported that the expression of 
MMP9 mRNA was strongly correlated with kidney function parameters9. Here, we further showed that these two 
mRNAs could serve as TIF biomarkers. Vimentin, a marker for EMT (epithelial-mesenchymal transition), has 
been demonstrated to be overexpressed in tubular cells during renal fibrosis24. Lee et al. found that a four-gene 
signature of mRNAs, including vimentin, was a predictor for renal fibrosis in human kidney allografts7. Data from 

Figure 2. The differential expression of the selected four mRNAs between the no TIF group and TIF group 
by Mann–Whitney test, box plots show the lower 95% CI, 25th, median, 75th, and the upper 95% CI values 
of the mRNA relative expression. (A–D) the relative expressions of TGFβ 1 mRNA (A: 0.016 versus 0.027, 
p <  0.001), MMP9 mRNA (B: 0.040 versus 0.021, p <  0.001), TIMP2 mRNA (C: 0.052 versus 0.072, p <  0.001) 
and vimentin mRNA (D: 0.20 versus 0.47, p <  0.001)were significantly higher in TIF group than no TIF group. 
***p <  0.001.
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our previous study revealed that vimentin mRNA detection enables good discriminative power of moderate to 
severe TIF. In this study, we also found that vimentin mRNA was a sensitive diagnostic marker of TIF. Although 
the overall performance of every single urinary mRNA markers was not superior to kidney function parameters 
in this analysis, ROC curve analysis showed that these markers all had better sensitivity. In fact, kidney function 
parameters changed little at the onset of fibrosis4,5. So urinary mRNAs can make up for the lack of sensitivity of 
current parameters and serve as screening markers for renal fibrosis. Moreover, kidney function parameters are 
also affected by non-renal factors such as prerenal ischemia and postrenal obstruction5. The value of urinary 
mRNAs in differential diagnosis needs further investigation.

No single biomarker alone is considered to be sensitive and specific enough for fibrosis screening. One pos-
sible reason is that a common pathway may not be involved in all CKD patients25. A previous report by Zeisberg  
et al. showed that renal fibrosis also occurs in a TGF-β  signaling-independent manner26. Moreover, 
single-molecule measurements might have larger variations, which would make the associated predictions unsta-
ble. Our results showed that the combined mRNAs outperformed single mRNAs and kidney function parameters 
in detecting TIF, supporting the possibility that combined biomarkers could yield more accurate classification. In 
particular, when combined with kidney function parameters, the mRNA classifiers trained by RF yielded excel-
lent accuracy of classification.

The main strengths of our study include: (1) the targeted microarray was constructed for high throughput 
analysis of urinary mRNAs; (2) strong methodology (iterative random forest) was applied to select features and 
generate a classifier that had a favorable performance in diagnosing TIF. (3) a two-stage study design was adopted 
to further validate the performance of biomarkers in diagnosing TIF. Our study has some limitations. First, the 
sample size of the validation set was relatively small, and a larger study is needed to further confirm our conclu-
sions. Second, the constituents of urinary sediment in enrolled CKD patients may also interfere with the diagnos-
tic performance of mRNAs. Urinary cell-specific mRNAs are expected to better reflect kidney injury. Third, to test 
the screening value of urinary mRNA biomarkers in renal fibrosis, we also included several healthy participants 
who did not undergo renal fibrosis and classified them into the no-fibrosis group.

In summary, we showed that among the target genes examined, four fibrosis- associated mRNAs in urinary 
sediments can serve as sensitive predictors of TIF. Combined classifier showed excellent sensitivity and better 
overall diagnostic performance than eGFR and SCr. Large-scale studies are needed to confirm the utility of uri-
nary mRNA biomarkers for diagnosing renal fibrosis and predicting CKD progression.

Figure 3. The correlation between the score of TIF and selected mRNAs by Spearman’s analysis with 
healthy participants excluded. (A–D) the score of TIF positively correlated with the relative expression of 
TGFβ 1 (A), MMP9 (B), TIMP2 (C) and vimentin (D) mRNAs significantly.
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Methods
Trial design. This two-stage study was approved by the Ethical Committee of Zhong Da Hospital (Southeast 
University). All participants provided written, informed consent. All methods were performed in accordance 
with the relevant guidelines and regulations. The stage-I study (test set) was conducted from September 2012 
to September 2014, and the stage-II study (validation set) was conducted from October 2014 to February 2015. 
Patients with biopsy-proven CKD were included in this study, and their clinical data were collected. The eGFR 
was calculated according to modified MDRD equations. The exclusion criteria were as follows: a) patients 

Figure 4. The diagnostic power of individual mRNAs and routine parameters in TIF by ROC curve 
analyses. (A,B) the performance of eGFR, SCr and 24 h protein in diagnosing TIF in test set (A) and validation 
set (B). (C,D) the performance of TGFβ 1, MMP9, TIMP2 and vimentin mRNAs in diagnosing TIF in test set 
(C) and validation set (D).

Classifer Accuracy Sensitivity Specificity

4 mRNAs 0.796 0.929 0.619

4 mRNAs +  eGFR 0.877 0.964 0.762

4 mRNAs +  SCr 0.857 0.964 0.714

eGFR 0.694 0.607 0.810

Scr 0.673 0.536 0.857

TGFβ 1 0.693 0.714 0.666

TIMP2 0.673 1.0 0.238

MMP9 0.678 0.964 0.296

Vimentin 0.633 0.750 0.476

Table 2.  The diagnostic accuracy, sensitivity and specificity of individual and combined biomarkers in the 
validation set.



www.nature.com/scientificreports/

7Scientific RepoRts | 7:39832 | DOI: 10.1038/srep39832

younger than 18 years old; b) patients with acute kidney injury, chronic liver disease, cardiovascular disorders, 
urinary tract infections, or cancer; and c) administration of immunosuppressive medications.

A group of age- and gender-matched healthy volunteers from the Zhong Da Hospital Health Care Center 
was also included in this study, all of whom met the following criteria: (1) no record of abnormal renal function 
(eGFR <​​90​mL•​min•​1.73​m2); (2) normal routine urinalysis, ACR (albumin-creatinine ratio), and 24-h urinary 
protein test results; (3) no record of hypertension, diabetes, hyperlipidaemia, or hyperuricaemia; (4) no family 
history of kidney diseases.

Construction of the urinary mRNA microarray. We designed an mRNA microarray containing 61 
genes participating in the well-accepted molecular mechanism of renal fibrosis. PRIMER 5 software was used 
to design the qPCR primer sets. Six reference genes (GAPDH, B2M, OAZ1, RPL27, HRPT1, and ACTB) were 
included in the microarray to normalize the transcription levels. Furthermore, we also included a genomic DNA 
control (GDC) to control for DNA contamination. The list of included genes is shown in Table 3. The primer 
sequences of all included genes are shown in the supplemental material.

Urine samples and mRNA measurements. First morning urine samples obtained at the time of kidney 
biopsy were centrifuged at 3,000 ×  g for 20 min at 4 °C within 2 h after sample collection. Then, the obtained 
urinary sediments were resuspended in 1.5 ml DEPC-treated PBS and centrifuged at 12,000 ×  g for 5 min at 4 °C. 
One millilitre of RNAiso Plus (Takara, Life Technologies) was added to preserve total RNA, and the samples 
were stored at − 80 °C until use. Total RNA was extracted according to the manufacturer’s protocol (Ambion, Life 
Technologies). We measured the RNA concentrations using a NanoDrop 2000 (Thermo) based on the relative 
absorbance ratio at 260/280, and the RNA purity was also assessed by agarose gel electrophoresis. The qualified 
RNA samples were stored at − 80 °C until use.

We used the kit from Invitrogen to reverse transcribe the total RNA (Invitrogen, Life Technologies), 
which was stored at − 20 °C until use. mRNA-expression levels were quantified by real-time quantitative 
polymerase-chain-reaction (qPCR) assays in an ABI PRISM7700 system (Applied Biosystems). The thermocy-
cling conditions were set as follows: 95 °C for 10 min, followed by 40 cycles of 15 s at 95 °C and 60 °C for 1 min. 
Dissociation curves and melting temperatures were recorded and relative mRNA expression levels were calcu-
lated by the Δ Δ Ct method27.

Figure 5. The correlations between the score of GS and selected mRNAs by Spearman’s analysis with 
healthy participants excluded. (A–D) the score of GF positively correlated with the relative expression of 
PODXL (A), RANTES (B), TGFβ 1 (C) and vimentin (D) mRNAs significantly.
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Evaluation of renal fibrosis. Periodic acid Schiff (PAS) and Masson trichrome staining were used to deter-
mine the severity of GS and TIF, respectively. Two experienced pathologists (P.S. Chen and H.F. Ni) were blinded 
to the microarray data and scored the severity of renal fibrosis. For GS, a semiquantitative scoring system was 
used, as described previously by Raji et al.28. In specimens containing at least 20 glomeruli, each glomerulus was 
graded from 0 to 4 according to the percentage of fibrotic area (0 for 0%; 1 for 1–25% affected glomerular area; 2 
for 26–50% affected glomerular area; 3 for 51–75% affected glomerular area; 4 for 76–100% affected glomerular 
area). The final score was a weighted average of all grades obtained. The percentage of fibrotic area in tubuloin-
terstitium was recorded as the TIF score, and its grade was based on the following well-accepted rules: grade 0, 
no more than 5% fibrotic area; 1, 6–25% fibrotic area; 2, 26–50% fibrotic area; and 3, > 50% fibrotic area. A grade 
of 0 was considered to reflect the absence of TIF. Participants showing grades of 1–3 were combined into the TIF 
group. All healthy participants were classified in the no-TIF group.

Statistical analysis. Our analyses of the microarray database involved the following steps: (1) select impor-
tant TIF features by iterative RF; (2) assess the individual diagnostic power of selected mRNAs for TIF, as well as 
their correlation with scores of TIF, in the test set; (3) validate the individual diagnostic power of selected mRNAs 
and routine parameters for TIF in the validation set; (4) assess the diagnostic power of the classifiers trained by 
RF for TIF and compare them with those of eGFR and SCr in the validation set; (5) select important features of 
GS by iterative RF regression and assess their correlation with GS scores.

Iterative RF method. In the test set, iterative RF was performed to classify cases with and without TIF, using 
the randomForest package (from A. Liaw and M. Wiener) in R software (version i386 3.2.4)29. After each iteration, 
mRNAs showing the smallest mean decrease in accuracy were discarded, and a new RF with a lower OOB error 
rate was constructed. Data from a previous study have shown that the OOB estimate is as accurate as using a test 
set of the same sample size as the training set11. Although RF was more resistant to over-fitting than a support 
vector machine or artificial neural network, the validation set was involved in the same process simultaneously 
and an “early-stop” strategy was applied to prevent “over-fitting”12. The final set of mRNAs with smallest estimated 
OOB was identified as important features of TIF. For regression, the % IncMSE was used as a parameter for deter-
mining the importance of each mRNA, and the same iterative process was undertaken.

Other statistical methods. SPSS 18.0 software was used for all additional statistical analyses. The 
Kolmogorov–Smirnov test was used to determine the normality of the data. Numeric results subjected to normal 
distribution were presented as the mean ±  SD. Non-normal numeric results were presented as quartiles. Student’s 
t-test was applied to compare the means of normal data. Otherwise, the Mann–Whitney test was applied. The 
correlation between gene-expression levels and pathological parameters was analysed by Spearman’s rank-order 
test. The diagnostic performance of single biomarker was evaluated by generating ROC curves. The AUC was 
used to assess the overall discriminative power. An AUC of 0.6–0.7 was considered as poor, 0.7–0.8 was moder-
ate, 0.8–0.9 was good, and > 0.9 was excellent. The best cut-offs were determined by selecting the data points that 
maximized the sum of specificity and sensitivity on the ROC curve. Two-tailed P values of < 0.05 were considered 
statistically significant.
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