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The Wingless (Wnt)-mediated signals are involved in many important aspects of
development of the mammalian cerebral cortex. How Wnts interact with their
modulators in cortical development is still unclear. Here, we show that Wnt7a and
secreted frizzled-related protein 1 (Sfrp1), a soluble modulator of Wnts, are co-
expressed in mouse embryonic cortical neural progenitors (NPs). Knockout of Wnt7a
in mice causes microcephaly due to reduced NP population and neurogenesis, and
Sfrp1 has an opposing effect compared to Wnt7a. Similar to Dkk1, Sfrp1 decreases
the Wnt1 and Wnt7a activity in vitro. Our results suggest that Wnt7a and Sfrp1 play
opposite roles to ensure proper NP progeny in the developing cortex.
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INTRODUCTION

During development of the mammalian CNS, billions of neurons are produced from proliferating
NPs (Rakic, 2009). In the cerebral cortex, NPs are expanded through symmetric and asymmetric
division at the VZ and SVZ (Haubensak et al., 2004; Gotz and Huttner, 2005; Homem et al., 2015).
The proper control of proliferation, survival and differentiation of NPs is the key step for normal
cortical formation (Rakic, 2007, 2009; Zhao et al., 2008; Sun and Hevner, 2014).

A number of signaling pathways that regulate the switch and balance between proliferation
and differentiation of NPs have been defined, including the Notch, Sonic hedgehog, fibroblast
growth factor, TGF-β/Smads, and Wnt pathways (Chenn and Walsh, 1999; Rowitch et al.,
1999; Hirabayashi et al., 2004; Joksimovic et al., 2009; Aguirre et al., 2010; Menendez et al.,
2011; Rash et al., 2011). Wnt signaling pathways play crucial roles in neurogenesis (Kuwabara
et al., 2009; Durak et al., 2016). For example, the canonical Wnt/β-catenin pathway is
required for NP self-renewal and differentiation (Chenn and Walsh, 2003; Kalani et al., 2008;

Abbreviations: CNS, central nervous system; CP, cortical plate; CRD, cysteine-rich domain; E0.5, embryonic day 0.5; Fz,
frizzled; IP, intermediate progenitor; ISH, in situ hybridization; IUE, in utero electroporation; NP, neural progenitor; P0,
postnatal day 0; PFA, paraformaldehyde; qRT-PCR, quantitative real-time PCR; RNAi, RNA interference; RT-PCR, reverse
transcription-PCR; Sfrp1, secreted frizzled-related protein 1; shRNA, short hairpin RNA; SVZ, subventricular zone; TGF-β,
transforming growth factor-β; VZ, ventricular zone.
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Bengoa-Vergniory et al., 2014; Delaunay et al., 2014; Bengoa-
Vergniory and Kypta, 2015; Garriock et al., 2015). Among
the Wnt signaling molecules, Wnt7a has been shown to be
critical in axonal remodeling, guidance, synaptogenesis and
neurotransmitter release in the hippocampus (Hall et al., 2000;
Cerpa et al., 2008; Ciani et al., 2011, 2015). Wnt7a controls
neurogenesis through regulating genes involved in both cell cycle
control and neuronal differentiation (Qu et al., 2013; Long et al.,
2016).

Furthermore, three distinct receptor families have been
reported to mediate the Wnt signaling: Fz, RoR, and Ryk
(van Amerongen et al., 2008; Angers and Moon, 2009). In
the nervous system, Fzs regulate a range of functions from
neuronal differentiation to cell polarity, axon guidance, and cell
survival (Van Raay et al., 2005; Prasad and Clark, 2006; Liu
et al., 2008; Kilander et al., 2014; Zhou and Nathans, 2014;
Morello et al., 2015; Chailangkarn et al., 2016). Moreover, Sfrps
are a family of secreted factors that modulate Wnt-induced
β-catenin pathway through selectively sequestering specific Wnts
in different neurons by possessing the Wnt-binding frizzled
CRD (Dann et al., 2001; Bovolenta et al., 2008; Nathan and
Tzahor, 2009; Lavergne et al., 2011). For example, both Sfrp1
and Sfrp2 can be the dominant negative inhibitors of Wnt3a
to inhibit proliferation in the developing chick neural tube
(Galli et al., 2006), and Sfrp2 can negatively regulate the Wnt
signaling in the CNS of Pax6 mutant mice via inhibiting Wnt7b
(Kim et al., 2001a). Sfrp1 knockout mice display abnormal
cortical morphogenesis (Esteve et al., 2018). However, the precise
regulation of Wnts and their antagonist Sfrps in mammalian
cortical neurogenesis is still unclear.

In this study, we show that Wnt7a and Sfrp1 are co-expressed
in the VZ of mouse embryonic cerebral cortices. Knockout of
Wnt7a causes microcephaly due to reduced numbers of NPs
and decreased neurogenesis. Sfrp1 showed overexpression leads
to a decrease in the NP population. Similar to the known Wnt
antagonist Dkk1, Sfrp1 directly blocks the Wnt1 and Wnt7a
activity in vitro. Our results indicate that opposite effects of
Wnt7a and Sfrp1 play an important role in expansion of
cortical NPs.

MATERIALS AND METHODS

Animals and Genotyping
The Wnt7a knockout mice (Wnt7a KO, Wnt7a−/−) were
generated by mating female Wnt7a heterozygous mice
(Wnt7a+/−) with male Wnt7a heterozygous mice (Wnt7a+/−).
Mice that only have the mutant allele (Wnt7a−/−) were Wnt7a
KO mice, wild-type (WT) mice were used as controls. To achieve
knockout of Wnt7a, a double-selection gene-replacement
construct was designed to insert a neo gene into a Nael site in
the second exon of the Wnt7a gene (Parr and McMahon, 1995;
Ashrafi et al., 2012).

For staging of embryos, midday of the day of vaginal-plug
formation was considered as E0.5; the first 24 h after birth
were defined as P0. Animal use was overseen by the Animal
Facility at Weill Cornell Medical College (Protocol number

#2011-0062), and was performed according to the institutional
ethical guidelines for animal experiments.

Mouse tail-tip biopsies were used for genotyping by
PCR reactions using the following primers: for Wnt7a KO,
forward: 5-CTCTTCGGTGGTAGCTCTGG-3 and reverse-1:
5-TCACGTCCTGCACGACGCGAGCTG-3 (product size: 350
bp); for WT, reverse-2: 5-TCCTTCCCGAAGACAGTACG-3
(product sizes: 560 bp).

RNA Sequencing (RNA-Seq)
Total RNAs for RNA-seq were extracted from three individual
E12.5 mouse cerebral cortices using TRIzol (Invitrogen,
United States) according to manufacturer’s instructions. The
ribosome RNA (rRNA) removal, generation of cDNA library
and high-throughput sequencing were performed on the
Ion proton platform (Life Technologies, United States) from
the NovelBio Bio-Pharm Technology Company (Shanghai,
China). Three sets of raw reads were obtained, and data were
deposited in Gene Expression Omnibus (GEO1) under the
series number GSE116056. After removing contaminated
and low-quality sequences, all reads were mapped onto the
Ensembl mouse reference genome. Gene expression level were
calculated by RPKM (reads per kilo-bases per million mapped
reads).

In Situ Hybridization
In situ hybridization was performed as described: following
fixation with 4% PFA, acetylation with acetylation buffer (1.3%
triethanolamine, 0.25% acetic anhydride, 20 mM HCl), treatment
with proteinase K (5 µg/ml, IBI Scientific) and pre-hybridization
(1 × SSC, 50% formamide, 0.1 mg/ml Salmon Sperm DNA
Solution, 1 × Denhart, 5 mM EDTA, pH 7.5), brain sections
were hybridized with DIG-labeled LNA probes at Tm −22◦C
overnight. After washing with pre-cooled wash buffer (1 × SSC,
50% formamide, 0.1% Tween-20) and 1 × MABT, sections
were blocked with blocking buffer (1 × MABT, 2% blocking
solution, 20% heat-inactived sheep serum) and incubated with
anti-DIG antibody (1:1, 500, Roche) at 4◦C overnight. Brain
sections were washed with 1 × MABT and Staining buffer (0.1
M NaCl, 50 mM MgCl2, 0.1 M Tris-HCl, pH 9.5), stained
with BM purple (Roche) at room temperature until ideal
intensity was reached. The antisense RNA probe (Sfrp1, Wnt7a,
Wnt7b, Pax6, Ngn2, and Hes5) was labeled using the DIG RNA
labeling Kit (Roche, Switzerland) following the manufacturer’s
instructions.

Nissl Staining and Measuring Brain Size
Brain sections (14 µm) were processed through incubation in the
subsequent solutions in the following order: ethanol/chloroform
(1:1, overnight), 100% ethanol (30 s), 95% ethanol (30 s),
distilled water (30 s, twice), cresyl violet (3–5 min), distilled
water (2 min, three times), 50% ethanol (2 min), 95% ethanol
(5–30 min), 100% ethanol (5 min, twice), xylene (3 min, twice).
Thereafter, the sections were mounted with a coverslip.

1http://www.ncbi.nlm.nih.gov/geo/
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The Wnt7a KO and WT brain images were captured in one
picture, and the thickness of the cortex and CP was measured
separately. The relative thickness of the cortex and CP in the KO
was normalized from dividing the mean length of KO by that of
the WT groups. At least three brains, and two chosen areas in
each brain section were measured and averaged in each group.
All data are presented as mean ± SEM. P-values were calculated
using unpaired Student’s t-test.

RNA and qRT-PCR
The RNAs for RT-PCR from five stages of samples (E12.5, E13.5,
E14.5, E15.5, and E17.5), were extracted by TRIzol (Invitrogen,
United States), with three mouse cerebral cortices from each
age group. Experimental protocols of embryo treatment used
here were approved by Weill Cornell Medical College’s animal
care and use committee. The procedures were carried out in
accordance with the approved guidelines. After RNA extraction,
the cDNA for RT-PCR was synthesized using high-capacity
cDNA Reverse Transcription kit (Applied Biosystems). The
qRT-PCR reactions were carried out in the Bio-Rad CFX-384
system, using the reaction mixture SYBR Green Mix (Bio-Rad,
United States) with the aforementioned cDNA samples.

β-Actin was used as an internal control, and was used to
normalize the relative mRNA expression level. Each group had
three biological repetitions, and all experiments were performed
in triplicate, and each experiment was repeated at least twice.
The qRT-PCR primers are: Wnt7a, forward: 5′-CCGAAATGG
CCGTTGG-3′ and reverse: 5′-CGATGCCGTAGCGGATGT-3′
(PCR product: 251 bp); Sfrp1, forward: 5′-CAACGTGGGCT
ACAAGAAGAT-3′ and reverse: 5′-GGCCAGTAGAAGCCGA
AG AAC-3′ (product size: 249 bp); β-actin, forward: 5′-GGCT
GTATTCCCCTCCATCG-3′ and reverse: 5′-CCAGTTGGTAA
CAATGCCATGT-3′ (product size: 245 bp). All data are
presented as mean ± SEM. P-values were calculated using
unpaired Student’s t-test.

Tissue Preparation,
Immunohistochemistry, and Analysis
Immunohistochemistry was performed as described: mouse
brains were fixed in 4% PFA in phosphate-buffered saline (PBS)
over night, incubated in 25–30% sucrose in PBS, embedded
in OCT and stored at −80◦C until use. Brains were sectioned
(14–16 µm) using a cryostat. For antigen recovery, sections were
incubated in heated (95–100◦C) antigen recovery solution (1
mM EDTA, 5 mM Tris, pH 8.0) for 15–20 min, and cooled
down for 20–30 min. Before applying antibodies, sections were
blocked in 10% normal goat serum (NGS) in PBS with 0.1%
Tween-20 (PBT) for 1 h. Sections were incubated with primary
antibodies at 4◦C overnight and visualized using goat anti-rabbit
IgG–Alexa-Fluor-488 and/or goat anti-mouse IgG–Alexa-Fluor-
546 (1:300, Molecular Probes) for 1.5 h at room temperature.
Images were captured using a Leica digital camera under a
fluorescent microscope (Leica DMI6000B) or a Zeiss confocal
microscope.

The following antibodies were used: bromodeoxyuridine
(BrdU) (1:50, DSHB), Ki67 (1:500, Abcam), Pax6 (1:30, DSHB),

Tbr1 (1:2500, Abcam), Tbr2 (1:2000, kindly provided by Robert
Hevner, University of Washington, Seattle, WA, United States),
Ctip2 (1:1000, Abcam), Satb2 (1:1000, Abcam), GFP (1:600,
DAKO), Neun (1:300, Chemicon), Wnt7a (1:1000, Abcam) and
Sfrp1(1:1000, Abcam).

Cell counting in the mouse brain sections was performed
on a fixed width (200 µm bin) of a representative column
in the cortical wall. All sections analyzed were selected from
a similar medial point on the anterior-posterior axis. Cell
counting was performed in minimal three chosen areas in each
brain, and at least three brains were analyzed in each group.
Cell counting in each chosen area was repeated at least three
times and a mean was obtained. All data are presented as
mean ± SEM. P-values were calculated using unpaired Student’s
t-test.

Plasmid DNA Constructs
To clone Sfrp1, Dkk1 and Wnt7a coding sequences into pCAGIG
for IUE, Sfrp1, Dkk1 and Wnt7a coding sequences from pGEM-T
was attached to d2EGFP, a destabilized variant of the wild-type
GFP, and then subcloned d2EGFP-Sfrp1, -Dkk1 and -Wnt7a
coding sequence fragments into pCAGIG.

Full length coding sequences (CDSs) for Sfrp1, Dkk1
and Wnt7a were cloned using the following primers: Sfrp1,
forward: 5′-ATTCCGCTCGAGCGGGTCGCCGAGCAACATG
GGCGTC-3′ and reverse: 5′-ATTCCTTAAGGCCTTCCCCAG
TCCGCCCCAG-3′ (PCR product: 954 bp); Wnt7a, forward:
5′-GCACTCGAGCAGCGGGGACTATGACCCGGAAAGCGC-
3′ and reverse: 5′-CATTCACTTGCACGTATACATCTCCG
TG-3′ (PCR product: 1,053 bp); DKK1, forward: 5′-CGGAATTC
GGAGATGATGGTTGTGTGTGC-3′ and reverse: 5′-GGTTT
AGTGTCTCTG GCAGGTGTG-3′ (PCR product: 826 bp).

The Sfrp1, Dkk1 coding sequences were subcloned into
the pcDNA3.1 vector for the TOPflash and FOPflash luciferase
reporter (Promega, United States) assay.

RNA Interference Design and Efficiency
Analysis
To knockdown Sfrp1, 4 different Sfrp1 specific short hairpin
RNA (Sfrp1-shRNA) were designed and cloned into the pSilencer
vector, separately. To analyze interference efficiency, Neuro2A
cells were plated into 6-well plates in triplicate, and were
transfected with four Sfrp1-shRNA using Lipofectamine 3000
(Invitrogen, United States). Cells were cultured for 2 days and
the endogenous Sfrp1 knockdown efficiency was verified by qRT-
PCR. The shRNA with the highest knockdown efficiency was
selected to perform further IUE in cerebral cortices.

The following oligos were used to clone Sfrp1-shRNA:
Sfrp1-shRNA1, 5′-CACCGCTACAAGAAGATGGTGCTGC
TTCAAGAGAGCAGCACCATCTTCTGGTAGCTTTTTTG-3′
(Target site: GCTACAAGAAGATGGTGCTGC, 498–519); Sfrp1-
shRNA2, 5′-CACCGCCACAACTTTCTCATCATGGTTCAAG
AGACCATGATGAGAAAGTTGTGGCTTTTTTG-3′ (Target
site: GCCACAACTTTCTCATCATGG, 1,077–1,098); Sfrp1-
shRNA3, 5′-CACCGCCATTCACAAGTGGGACAAGTTCAAG
AGACTTGTCCCACTTGTCCCACTTGTGAATGGCTTTTTT
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G-3′ (Target site: GCCACAACTTTCTCATCATGG, 1,130–
1,151); Sfrp1-shRNA4, 5′-CACCGCAGTTCTTCGGCTTCTA
CTGTTCAAGAGACAGTAGAAGCCGAAGAACTGCTTTTTT
G-3′ (Target site: GCAGTTCTTCGGCTTCTACTG, 715–736);
for negative control, 5′-CACCGTTCTCCGAACGTGTCACG
TTTCAAGAGAACGTGACACGTTCGGAGAATTTTTTG-3′.

In Utero Electroporation
In utero electroporation was performed in E12.5 embryos
according to the published protocol (Saito and Nakatsuji,
2001; Saito, 2006; Ito et al., 2014). Briefly, plasmid DNA
was prepared using the EndoFree Plasmid Maxi Kit (Qiagen)
according to manufacturer’s instructions, and diluted to 2 µg/µl.
DNA solution was injected into the lateral ventricle of the
cerebral cortex, and electroporated with five 50-ms pulses at
35V using an ECM830 electro square porator (BTX). Embryos
were allowed to develop to E13.5. Animals with their brains
electroporated, as detected by the GFP fluorescence under a
fluorescent dissection scope (Leica, MZ16F), were selected for
further analyses. Cell counting was performed in minimal three
chosen areas in each brain, and at least three electroporated
brains for each construct were analyzed. Cell counting in each
chosen area was repeated at least three times and a mean was
obtained.

TOPflash and FOPflash Luciferase
Reporter Assay
The coding sequences of the Wnt7a and Wnt1 were amplified
by PCR from mouse cDNA. Reporter genes were cloned
into TOPflash and FOPflash vector (Promega, United States).
For transfections, mouse Neuro2A cells were suspended in
DMEM and plated into 24-well plates in triplicate at 1.5 × 10
4cells/100 mL. Adherent cells were co-transfected with 100
ng/mL luciferase reporter containing the reporter gene and
60 ng/mL vector (pcDNA3.1 blank vector, pcDNA3.1-Dkk1
and pcDNA3.1-Sfrp1) using Lipofectamine 3000 (Invitrogen,
United States). After 48 h, cells were harvested and luciferase
activity was measured using the luciferase reporter assay
system (Cat. #E1910, Promega, United States) according to the
manufacturer’s protocol.

The relative luciferase activity was normalized from the
mean of pcDNA3.1 blank vector, separately. Each group had
three biological repetitions, and experiments were performed in
triplicate and each sample was repeated at least three times. All
results are presented as mean ± SEM. P-values were calculated
using unpaired Student’s t-test.

Statistical Analysis
All experiments using cultured cells and mouse embryos were
repeated at least with three biological replicates. All results are
presented as mean± standard error of the mean (SEM). P-values
were determined by unpaired Student’s t-test for assessing the
significance of differences between two treatments (See each
figure for details). P-values <0.05 were considered significant.
Significant differences were denoted as ∗P-values < 0.05, ∗∗P-
values < 0.01, ∗∗∗P-values < 0.001.

RESULTS

Wnt7a and Sfrp1 Are Co-expressed in
NPs in the VZ
To screen genes that are highly expressed in the mouse E12.5
cerebral cortices, RNA sequencing (RNA-seq) was performed.
30,827,078 and 29,345,746 and 32,038,052 raw sequencing
reads, and 28,547,544 and 27,289,172 and 29,753,653 clean
reads, respectively, were obtained from three individual E12.5
cortices (Supplementary Table S1). The mapping rates of clean
reads are 92.2%, 93.4%, and 92.6% (Supplementary Table S2).
Among these genes, Wnt7a, Wnt7b, and Sfrp1 showed high
expression (RPKM >500) (Supplementary Figure S1A and
Supplementary Table S4). Moreover, Wnt7b, Wnt7a, and Wnt5a
displayed higher abundant expression levels than other Wnt
genes (Supplementary Tables S3, S4).

To verify the RNA-seq data, we examined expression patterns
of Wnt7a, Wnt7b, and Sfrp1, and compared them with those of
NP markers such as Pax6, Ngn2, and Hes5, and other Sfrps such
as Sfrp2, Sfrp4, and Sfrp5 in the mouse cortex at E12.5 using
ISH (Figure 1A and Supplementary Figure S1B). We found that
both Wnt7a and Sfrp1 are expressed in the VZ of the E12.5
cortex (Figure 1A). Moreover, expression of Wnt7a and Sfrp1
was co-localized with that of Pax6, Ngn2 and Hes5, suggesting
that Wnt7a and Sfrp1 are largely expressed in NPs (Figure 1A).
Conversely, Wnt7b was highly expressed in newborn neurons,
and other Sfrps such as Sfrp2 displayed low expression in the
cortex (Figure 1A and Supplementary Figure S1B).

Next, we investigated whether expression levels of Wnt7a
and Sfrp1 progressively change over embryonic stages at E12.5,
E13.5, E14.5, E15.5, and E17.5 using qRT-PCR. Wnt7a displayed
ascending expression from E12.5 to E15.5 (Figure 1B). Sfrp1
expression showed a gradual decline from E12.5 to E17.5
(Figure 1C). Compared to Wnt7a, Sfrp1 displays overlapping
expression with Wnt7a in the VZ and opposite expression
levels, implying distinct roles of Wnt7a and Sfrp1 in cortical
development.

Wnt7a Positively Regulates Proliferation
of NPs and Promotes Neurogenesis
Because of Wnt7a expression in the cortical VZ, we investigated
whether Wnt7a regulates NP proliferation by analyzing cortical
development in Wnt7a knockout mice (Wnt7a KO). The
body size of Wnt7a KO was indistinguishable from that of
WT mice. The cortical size and brain size were measured
at P0, P5, and P20 (Figures 2A–C and Supplementary
Figure S2). Compared to WT, the cortical size and brain
size of Wnt7a KO mice were greatly reduced from P0 to P20,
suggesting a progressive brain deterioration (Figures 2A–C
and Supplementary Figure S2). Moreover, the thickness of the
cortical wall was significantly reduced in the brain sections with
Nissl staining in Wnt7a KO mice (Figures 2B,C). Interestingly,
the ratios of cortical size versus brain size were similar
between WT and KO, suggesting that the overall brain size is
reduced in Wnt7a KO mice (Figure 2C and Supplementary
Figure S2).
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FIGURE 1 | Wnt7a and Sfrp1 are co-expressed in neural progenitors and show opposite expression trends. (A) In coronal sections of mouse E12.5 cerebral
cortices, Wnt7a, Sfrp1, Pax6, Ngn2, and Hes5 were expressed in the ventricular zone (arrowheads). Conversely, Wnt7b was expressed in newborn neurons. Red
boxes show high power views. (B) qRT-PCR analysis of Wnt7a and Sfrp1 expression levels at different embryonic stages (E12.5, E13.5, E14.5, E15.5, and E17.5).
All comparisons were made with that of values at E12.5. Values of histogram represent mean ± SEM, and each dot represents a data point in each biology repeat
(n = 3, ∗P < 0.05; ∗∗P < 0.01; unpaired Student’s t-test). (C) Opposite expression trends between Wnt7a and Sfrp1 at different embryonic stages (from E12.5 to
E17.5) measured by qRT-PCR.

We then examined whether the NP population was changed
in E13.5 Wnt7a KO mice using immunohistochemistry. NPs
can be detected by labeling cells in the G1, S, G2, and M
phases using the anti-Ki67 antibody. The number of Ki67+
cells was significantly decreased in the E13.5 Wnt7a KO
cortex, compared to the control (Figures 2D,E). The numbers
of Sox2+ and Pax6+ radial glial cells (RGCs), and Tbr2+
IPs were also reduced, suggesting an early reduction of NPs
(Figures 2F–K). Moreover, because Pax6+/Tbr2+ cells are under
transition from RGCs to IPs, we quantified the number of
Pax6+/Tbr2+ cells. While a significant decrease in the number
of Pax6+/Tbr2+ cells was detected in E13.5 Wnt7a KO cortex,
the percentages of Pax6+/Tbr2+ cells versus total Pax6+ cells
and Pax6+/Tbr2+ cells versus total Tbr2+ cells were unchanged,
indicating that Wnt7a deletion doesn’t affect transition of RGCs
to IPs (Supplementary Figures S3A–D). In addition, even though
the total number of Tbr2+ cells was reduced, the percentage
of Tbr2+ cells versus total DAPI+ cells remained the same
in WT and Wnt7a KO cortices, suggesting that reduction in
IPs is in proportion with that of total cells (Supplementary
Figures S3E,F).

Next, we examined whether the early loss of NP population
is maintained at E15.5. Compared to the controls, the numbers
of BrdU+, Ki67+, Sox2+, Tbr1+, Pax6+, and Tbr2+ cells were
greatly reduced in E15.5 Wnt7a KO cortices, suggesting that the
deletion of Wnt7a causes a progressive loss of NPs (Figures 3A–F
and Supplementary Figures S4A,B).

Because the overall organization of cortical layers is becoming
clear, and neuronal production is evident at P0, P0 pups were

collected to analyze brain phenotypes without sacrifice of the
mother. We examined the expression of Tbr1 (layer VI), Ctip2
(layer V) and Satb2 (layer II, III, and IV) in P0 Wnt7a KO and
control cortices (Molyneaux et al., 2007). The relative positioning
of layer markers in the CP was similar to that of the WT,
suggesting that overall cortical layer organization is not greatly
affected by Wnt7a deletion (Figures 3G,I). Despite concordance
of the position of layer markers, each layer examined was
thinner in the Wnt7a KO cortex than that in the control,
with significantly fewer mature NeuN+ neurons found, and
great reductions in the number of Tbr1+ and Satb2+ neurons
(Figures 3G–J). The Citp2+ neurons showed no appreciable
decrease in Wnt7a KO mice (Figures 3I,J). Moreover, the
percentages of Tbr1+ and Satb2+ cells versus DAPI+ cells were
unchanged in WT and KO cortices, indicating that the reduction
in newborn neurons is in proportion with that of total cells
(Supplementary Figure S4C).

Taken together, our results indicate that knockout of Wnt7a
causes reduced NPs and production of newborn neurons.

Sfrp1 Negatively Regulates Proliferation
of NPs
We next examined whether altering Sfrp1 expression in the cortex
has a similar or an opposite effect on NPs as deleting Wnt7a
expression. The full length cDNA for Sfrp1 was cloned (pCAGIG-
Sfrp1) and was ectopically expressed in E12.5 cortices by using
IUE, and embryos were analyzed after 24 h. Overexpression of
Sfrp1 resulted in a decreased number of GFP+ NPs that are
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FIGURE 2 | Wnt7a positively regulates brain size and proliferation of NPs. (A) The cortex of P0 Wnt7a knockout (KO) mice was greatly reduced compared to wild
type (WT) controls. The arrowheads show the most rostral and caudal regions in the cortex. “L1” represent the cortical length, and “L2” represent the brain length.
(B) The cortical wall in P0 Wnt7a KO mice were thinner than that in WT mice, detected by Nissl staining. CP: cortical plate. (C) The relative thickness of the cortex
and cortical plate in the KO was normalized from dividing the mean length of Wnt7a KO by that of the WT groups. Values of histogram represent mean ± SEM, and
each dot represents a data point of the relative thickness in each section or length in the brain images. n = 3 brains, at least two sections from each brain.
∗P < 0.05;∗∗∗P < 0.001; ns, non-significant; unpaired Student’s t-test. (D–K) The numbers of Pax6+ and Tbr2+ neural progenitors were greatly reduced in the
E13.5 Wnt7a KO cortex. Values of histogram represent mean ± SEM, and each dot represents a data point of the counting number in each section (200 µm bin).
n = 3 brains, at least four sections from each brain. ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test). Scale bar: 50 µm.

double-positive for BrdU+, Pax6+, Sox2+ and Tbr2+, compared
to those of electroporation of the control (pCAGIG) in E13.5
cortices, suggesting a decrease of NPs after Sfrp1 overexpression
(Figure 4).

To test whether the endogenous Sfrp1 limits the NP numbers
in vivo, we used shRNA designed to outcompete endogenous
Sfrp1 transcripts. The Sfrp1 knockdown efficiency were verified

in mouse Neuro2A cell by qRT-PCR (Supplementary Figure S5).
The construct of shRNA (Sfrp1-sh4) that shows the highest
knockdown efficiency among four tested shRNAs was used
to perform IUE. Greater proportions of GFP+ NPs expressed
BrdU, Pax6 and Sox2 were found in the VZ/SVZ following
electroporation of the Sfrp1-sh4 (Supplementary Figures S6A–F).
Tbr2+ NPs displayed no appreciable increase (Supplementary
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FIGURE 3 | Wnt7a promotes neurogenesis at E15.5 and P0. (A–F) Compared to controls (WT), Wnt7a knockout (KO) cortices at E15.5 displayed a reduction in the
numbers of BrdU+, Ki67+, Sox2+, Tbr1+, Pax6+, and Tbr2+ cells. The dashed box represents the cell counting area. Values of histogram represent mean ± SEM,
and each dot represents a data point of the counting number in each section (200 µm bin). n = 3, at least four sections from each brain. ∗P < 0.05; unpaired
Student’s t-test. (G–J) In P0 Wnt7a KO cortices, the numbers of Tbr1+ and Stab2+ neurons were greatly reduced. NeuN+ neurons but not Citp2+ neurons were
also reduced. The dashed box represents the cell counting area. Values of histogram represent mean ± SEM, and each dot represents a data point of the counting
number in each section (200 µm bin). n = 3, at least five sections from each brain. ∗P < 0.05; ∗∗P < 0.01; ns, non-significant; unpaired Student’s t-test. Scale bar:
100 µm.

Figures S6G,H). These results indicate that Sfrp1 negatively
modulates NP proliferation.

Sfrp1 Has an Opposite Role of Wnt7a in
Regulating NP Proliferation
Based on opposite effect of Wnt7a and Sfrp1 on NP development,
we suspected that Wnt7a might be regulated by its antagonists

during cortical development. Previous studies have shown that
Dkk1 is an antagonist of Wnt7a (Fortress et al., 2013). To examine
how the Wnt7a antagonist may regulate NP development in
the cortex, we over-expressed both Wnt7a and Dkk1 in the
VZ of cortex using IUE. While Wnt7a promoted expansion of
NPs, as shown by an increased number of BrdU+ and Pax6+
cells, over-expression of Dkk1 and Wnt7a in the VZ dampened
Wnt7a effects, suggesting an antagonistic regulation of Dkk1
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FIGURE 4 | Sfrp1 negatively regulates proliferation of NPs at E13.5. (A,C,E,G) Overexpression of Sfrp1 in E12.5 cortices using in utero electroporation, analyzed at
E13.5, caused the reduction of BrdU+/GFP+, Pax6+/GFP+, Sox2+/GFP+, and Tbr2+/GFP+ neural progenitors. (B,D,F,H) The proportion of cells labeled with
individual progenitor markers and GFP versus cells labeled with GFP was quantified. Values represent mean ± SEM, and each dot represents a data point of the
marker+ GFP+/GFP+ % in each section (200 µm × 200 µm). n = 3, at least two sections from each brain. ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test.
Scale bar: 50 µm.

(Supplementary Figure S7). Moreover, increasing Dkk1 dosage
caused a greater decrease in the number of BrdU+ and Pax6+
cells, suggesting a dosage-dependent antagonistic regulation of
Dkk1 on Wnt7a (Supplementary Figure S7).

If Sfrp1 also has the functions as a Wnt7a antagonist, it should
have a similar effect to Dkk1 in NP development. With this in
mind, Wnt7a and Sfrp1 were both overexpressed in the cortex
using IUE. Similar to Dkk1, Wnt7a-Sfrp1 overexpressed in the
VZ caused a reduction of BrdU+ and Pax6+ cells (Figure 5).
Moreover, increasing the dosage of Sfrp1 had a more profound
activity in suppressing Wnt7a effect on NP expansion (Figure 5).

Our results suggest that similar to Dkk1, Sfrp1 acts as an
antagonist of Wnt7a and negatively regulates expansion of NPs.

Sfrp1 Inhibits Wnt7a Activity in TOPflash
Luciferase Reporter Assay
Based on the dosage-dependent regulation of Sfrp1 on Wnt7a, we
tested whether Sfrp1 could down-regulate the Wnt7a activity. To
validate Sfrp1-Wnt7a interaction, we used the TOPflash luciferase
reporter assay containing the active TCF/LEF binding sites,
which is the classical method to identify canonical Wnt/β-catenin

activity (Figure 6A) (Veeman et al., 2003). If the canonical Wnt
signaling is activated, the β-catenin will be associated with the
TCF/LEF transcription factors to promote the Firefly luciferase
activity. The mutant TCF/LEF binding site of FOPflash was used
as the control (Figure 6A).

Wnt1 is a known molecule of the Wnt signaling and is
crucial for early development of the CNS (Leal et al., 2011; Cai
et al., 2013). As the positive control, we first tested whether
Dkk1 and Sfrp1 can block Wnt1 in Neuro2A cells. Compared
to the FOPflash group, the luciferase activity of Wnt1 in Dkk1
overexpression treatment was significantly decreased in the
TOPflash group (Figure 6B). Agreed with Dkk1, the luciferase
activity of Sfrp1 overexpression showed a similar decrease
(Figure 6B).

Next, we tested whether Sfrp1 can inhibit Wnt7a in a
similar fashion to how Wnt1 is negatively regulated in the
aforementioned experiment. We found that the luciferase activity
of Wn7a was decreased appreciably in both Sfrp1 and Dkk1 over-
expression treatment, suggesting that Sfrp1 acts like the known
antagonist Dkk1, and blocks the Wnt7a signal (Figure 6C).

In summary, Sfrp1 has an attenuating role in Wnt signaling by
blocking Wnt1 and Wnt7a in vitro.
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FIGURE 5 | Sfrp1 suppresses Wnt7a activity in neural progenitor proliferation dosage-dependent manner. (A,B) Co-expression of Sfrp1 and Wnt7a dampened the
effect of Wnt7a in expanding neural progenitors at E13.5. (C,D) The numbers in BrdU+/GFP+ and Pax6+/GFP+ neural progenitors showed a decreasing trend with
a proportional increase of Sfrp1 (Wnt7a:Sfrp1 = 1:1 vs. Wnt7a:Sfrp1 = 1:2). Values represent mean ± SEM, and each dot represents a data point of the marker+

GFP+/GFP+ % in each section (200 µm × 200 µm). n = 3, at least two sections from each brain. ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test. Scale
bar = 50 µm.

DISCUSSION

The maintenance of normal cortical formation and size is
essential for brain function. The Wnt signaling plays critical roles
to regulate cell cycle control, neuronal differentiation and tissue
repair (Chenn and Walsh, 2003; Kalani et al., 2008; Piccin and
Morshead, 2011; Delaunay et al., 2014). The precise antagonistic
regulation of Wnt members by Wnt modulators also controls
cortical neurogenesis. Our study shows that Wnt7a and Sfrp1 are
co-expressed in cortical NPs and their opposite role is essential
for controlling NP expansion and neuronal production.

Among the many signals known to influence the CNS
development, the Wnt signal has attracted great attention.
Wnt/β-catenin signaling acts upstream of a complex and dynamic

temporal network to control progenitor fate (Draganova et al.,
2015): long-term overexpression of Wnt3a leads to cortical
dysplasia by inducing early differentiation of IPs into neurons and
the heterotopias of these newborn neurons (Munji et al., 2011).
Studies have shown the role of Wnt7a in axon development
and guidance, as well as synapse formation and maintenance
(Hall et al., 2000; Cerpa et al., 2008; Ciani et al., 2011, 2015).
Investigations of Wnt7 in the early step of neurogenesis in the
cerebral cortex have just begun (Qu et al., 2013; Long et al.,
2016). Transcriptome sequencing data from us and others have
shown that Wnt7b, Wnt7a, and Wnt5a are the most abundant
Wnt factors in the E12.5, E16.5, and E17.5 cortices (Wang
et al., 2016; Nguyen et al., 2018). Moreover, we have found
that Wnt7a is highly expressed in the VZ and Wnt7b in the
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FIGURE 6 | Sfrp1 inhibits Wnt7a activity in the TOPflash luciferase reporter assay. (A) TOPflash is a luciferase reporter of β-catenin-mediated transcriptional
activation with active TCF/LEF binding sites, which affect the firefly luciferase expression. The control plasmid is FOPflash, which contains mutant TCF/LEF binding
sites. (B,C) After transfection of the pcDNA3.1-Sfrp1 and pcDNA3.1-Dkk1, a statistically significant decrease in luciferase activity of Wnt1 and Wnt7a was observed
in comparison with controls. Values represent mean ± SEM. n = 3, ∗∗P < 0.01; ∗∗∗P < 0.001; unpaired Student’s t-test.

intermediate zone and CP, which is consistent with the RNA-
seq results from isolating specific cellular zones and layers in
E14.5 and E15.5 cortices (Ayoub et al., 2011; Belgard et al., 2011;
Aprea et al., 2013; Liu et al., 2016). How distinct expression
patterns of different Wnts are established in developing cortices
remains unclear. Differential expression of Wnt7a and Wnt7b
in the cortical layers may determine their different roles in
cortical neurogenesis (Stenman et al., 2008; Durak et al., 2016):
Wnt7a promotes neurogenesis by regulating genes involved
in cell cycle control and neuronal differentiation (Qu et al.,
2013); the increased Wnt7b modulates neuronal differentiation
by regulating T-domain transcription factors Tbr1 and Tbr2
(Papachristou et al., 2014).

Moreover, we have shown that the deletion of Wnt7a
expression causes microcephaly by reducing the population of
NPs and newborn neurons. These data are consistent with
previous reports demonstrating that Wnt7a positively regulates

NPs and neurogenesis (Qu et al., 2013; Long et al., 2016; Wang
et al., 2016). Recent research has shown that Wnt7a regulates
the asymmetry of spindles in neuroepithelial cells in the VZ,
which is linked to asymmetric cell division (Delaunay et al.,
2014). The embryonic ventral midbrain of Wnt7a KO mice
displays reduced Sox2+ progenitors (Fernando et al., 2014).
We have also found that Sox2+ progenitors are decreased in
the cerebral cortex at E13.5. Decreased expansion of cortical
NPs is likely a major cause of microcephaly in Wnt7a KO
mice. Among Wnt molecules, Wnt7a is a known regulator
in the beta-catenin signal pathway (mmu04310) functioning
in different biological processes (Daneman et al., 2009; Ciani
et al., 2011; Qu et al., 2013; King et al., 2015). Wnt molecules
are associated with Hippo signaling pathway, Integrin signaling
and Notch signaling (Qu et al., 2013; Ciani et al., 2015; Wang
et al., 2016). These pathways likely cooperate to regulate cortical
development.
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Sfrps are a family of receptors known to possess a Wnt-
binding frizzled CRD, and abnormal expression of Sfrp1 leads
to CNS functional disorders (Esteve et al., 2011, 2018). Sfrp1
is a key member of the Sfrp family that can bind directly to
Wnts via their regions of homology to Fz. In the CNS, Sfrp1 can
block dopamine neuron development, dendritic development
and hippocampus formation (Rosso et al., 2005; Miquelajauregui
et al., 2007; Kele et al., 2012). In this study, we have found
that Sfrp1 is expressed in the VZ of the mouse embryonic
cerebral cortex, which is consistent with the observation of
its expression restricted to the proliferative zone in the CNS
(Augustine et al., 2001). Similar to the known antagonist Dkk1,
we have found that overexpression of Sfrp1 reduces the NP
population, and Sfrp1 significantly decreases the number of NPs
in a dosage-dependent manner, suggesting an opposite role of
Sfrp1 in cortical development compare to Wnt7a (Adamska et al.,
2004; Kim et al., 2008; Osada et al., 2010). In the recent study
of Sfrp1 knockout mice, the authors observed an increase in
the number of BrdU+/Tbr2+ cells in E12.5 Sfrp1−/− cortex
(Esteve et al., 2018). We think that the reason we did not detect
an increase of Tbr2+ cells when Sfrp1 is knocked down, it is
likely due to the efficiency of shRNA of Sfrp1, compared to the
gene knockout. Moreover, recent studies have shown that Sfrps
interact with the Wnt signaling, Hedgehog signaling, BMP and
Notch signaling (Katoh and Katoh, 2006; Mii and Taira, 2009;
Misra and Matise, 2010; Esteve et al., 2011, 2018). It is likely a
combined effort of Sfrp1 with other signals contributes to cortical
development.

Sfrps is a physiological Wnt-signaling scavenger that binds
directly to Wnts due to their similarity to the receptor Frizzled,
thus, it is capable of regulating the availability of Wnt proteins
(Finch et al., 1997; Rattner et al., 1997; Baarsma et al., 2013;
Cruciat and Niehrs, 2013). The exclusive repression of the Wnt
pathway is possible by selective Sfrps in cortical development
(Mikels and Nusse, 2006; Lacour et al., 2017). Sfrp1 and Sfrp3
are expressed in opposing anterolateral to caudomedial gradients,
and regulate normal temporal advancement of neuronal birth
and maturation in anterior and lateral cortical regions by
selectively modulating Wnts (Kim et al., 2001b). Previous studies
have shown that Dkks inhibit the canonical Wnt pathway by
internalizing LRP5/6, whereas Sfrps inhibit both the canonical
and non-canonical pathways by binding Wnt ligands or Frizzled
(Dees et al., 2014; Majchrzak-Celinska et al., 2016). The future

study will be to investigate whether Sfrp1 directly binds to Wnt7a
or through other mechanisms in the cortex.

The reciprocal control of Wnt7a and Sfrp1 may be a
dosage-dependent compensatory mechanism to maintain normal
cortical formation during early development. Our study reveals
that an optimal expression level of Wnt7a and Sfrp1 is critical for
proper establishment of the NP population. Further work will be
dedicated to explore the precise regulation of how different Sfrps
mediate canonical Wnt signaling pathway in NP proliferation
and differentiation during embryonic cortical development. Our
findings suggest that dysregulation of the Wnt signaling can lead
to developmental defects similar to human cortical malformation
disorders such as microcephaly.
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