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Background: Tumor mutation burden (TMB) is one of the biomarkers for efficacy of immune checkpoint 
inhibitors (ICIs) in non-small cell lung cancer (NSCLC). Due to the potential of radiomic signatures to 
identify microscopic genetic and molecular differences, thus radiomics is considered a suitable tool for 
judging the TMB status probably. In this paper, the radiomics method was applied to analyze the TMB status 
of NSCLC patients, so as to construct a prediction model for distinguishing between TMB-high and TMB-
low status. 
Methods: A total of 189 NSCLC patients with TMB detection result were retrospectively included 
between 30 November 2016 and 1 January 2021, and were divided into two groups: TMB-high (≥10/Mb, 46 
patients) and TMB-low (<10/Mb, 143 patients). Some clinical features related to TMB status were screened 
out in 14 clinical features and 2,446 radiomic features were extracted. All patients were randomly divided 
into a training set (n=132) and a validation set (n=57). Univariate analysis and least absolute shrinkage and 
selection operator (LASSO) were used for radiomics feature screening. A clinical model, radiomics model, 
and nomogram were constructed with the above screened features and compared. Decision curve analysis 
(DCA) was used to evaluate the clinical value of the established models.
Results: Two clinical features (smoking history, pathological type) and 10 radiomics features were 
significantly correlated with the TMB status. The prediction efficiency of the intra-tumoral model was 
better than that of the peritumoral model (AUC: 0.819 vs. 0.816; accuracy: 0.773 vs. 0.632, specificity: 0.767 
vs. 0.558). The efficacy of the prediction model based on radiomic features was significantly better than 
that of the clinical model (AUC: 0.822 vs. 0.683; specificity: 0.786 vs. 0.643). The nomogram, established 
by combining smoking history, pathologic type, and rad-score, showed the best diagnostic efficacy (AUC 
=0.844) and had potential clinical value in assessing the TMB status of NSCLC.
Conclusions: The radiomics model based on CT images of NSCLC patients performed well in 
distinguishing the status of TMB-high and TMB-low, and the nomogram could provide additional 
information on the timing and regimen of immunotherapy.
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Introduction

In recent years, immune checkpoint inhibitors (ICIs) 
represented by monoclonal antibodies of programmed cell 
death protein-1 (PD-1), programmed cell death protein 
ligand-1 (PD-L1), and cytotoxic T lymphocyte antigen 
(CTLA-4) have been put into clinical application, which 
have completely changed the treatment landscape of 
lung cancer (1-4). The significant survival benefit of ICIs 
makes them the first-line treatment option for advanced or 
locally advanced non-small cell lung cancer (NSCLC) and 
extensive small cell lung cancer (5-7).

However, only some NSCLC patients can benefit from 
ICI treatment (8-12), so it is crucial to screen out target 
patients for immunotherapy. Tumor mutation burden 
(TMB) refers to the total number of non-synonymous 
mutations per megabase (Mb) in the gene exon coding 
region of the evaluated tumor cell (13-16). Clinical studies 
have shown that patients with high TMB (TMB-H) can 
achieve better survival benefits regardless of whether 
PD-1/PD-L1 inhibitors are applied in first-line or after-
line therapy (7,17,18), thus TMB is considered a crucial 
predictive biomarker of efficacy in ICIs therapy (17,19-21). 

TMB plays a significant role in ICI treatment of NSCLC, 
and accumulated evidence supports its clinical predictive 
value for ICI efficacy and patients’ prognosis, including 
the objective response rate (ORR), disease control rate 
(DCR), progression-free survival (PFS), and overall survival 
(OS) (10,15,16,22,23). Expert Consensus on Lung Cancer 
Immunotherapy recommends that TMB detection should 
be conducted for advanced NSCLC patients without prior 
immunotherapy history before receiving ICI monotherapy 
(17,24). The Food and Drug Authority (FDA) has also 
approved the use of pembrolizumab in solid tumors of 
TMB-H (20,25). 

The TMB status of tumors is heterogeneous; for 
example, chemotherapy may lead to the conversion of low 
TMB (TMB-L) to TMB-H in some lung cancer patients 
(8,10,26). Therefore, accurate and rapid detection of TMB 
status is beneficial for doctors to determine the right patient 
and appropriate time to use immunotherapy in NSCLC (15). 
Next generation sequencing (NGS), a high-throughput 
gene sequencing method that can simultaneously and 
rapidly detect multiple tumor mutations (11,18), is the 
current gold standard for TMB detection. Unfortunately, 
invasive procedures during specimen acquisition and 
the high cost of whole exome sequencing (WES) hinder 
the widespread use of TMB detection and the dynamic 
monitoring of tumor TMB status (27,28). In clinical 
practice, a simple and noninvasive detection method with 
short detection cycle, favorable price, and low requirements 
for detection specimens is urgently needed, so that TMB 
can be widely used as a biomarker in ICI therapy, creating 
conditions for further development of TMB in clinical and 
scientific research.

Radiomics is a concept that was proposed by Philippe 
Lambin in 2012, which refers to the process of automatic 
and high-throughput extraction of characteristic information 
in medical images and transformation of it into deep 
quantitative data (29,30). The workflow includes image 
acquisition, reconstruction, and standardization, region of 
interest (ROI) segmentation, extraction of radiomic features, 
establishment and verification of radiomic models, and so 
on (29,31). ROI segmentation is a key step in radiomics 
analysis. Due to the high contrast resolution between lung 
tumors and lung parenchyma (32,33), tumors can be easily 

Highlight box

Key findings
•	 The efficacy of the prediction model based on radiomics features 

was significantly better than that of the clinical model (AUC: 0.822 
vs. 0.683). The nomogram, established by combining smoking 
history, pathologic type, and rad-score, showed the best diagnostic 
efficacy (AUC =0.844) and performed well in distinguishing the 
status of TMB-high and TMB-low. 

What is known and what is new?
•	 TMB is a biomarker for ICIs efficacy. Unfortunately, invasive 

procedures during specimen acquisition and the high cost of whole 
exome sequencing hinder the dynamic monitoring of TMB status. 

•	 The radiomics model based on CT is a non-invasive, affordable, 
rapid and can eliminate the impact of tumor heterogeneity 
detection method, so it is more practical in clinical practice.

What is the implication, and what should change now?
•	 Radiomics is a new method to detect TMB status. The nomogram 

could provide additional information on the treatment opportunity 
and plan of immunotherapy.

Submitted Feb 06, 2023. Accepted for publication Apr 21, 2023. Published online Apr 28, 2023.

doi: 10.21037/tlcr-23-171

View this article at: https://dx.doi.org/10.21037/tlcr-23-171



Yang et al. Radiomics model to predict TMB status in NSCLC810

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(4):808-823 | https://dx.doi.org/10.21037/tlcr-23-171

distinguished from adjacent lung tissue and isolated as ROI, 
thus radiomics is considered a suitable tool in the field of 
lung cancer research (30,34). Recently, radiomics has shown 
promising advantages in the diagnosis, differentiation, 
determination of invasiveness, evaluation of efficacy, and 
even prediction of gene mutation status of lung cancer 
(30,34-37). Some studies have attempted to predict 
pathological subtypes of lung adenocarcinoma (LUAD) 
with different gene mutation states based on radiomics, and 
the resulting area under the curve (AUC) of the models 
ranged from 0.62 to 0.89 (30). Researcher found that EGFR 
mutation state could be distinguished by a radiomics model 
with an AUC of 0.75 (38). These studies demonstrate the 
potential of radiomic signatures to identify microscopic 
genetic and molecular differences (30,34,38,39).

To date, no studies have explored the intrinsic correlation 
between computed tomography (CT) radiomic features 
and TMB status in NSCLC patients, and the diagnostic 
value of radiomic features in the peritumor area has not 
been fully developed. Therefore, this study combined the 
clinical characteristics of NSCLC patients and the radiomic 
features related to the tumor primary lesions to construct a 
nomogram to distinguish the TMB-H and TMB-L status of 
the tumor. The purpose of this study was to explore a non-
invasive TMB detection method with short detection cycle, 
favorable price, understandable results, and less interference 
from tumor heterogeneity, in order to be widely promoted, 
so as to benefit more patients. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-23-171/rc).

Methods

Study cohort 

NSCLC patients who had been pathologically diagnosed in 
the First Medical Center of the Chinese People’s Liberation 
Army General Hospital between 30 November 2016 and 
1 January 2021 were retrospectively included, and their 
clinical data and CT imaging data were collected. Patients 
were grouped according to the NGS detection results of 
tissue TMB, and the TMB ≥10/Mb was set as the TMB-H 
group; TMB <10/Mb was set as the TMB-L group. All 
patients were randomly divided into a training set (n=132) 
and a validation set (n=57) in a ratio of 7:3.

The inclusion cri ter ia  were as  fol lows:  (I )  the 
histopathological diagnosis of primary lung lesions were 

NSCLC; (II) NGS detection of tumor tissue TMB was 
performed, and confirmed TMB detection results were 
obtained; (III) the completion time of thin-slice chest 
CT should be within 30 days before tissue sampling, and 
the thickness of CT slice should not exceed 1.5 mm; (IV) 
complete clinical data and CT image data. The exclusion 
criteria were as follows: (I) pathological diagnosis was thoracic 
malignant tumors or benign lesions other than NSCLC; 
(II) NGS detection specimens were not primary lung 
lesions; (III) the completion time of CT exceeded 30 days  
before histopathological examination or the thickness 
of CT layer exceeded 1.5 mm; (IV) incomplete clinical, 
pathological, or NGS detection data.

Through consulting medical records, the following 
14 clinical features of patients were collected: sex, age, 
smoking history (light smokers refer to smoking index 
<500, heavy smokers refer to smoking index ≥500), allergy 
history, history of surgical anesthesia, family lung cancer 
history, family malignant tumor history, pathological type 
(adenocarcinoma, squamous cell carcinoma), pathological 
stage, differentiation degree (low, medium, high), lymphatic 
metastasis, multiple primary lung cancer, lesion location/
location of lung lobe (upper right, middle right, lower right, 
upper left, lower left), and multifocal lesion. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the Ethics 
Committee of the First Medical Center of Chinese People’s 
Liberation Army General Hospital (No. S2020-173-01), 
and the requirement for informed consent of the patients 
was waived.

TMB detection

The NGS method was used to detect the TMB status, 
which was realized by the illumina sequencing platform 
provided by Nanjing Shihe Gene Biotechnology Co. Ltd. 
(Nanjing, China). The test specimens were tumor tissues 
from surgical resection or primary puncture biopsy of 
patients, paraffin-embedded tumor tissue samples were 
used, and whole blood samples were used as normal 
control [2–5 mL ethylenediaminetetraacetic acid (EDTA) 
anticoagulant peripheral blood, stored and transported at 
room temperature with special sampling vessel for free 
DNA]. The test specimens were examined by third-party 
detection institution unrelated to researchers. The specific 
detection methods and parameters were as follows: the 
panel probe capture method was used to detect the site 
combination of TMB. All non-synonymous mutations and 
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synonymous mutations were included in the combination, 
and the high-frequency mutation sites associated with 
tumorigenesis and development in the Chinese population 
were excluded. The coding base covered by targeted 
sequencing panel was 1.44 Mb, and the minimum effective 
sequencing depth was ≥1,000×.

CT scanning protocols 

CT images were performed by either of the following 
CT scanners: Brilliance iCT (Philips Medical Systems, 
Amsterdam, Netherlands; collimation 0.625 mm × 128; 
layer thickness 1 mm; layer interval 1 mm; reconstruction 
kernel iDose3), Somatom Definition (Siemens Medical 
Systems, Erlangen, Germany; collimation 0.75 mm × 
128; layer thickness 1.25 mm; layer interval 1.25 mm; 
reconstruction kernel B70f).

Image segmentation, radiomic feature extraction, and 
inter-observer consistency assessment 

Both image segmentation and radiomic feature extraction 
processes were implemented by 3D Slicer software (version 
4.10.2; https://download.slicer.org/). The ROI in this study 
was set for the area inside the lung tumor (i.e., the intra-
tumoral area) and 5 mm adjacent to the tumor (i.e., the 
peritumoral area, which was confined to the lung tissue). 
As shown in Figure 1, CT images of the patient (DICOM 
format) were first introduced, and then a physician outlined 
layer by layer along the edge of the tumor lesion to 
complete the segmentation of the intra-tumoral area. The 
segmentation file was saved as Mask1 (green area in Figure 
1A), and a 3D model of the lesion was constructed (Figure 
1C). Next, the “Hollow” tool and the “inside surface” 
option were used to obtain the 5 mm peri-tumor area 
around the tumor, and the segmentation file was saved as 
Mask2 (green area in Figure 1B). In addition, the voxel points 
in the intra-tumoral region (Mask1) and peritumoral region 
(Mask2) were resampled into a 1 mm × 1 mm × 1 mm matrix 
to eliminate the interference of patient size, reconstruction 
methods, CT thickness, and other factors. Finally, the 
“SlicerRadiomics” extension was used to calculate and 
extract 1,223 radiomics features, including the following 
five categories: (I) shape features; (II) first-order features; 
(III) texture features; (IV) wavelet features; (V) Laplacian of 
Gaussian (LoG) features. Besides, Z-score method was used 
to standardize the radiomic features.

Inter-observer agreement, the influence of different 

physicians on the robustness of radiomic features, was 
assessed by calculating interclass correlation coefficients 
(ICC). ROI segmentation was performed on 30 randomly 
selected lung CT images by two senior physicians (10 and 
20 years of professional experience, respectively) who did 
not have access to patient information and research content, 
and intra-tumoral and peritumoral radiomic features were 
obtained. ICCs for each radiomic feature and mean ICC 
for all radiomic features were calculated. Features with 
ICC ≥0.75 were considered to have good inter-observer 
consistency, whereas features with ICC <0.75 were filtered 
due to lack of consistency.

Clinical feature screening and model construction 

Univariate analysis was used to select clinical features 
related to TMB status, and multivariate analysis was used 
to further select clinical features that were independent 
predictors of TMB. The clinical model was constructed 
by using the selected clinical features based on logistic 
regression method.

Radiomic feature screening, model construction, and model 
evaluation 

All patients were randomly divided into a training set and 
a validation set (7:3), and the proportion of patients with 
TMB-H and TMB-L remained at the same level in both 
sets. In the training set, the univariate analysis and the least 
absolute shrinkage and selection operator (LASSO) were 
used to screen out the significant radiomics features, and the 
LASSO parameter (λ) was determined by a 10-fold cross-
validation method. Then, the selected radiomics features 
were used to construct radiomics models in the training 
set and validation set based on logistic regression method, 
and the AUC of receiver operating characteristic (ROC) 
curve was used to evaluate the diagnostic performance of 
the models. We established 3 radiomic models based on 
the radiomic features of intra-tumoral region, peritumoral 
region, and overall region, and their diagnostic performance 
was compared.

Construction and evaluation of nomogram 

Radiomics score (rad-score) was calculated according to the 
radiomics model. Selected clinical features and rad-score 
were taken as independent risk factors of TMB status, and 
the nomogram was constructed with those factors based 

https://download.slicer.org/
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on multivariate logistic regression model. The diagnostic 
validity of the nomogram was evaluated by drawing a 
calibration curve. In addition, decision curve analysis (DCA) 
was used to evaluate the clinical efficacy of nomogram 
by calculating the net benefit under different threshold 
probabilities.

Statistical analysis 

The software SPSS 26.0 (IBM Corp., Armonk, NY, 
USA) was used for statistical analysis of clinical features. 

Mann-Whitney U test was used for univariate analysis of 
continuous variables and ordered categorical variables, and 
chi-square test or Fisher’s exact test was used for univariate 
analysis of disordered categorical variables. Multivariate 
analysis was performed by binary logistic regression. 
Variables with a P<0.05 were considered statistically 
significant and P<0.05 is two-sided. R software (version 
4.0.3; The R Foundation for Statistical Computing, Vienna, 
Austria) was used for random grouping, screening of 
radiomic features, construction, and evaluation of models 
and nomogram. R packages including glmnet, pROC, 

Figure 1 Flow chart of the study. In the “ROI segmentation” section, the green area in (A) represents the intra-tumor area, the green area in 
(B) represents the peritumor area, and the green figure in (C) represents the 3-dimensional model of the tumor lesion. NSCLC, non-small 
cell lung cancer; TMB, tumor mutation burden; ROI, region of interest; LoG, Laplacian of Gaussian; AUC, area under the curve.
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e1071, hmisc, lattice, survival, formula, ggplot2, rms, and 
rmda were used in the above process. Radiomics features 
with ICC ≥0.75 were considered robust. Delong test was 
used to compare the AUC of the two ROC curves.

Results

Baseline characteristics of patients 

A total of 189 patients were included in this study, and the 
overall clinical features of the patients are shown in Table 1. 
Patients were grouped according to the NGS detection 
results of TMB, including 46 cases in the TMB-H group 
and 143 cases in the TMB-L group.

Clinical features, predictive model and evaluation of model 

In the whole data set, univariate analysis showed that there 
were statistically significant differences (P<0.05) between 
the TMB-H group and the TMB-L group in gender, age, 
smoking history, pathological type, pathological stage, 
differentiation degree, and lymphatic metastasis. Compared 
with the TMB-L group, the average age of patients in the 
TMB-H group was older, the proportion of males and 
heavy smokers was higher, the tumor types were mostly 
adenocarcinoma, and the tumors with advanced stage, 
low differentiation, and lymph node metastasis accounted 
for a higher proportion. Other clinical features, including 
allergic history, history of surgical anesthesia, family lung 
cancer history, family malignant tumor history, multiple 
primary lung cancer, lesion location, and multifocal lesions, 
were not significantly different between the two groups. 
The above 7 clinical features with P<0.05 were included 
in the multivariate analysis, and the results showed that 
smoking history and pathological type were independent 
risk factors for TMB status, with odds ratio (OR) values 
and 95% confidence intervals (CIs) of 1.884 (1.215, 2.921) 
and 10.231 (2.993, 34.972), respectively (Table S1). Using 
the best threshold points (0.338), in the training set, the 
calculated accuracy of the model was 0.788, sensitivity is 
0.469, specificity is 0.89; in the validation set, the accuracy 
is 0.852, sensitivity is 0.643, specificity is 0.884. The two 
clinical features of smoking history and pathological type 
were used to establish a logistic regression model, and the 
AUC in the training set and the validation set was 0.683 and 
0.803, respectively.

Robustness of radiomic features 

A total of 2,446 radiomic features were extracted from 
30 randomly selected CT images in both intra-tumoral 
and peritumoral regions. The ICC of these features was 
calculated for observer consistency analysis to evaluate the 
robustness of the features. The results showed that the ICC 
of 1,642 radiomic features was higher than 0.75, including 
888 intra-tumoral features and 754 peritumoral features. 
These features had good robustness and could be used 
in the next screening process. The ICC of the remaining  
804 features was lower than 0.75, which was not robust and 
was deleted. 

Radiomics models and evaluation 

The 189 patients were randomly assigned to a training 
set (n=132) or a validation set (n=57). In the training set, 
1,642 radiomic features were included in univariate analysis 
by observer consistency analysis, and 348 features were 
significantly different between the TMB-H and TMB-L 
groups (P<0.05), including 187 intra-tumoral features and 
161 peritumoral features. LASSO was applied to further 
feature screening: in the screening of intra-tumoral features, 
10-fold cross-validation showed that the model was optimal 
when λ=0.046 and log λ=−3.086 (the first dotted line on 
the left of Figure 2A). At this time, 9 radiomic features 
were selected. In the screening of peritumoral features, the 
model was optimal when λ=0.069 and log λ=−2.670 (the first 
dotted line on the left of Figure 2B), and 1 radiomic feature 
was included. A total of 10 radiomics features significantly 
correlated with TMB-H were screened (Table 2).

In order to explore the diagnostic value of intra-tumoral 
and peritumoral features respectively, an intra-tumoral 
model, a peritumoral model, and a combined radiomics 
model were established based on the above screened features 
(Figure 3). In the validation set, the AUC of the intra-
tumoral model and the peritumoral model was 0.816 and 
0.728, the accuracy was 0.773 and 0.632, sensitivity is 0.786 
and 0.857, specificity is 0.767 and 0.558, respectively, and 
the AUC of the combined radiomics model was 0.819, the 
accuracy was 0.754, sensitivity is 0.786, specificity is 0.744. 
These results indicated that peritumoral features could also 
be a predictor of TMB status of NSCLC, but the prediction 
ability of the intra-tumoral model was better than that of 
peritumoral model, and the combined radiomics model had 

https://cdn.amegroups.cn/static/public/TLCR-23-171-Supplementary.pdf
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Table 1 Univariate analysis of clinical features of full data set, training set, and validation set

Clinical features
Total (N=189) Training set (n=132) Validation set (n=57)

TMB-L group TMB-H group P value TMB-L group TMB-H group P value TMB-L groupTMB-H group P value

Gender 0.025 0.159 0.053

Male 54 (37.8) 26 (56.5) 39 (39.0) 17 (53.1) 15 (34.9) 9 (64.3)

Female 89 (62.2) 20 (43.5) 61 (61.0) 15 (46.9) 28 (65.1) 5 (35.7)

Age (years), mean ± SD 54.8±10.5 60.9±9.7 0.001 54.4±10.9 61.5±10.0 0.002 55.6±9.5 59.6±9.1 0.220

Smoking history* 0.001 0.012 0.030

No 110 (76.9) 25 (54.3) 76 (76.0) 18 (56.3) 34 (79.1) 7 (50.0)

Light 18 (12.6) 5 (10.9) 14 (14.0) 3 (9.4) 4 (9.3) 2 (14.3)

Heavy 15 (10.5) 16 (34.8) 10 (10.0) 11 (34.4) 5 (11.6) 5 (35.7)

Allergic history 1.000 0.555 0.057

Yes 12 (8.4) 4 (8.7) 12 (12.0) 2 (6.2) 0 (0.0) 2 (14.3)

No 131 (91.6) 42 (91.3) 88 (88.0) 30 (93.8) 43 (100.0) 12 (85.7)

History of surgical anesthesia 0.998 0.758 0.965

Yes 28 (19.6) 9 (19.6) 18 (18.0) 5 (15.6) 10 (23.3) 4 (28.6

No 115 (80.4) 37 (80.4) 82 (82.0) 27 (84.4) 33 (76.7) 10 (71.4)

Family lung cancer history 0.166 0.580 0.448

Yes 19 (13.3) 10 (21.7) 10 (10.0) 5 (15.6) 9 (20.9) 5 (35.7)

No 124 (86.7) 36 (78.3) 90 (90.0) 27 (84.4) 34 (79.1) 9 (64.3)

Family malignant tumor history 0.256 0.718 0.231

Yes 46 (32.2) 19 (41.3) 34 (34.0) 12 (37.5) 12 (27.9) 7 (50.0)

No 97 (67.8) 27 (58.7) 66 (66.0) 20 (62.5) 31 (72.1) 7 (50.0)

Pathological type <0.001 0.018 <0.001

Lung adenocarcinoma 139 (97.2) 34 (73.9) 96 (96.0) 26 (81.3) 43 (100.0) 8 (57.1)

Squamous carcinoma 4 (2.8) 12 (26.1) 4 (4.0) 6 (18.7) 0 (0.0) 6 (42.9)

Pathological stage 0.014 0.076 0.087

I 89 (62.2) 21 (45.7) 64 (64.0) 16 (50.0) 25 (58.1) 5 (35.7)

II 22 (15.4) 4 (8.7) 17 (17.0) 4 (12.5) 5 (11.6) 0 (0.0)

III 18 (12.6) 12 (26.1) 12 (12.0) 7 (21.9) 6 (14.0) 5 (35.7)

IV 14 (9.8) 9 (19.6) 7 (7.0) 5 (15.6) 7 (16.3) 4 (28.6)

Differentiated degree* 0.026 0.206 0.033

Low 33 (23.1) 20 (43.5) 24 (24.0) 14 (43.8) 9 (20.9) 6 (42.9)

Medium 59 (41.3) 14 (30.4) 44 (44.0) 8 (25.0) 15 (34.9) 6 (42.9)

High 51 (35.6) 12 (26.1) 32 (32.0) 10 (31.2) 19 (44.2) 2 (14.3)

Lymphatic metastasis 0.001 0.032 0.021

Yes 30 (21.0) 21 (45.7) 19 (19.0) 12 (37.5) 11 (25.6) 9 (64.3)

No 113 (79.0) 25 (54.3) 81 (81.0) 20 (62.5) 32 (74.4) 5 (35.7)

Table 1 (continued)
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Table 1 (continued)

Clinical features
Total (N=189) Training set (n=132) Validation set (n=57)

TMB-L group TMB-H group P value TMB-L group TMB-H group P value TMB-L groupTMB-H group P value

Multiple primary lung cancer 0.368 0.261 1.000

Yes 13 (9.1) 7 (15.2) 7 (7.0) 5 (15.6) 6 (14.0) 2 (14.3)

No 130 (90.9) 39 (84.8) 93 (93.0) 27 (84.4) 37 (86.0) 12 (85.7)

Lesion location 0.886 0.847 0.895

RU 50 (35.0) 16 (34.8) 38 (38.0) 11 (34.4) 12 (27.9) 5 (35.7)

RM 9 (6.3) 2 (4.3) 5 (5.0) 2 (6.3) 4 (9.3) 0 (0.0)

RL 28 (19.6) 12 (26.1) 22 (22.0) 10 (31.3) 6 (14.0) 2 (14.3)

LU 33 (23.1) 10 (21.7) 20 (20.0) 5 (15.6) 13 (30.2) 5 (35.7)

LL 23 (16.1) 6 (13.0) 15 (15.0) 4 (12.5) 8 (18.6) 2 (14.3)

Multifocal lesion 0.425 0.496 0.015

Yes 56 (39.2) 15 (32.6) 34 (34.0) 13 (40.6) 22 (51.2) 2 (14.3)

No 87 (60.8) 31 (67.4) 66 (66.0) 19 (59.4) 21 (48.8) 12 (85.7)

The data are expressed as n (%). Smoking history*: no, no smoking; light, smoking index <500; heavy, smoking index ≥500. Differentiated degree*: 
Low, poorly differentiated adenocarcinoma or squamous cell carcinoma; Medium, moderately differentiated adenocarcinoma or squamous cell 
carcinoma; High, high differentiation adenocarcinoma or squamous cell carcinoma. TMB-L, low tumor mutation burden; TMB-H, high tumor 
mutation burden; RU, upper right lung, RM, middle right lung; RL, lower right lung; LU, upper left lung; LL, lower left lung.

Figure 2 LASSO regression results. (A) The LASSO regression of intra-tumoral regional radiomic features. Figure left shows 10-fold cross 
validation. The model had the minimum deviation when λ=0.046 and log λ=−3.086 (dashed line on the left), and 9 features were included. 
The figure on the right shows the convergence of coefficients, with the gradual increase of lnλ, the coefficients of 187 features gradually 
compress. (B) The LASSO regression of peritumoral regional radiomic features. LASSO, least absolute shrinkage and selection operator.
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the best efficacy. Therefore, the combined radiomics model 
was used to construct the nomogram.

Establishment of combined model and comparison of 
different models

The rad-score was calculated according to the radiomics 
model, and the average rad-score of TMB-H group was 
significantly higher than that of the TMB-L group both in 
the training set (−0.166±1.547 vs. −1.937±1.088, P<0.001) 
and the validation set (−0.514±1.035 vs. −1.938±1.223, 
P<0.001). Smoking history, pathological type, and rad-score 
were used to establish a combined clinical-radiomics model. 
Using the best threshold points (0.243), in the training set, 

the calculated accuracy of the model was 0.754, sensitivity is 
0.643, specificity is 0.791; in the validation set, the accuracy 
is 0.811, sensitivity is 0.812, specificity is 0.82. The AUC of 
this model in the training set was 0.844 (Figure 4A) and that 
in the validation set was 0.841 (Figure 4B), both of which 
were significantly higher than that of the radiomics model 
(training set AUC =0.822, validation set AUC =0.819) and 
clinical model (training set AUC =0.683, validation set 
AUC =0.803) (P<0.001). Also, the radiomics model had a 
higher AUC than the clinical model.

The establishment and evaluation of nomogram

Parameters in the combined clinical-radiomics model were 

Table 2 Radiomics features screened by LASSO

Number Radiomic feature

X1 Inner-log-sigma-0-5-mm-3D glcm MCC

X2 Inner-log-sigma-0-5-mm-3D first order Mean

X3 Inner-log-sigma-1-0-mm-3D first order 90Percentile90 

X4 Inner-log-sigma-1-0-mm-3D first order Minimum

X5 Inner-log-sigma-2-0-mm-3D first order Energy

X6 Inner-log-sigma-2-0-mm-3D first order Total Energy

X7 Inner-wavelet-LLL gldm Dependence Variance

X8 Inner-wavelet-LLL glcm Joint Entropy

X9 Inner-Original first order Root Mean Squared

X10 Outer-sigma-2-0-mm-3D gldm Small Dependence Emphasis

LASSO, least absolute shrinkage and selection operator; MCC, maximum correlation coefficient.
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used to establish a visual nomogram model, which could 
specifically determine the probability of NSCLC being 
TMB-H based on the smoking history of the patient, 

the pathological type of the tumor, and the rad-score of 
CT images (Figure 5). The specific calculation process 
of probability was as follows: according to the patient’s 
smoking history grade, the pathological type of NSCLC, 
and the specific value of the rad-score, the score of each 
parameter was obtained by upward comparison in the points 
column. The scores for each parameter were then added 
together to obtain a total point and a downward comparison 
to obtain the final probability of whether the lung cancer 
was a TMB-H state.

Figure 6 displays the calibration curve of nomogram. The 
prediction curve and the diagonal are consistent, indicating 
that the prediction probability of nomogram was close to 
the actual probability and had an excellent fitting.

In this study, DCA was used to evaluate the clinical 
application value of the nomogram, radiomics model, and 
clinical model established above. Figure 7 shows that the 
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application of nomogram and radiomics model to predict 
TMB-H status had more net benefit than the clinical model 
over the 20–90% threshold probability range, and the 
nomogram had more benefit than the radiomics model for 
most threshold probabilities. 

Discussion

Although ICIs have transformed treatment regimens for 
a variety of cancers (4,18,19,40), including NSCLC, not 
all patients respond to immunotherapy in the same way 
(10,26,41-45). Therefore, the identification of biomarkers 
that predict ICI efficacy will benefit to improve the prognosis 
of NSCLC patients (16,40).

In clinical practice, PD-L1 expression is one of the 
biomarkers for selecting the target patients for ICI 
treatment (21,22,42). However, different studies have 
shown that PD-L1 expression does not always have a good 
predictive effect due to its own limitations and differences in 
immunohistochemical analysis methods (13,15,38,46). For 
example, in a study cohort without driver gene mutations, 
the response to ICIs was also considerable in patients with 
PD-L1 <1% (4,47). Therefore, better identification of 
biomarkers of sensitivity and resistance to immunotherapy 
is fundamental to diagnosis and treatment for NSCLC 
patients. With the development of sequencing technology, 
it has been found that non-synonymous mutations can 
generate neoantigens that trigger cytotoxic responses to 
tumors (17,18,48), which have proven to be more closely 
related to the clinical advantages of ICI therapy (17,20). The 
TMB is the total number of non-synonymous mutations 
per DNA Mb (4,17,47). Many previous studies have shown 
that TMB was a predictive biomarker of ICI response (9,40). 
Pembrolizumab has been approved by the FDA for the 

treatment of solid tumors with TMB-H (≥10 mutation/Mb), 
and it is expected that more patients will receive ICIs after 
TMB screening.

Currently, NGS is the mainstream method to detect TMB 
(18,28), which can be used for quantitative analysis of TMB 
across multiple tumors, so as to select the beneficiaries of ICI 
treatment (49,50). However, NGS detection still has several 
limitations (28,46,51). First, TMB analysis is technically 
difficult, requiring a professional team to operate, and 
complex data results need to be interpreted by bioinformatics 
experts. Second, NGS testing is lengthy and expensive, so it 
has not been included in China’s social medical insurance. 
Third, NGS detection requires invasive biopsy or surgical 
excision to obtain specimens, and the paraffin-embedded 
tissue samples used for testing have DNA/RNA degradation 
problems. In addition, the heterogeneity of the tumor will 
also lead to the difference in the distribution of TMB (41). 
Therefore, small biopsy specimens from local lesions are 
often insufficient to evaluate the overall TMB of the tumor, 
resulting in the bias of the detection results. The above 
biological, methodological, and economic problems reduce 
the sensitivity of current TMB detection methods to ICI 
efficacy prediction and the acceptance of patients (18,28). A 
new TMB detection method that can overcome the above 
shortcomings is needed clinically.

Radiomics is a research method combining imaging, 
artificial intelligence, and big data, which has a wide range of 
applications (29,52). At present, quantitative analysis based 
on CT images has been involved in the diagnosis, efficacy 
evaluation, and prognosis of lung diseases (26,39). Different 
from traditional imaging, radiomics can extract thousands 
of features and contains a huge amount of information, 
which can reflect the lesion image information at multiple 
levels and from multiple angles. Also, radiomics can extract 
a large number of subtle features in medical images that 
cannot be detected by the naked eye, so as to find the 
changes in the lesion area more keenly (32,35). Based on 
the above 2 points, this study aimed to apply radiomics to 
TMB detection, in order to present a complete panorama 
of the tumor TMB status, so that the detection results 
will no longer be affected by the surgical resection site or 
puncture biopsy site, and avoid the bias of the detection 
results caused by tumor heterogeneity. Furthermore, as a 
non-invasive detection method, the radiomics model can 
quickly determine the TMB status of lung cancer patients 
only with CT images, which can completely overcome the 
disadvantages of invasive biopsy, specimen DNA/RNA 
degradation, and long detection cycle of NGS (41,50). 
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Moreover, the model established by radiomics parameters is 
not affected by doctors’ own technical level and subjective 
factors, so it can draw more objective and accurate diagnostic 
conclusions. In view of the simple detection process and 
intuitive detection results, patients have a high acceptance of 
radiomics.

This study was designed to analyze the correlation 
between radiomics features and the TMB of NSCLC, and 
to evaluate the clinical value of radiomics models for the 
determination of TMB-H status. A total of 189 NSCLC 
patients were included, and 14 clinical features and 2,446 
intra-tumoral/peritumoral radiomic features were extracted. 
Through the process of feature screening and model 
construction, a nomogram based on radiomics features 
and clinical features was established. It was found that the 
AUC of the tumor radiomics model and the nomogram 
was close to each other, which indicated that both had good 
diagnostic ability of TMB-H and clinical application value.

A few clinical features have been found to be associated 
with the TMB status of lung cancer (41,51). Sharpnack  
et al. (41) observed a weak positive correlation between 
TMB and smoking history in the LUAD group (P=0.20), 
yet no correlation in lung squamous cell carcinoma (LUSC) 
group (P=0.026), suggesting that never smoking was a 
predictor of TMB-L status. Zhang et al. (53) revealed that 
a TMB-H state was more common in LUSC (P<0.017) 
and tumors with TP53 mutations (P<0.0001). Another 
study involving 499 formalin-fixed paraffin-embedded lung 
cancer excised specimens showed a significant association 
between TMB status and clinicopathologic features, 
including pathological subtype (P<0.001), histological 
subtype (P<0.001), parabronchial lymph node (P<0.001), 
lymph node metastasis (P=0.009), and so on. In the TMB-H 
group, there were more males, LUSC, and invasive patients 
(72.4%), whereas in the TMB-L group, most patients had 
negative parabronchial lymph node (94.5%) and no lymph 
node metastasis (88%) (48).

Our study included several clinical and pathological 
features of NSCLC patients, and finally found that patients’ 
smoking history and tumor pathological type could be 
used as predictors of TMB status, and heavy smokers and 
LUSC accounted for a higher proportion in the TMB-H 
group. The AUC of the prediction model established by the 
above two clinical features in the training set (AUC =0.683) 
and the validation set (AUC =0.803) was lower than that 
in the radiomics model, and the difference in predictive 
efficacy between the training set and the validation set was 
significant, suggesting that the clinical model was unstable. 

Therefore, it is risky for clinical features to independently 
predict the TMB status, which are not enough to be 
biomarkers to predict the ICI efficacy. Next, we explored 
the ability of radiomics to distinguish between TMB-H or 
TMB-L status of NSCLC and attempted to construct a 
diagnostic model with better discriminative performance to 
predict the TMB status.

A total of 10 robust radiomics features were screened 
to construct intra-tumoral and peritumoral combined 
radiomics model, which showed promising predictive 
efficacy (AUC of 0.844 and 0.841 in the training and 
validation set, respectively (46). Guan et al.’s (54) study 
showed that the radiomics model also had a certain 
predictive value for TMB status in small cell lung cancer. 
In contrast, this study included image transformation 
features including wavelet features and LoG features. 
Gauss-Laplacian operator is a kind of edge enhancement 
filter. Firstly, image smoothing operation is carried out by 
Gaussian operator, and then Laplacian operator is carried 
out to enhance the edge effect in the image, thus amplifying 
the change of local gray value. In this study, the original image 
was used to generate four different transformation images 
by LoG operators of 4 different apertures (0.5 mm, 1 mm,  
1.5 mm, 2 mm), and then all the above texture features 
were further extracted from the transformation image, that 
is, LoG transformation features were formed. Among the 
radiomic features that we finally screened into the model, 
only 1 original feature, 2 texture features, and the remaining 
7 were all LoG transformation features, which showed 
the importance of image transformation features in TMB 
prediction. The transformation of the image through the 
filter can enhance some features of the original image and 
expose some previously hidden information.

The radiomics model is quite effective in predicting the 
TMB status, but it only contains the image information of 
the patient. The combination of clinical, pathological, and 
image information can more comprehensively summarize 
the characteristics of the tumor, so as to more accurately 
evaluate the TMB status. The prediction efficiency of the 
clinical model was better than that of the radiomics model 
(accuracy: 0.825 vs. 0.754, specificity: 0.884 vs. 0.744). 
Therefore, smoking history, pathologic type, and rad-
score were selected as independent predictors of TMB 
status to construct the nomogram. The comparison of the 
predictive efficacy of different models is shown in Figure 7, 
the nomogram had the highest clinical application value, 
and the radiomics model also had good predictive potential, 
both of which were significantly superior to the clinical 
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model. The quantitative probability of NSCLC in the state 
of TMB-H could be accurately calculated according to the 
nomogram, which could be used as an important reference 
for the assessment of the TMB status and help clinicians 
predict the efficacy of immunotherapy in NSCLC.

Peritumoral tissues surrounding lung cancer constitute 
the tumor microenvironment, which is closely related to the 
occurrence and development of lung cancer. Researchers 
found that the number of tumor-associated inflammatory 
cells (TAICs) in the peritumoral area of NSCLC was 
higher than that in the intra-tumoral area (35). Individual 
differences in the tumor microenvironment will lead to 
subtle changes in the image, whereas the imaging signs 
in the peritumoral region are likely to contain a large 
amount of tumor-related information, which has potential 
predictive value (55,56). Therefore, a radiomics model of 
the peritumoral region can be established to evaluate the 
differences in the tumor microenvironment (29,39). Braman 
et al. (57) identified the molecular subtypes of human 
epidermal growth factor receptor 2 (HER2)+ breast cancer 
by combining intra-tumoral and peritumoral features on 
imaging. Pérez-Morales et al. (58) used intra-tumoral and 
peritumoral radiomics features of low-dose CT images to 
predict survival. Currently, no studies have investigated 
the value of peritumoral regional features in distinguishing 
the TMB status in lung cancer. Our study evaluated the 
predictive performance of peritumoral radiomics features 
extracted from a 5-mm annular area around NSCLC 
lesions. The results showed that the radiomics model of the 
peritumoral region could distinguish the TMB status to a 
certain extent, and the AUC of the validation set was 0.728, 
which had auxiliary diagnostic value. This suggests that 
radiomic features were of great significance in the 5 mm 
peritumoral environment around the tumor and should be 
taken seriously in future radiomics studies.

In summary, compared with clinical features, radiomics 
has high-dimensional data, which can reflect tumor 
TMB status more accurately and comprehensively. It is a 
potentially valuable non-invasive, simple, and economical 
method for evaluating TMB status. In addition, TMB is 
highly dynamic with tumor development or treatment 
outcome, and the non-invasive detection method of 
radiomics can also make real-time dynamic monitoring of 
TMB possible.

The study had several limitations. First, the cohort in 
this study included both surgically resected patients and 
lung aspiration biopsy patients. The TMB detection results 
of the latter were derived from small puncture specimens, 

which may not have been accurate enough due to tumor 
heterogeneity, thus interfering with the predictive efficacy 
of the model. Second, this was a single-center retrospective 
study without external validation, so the diagnostic efficacy 
of the models needed to be further verified. Finally, in 
the process of ROI segmentation, there was the influence 
of physicians’ subjective judgment, and the subsequent 
research should be further improved.

Conclusions

The radiomics model performed better than the clinical 
model in evaluating the TMB status of NSCLC patients. 
The radiomic features of the intra-tumoral area had 
better diagnostic efficacy, and the radiomics features of 
the peritumoral area also played an important role in the 
evaluation of the TMB status. The nomogram combined 
with clinical and radiomics features had the best predictive 
ability and clinical value, which could provide more 
information for clinicians in the TMB status assessment, 
ICI efficacy prediction, and immunotherapy program 
formulation. The nomogram is a non-invasive, affordable, 
rapid, simple, and can eliminate the impact of tumor 
heterogeneity detection method, more in line with the 
clinical needs of tumor patients, so it is more practical in 
clinical practice. In the future, from the perspective of 
radiomics, a multivariate efficacy prediction model can 
be established by using TMB and other factors related 
to ICI efficacy to help clinicians make more reasonable 
combination therapy decisions, so as to bring higher 
survival rate for lung cancer patients and avoid additional 
toxicity.
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