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Orthopedic implants are widely used for the treatment of bone defects caused

by injury, infection, tumor and congenital diseases. However, poor

osseointegration and implant failures still occur frequently due to the lack of

direct contact between the implant and the bone. In order to improve the

biointegration of implants with the host bone, surface modification is of

particular interest and requirement in the development of implant materials.

Implant surfaces that mimic the inherent surface roughness and hydrophilicity

of native bone have been shown to provide osteogenic cells with topographic

cues to promote tissue regeneration and new bone formation. A growing

number of studies have shown that cell attachment, proliferation and

differentiation are sensitive to these implant surface microtopography. This

review is to provide a summary of the latest science of surface modified bone

implants, focusing on how surface microtopography modulates osteoblast

differentiation in vitro and osseointegration in vivo, signaling pathways in the

process and types of surface modifications. The aim is to systematically provide

comprehensive reference information for better fabrication of orthopedic

implants.
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1 Introduction

The replacement and healing of bone tissue has become a major challenge

worldwide, due to the high incidence of accidents and the prevalence of age-

related diseases. Application of bone implant is one of the effective means for the

treatment of traumatic and congenital bone defects. However, there is usually no

direct contact between the implant and the host bone, which leads to poor

osseointegration and implant failure (Xia et al., 2018). Poor interfacial bonding
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between host bone and implant was mainly associated with

minimal osseointegration leading to implant instability,

micro-movements and fibrous tissue formation (Srivas

et al., 2019). Osteointegration relies not only on mechanical

interdigitation to ensure initial fixation, but also on cellular

interactions at the surface level to promote osteoconduction,

osteoinduction, and healing during the early stage of

implantation.

Osseointegration is a dynamic process involving a

sequence of cascade responses in which the surface

properties of implant play a crucial role (Figure 1, Liu

et al., 2020a). Once the implant is placed into the body, an

inflammatory response will occur and lead to the release of

various proteins such as growth factors and cytokines that

form a blood clot (Lotz et al., 2018). The proteins will soon be

absorbed by the implant surface from the blood clot, which

may act as a signal for cell migration and proliferation (Rivera-

Chacon et al., 2013). The specific types of proteins and

firmness of adhesion depend largely on the characteristics

of the implant surface, such as roughness, and hydrophilicity

(Boyan et al., 2017). Cytokines and growth factors stimulate

the recruitment of mesenchymal stem cells (MSCs), which

proliferate, then differentiate into osteoblasts that are

responsible for producing a mineralized matrix and

immature woven bone surrounding the implant. Over time,

the woven bone gradually matures into lamellar bone, further

reinforcing the bone-implant interface (Popat et al., 2007).

However, MSCs can also differentiate into fibroblasts that may

stimulate the formation of a fibrous membrane on the implant

surface and impede the process of bone ingrowth (Razzouk

and Schoor, 2012). It is influenced by the properties of implant

surface. Therefore, surface properties play a crucial role in the

long-term stability and functionality of implants.

An ideal implant should have the ability to stimulate

osteogenic cells responses such as adhesion and

proliferation on the surface. The interface between implants

and the surrounding tissue is the critical area and plays a

pivotal role in directing cell responses to biomedical devices

(Lumetti et al., 2016). Implants surface have effects on cellular

responses including contact guidance and influence on cellular

functions. It is widely believed that microstructural surface is

beneficial to increase bone-implant contact and anchorage for

FIGURE 1
Schematic diagram of the process of implants osseointegration. (A) Blood clot and fibrin matrix formation. (B) Woven bone formation. (C)
Distance osteogenesis and contact osteogenesis. (D) Newborn woven bones fill up the gap. (E)Woven bone matures into lamellar bone. Reprinted
with permission (Liu et al., 2020a). Copyright 2019, the Authors. Published by Wiley.
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improving the interface bonding strength (Kubo et al., 2009;

Lee et al., 2015; Zhu et al., 2018; Piglionico et al., 2020; Di

Tinco et al., 2021). Therefore, surface modification is

necessary and of particular interest to improve implants

bioactivity and other biofunctionalities, and hence enhances

the cellular and tissue responses (Lu et al., 2020; Wang et al.,

2020; Xue et al., 2020). In an attempt to improve bone

formation and implant fixation, implant surface with

various microtopographical cues have been investigated to

induce the osteogenic differentiation of cells, which may assist

more rapid and stable osseointegration, and improve bone

bonding at implant surfaces (Karazisis et al., 2016). More

attention was paid to the mechanism of interface

microenvironment affecting osteogenic behavior in recent

years. Although microtopography can enhance osteogenic

differentiation of cells, there is no consensus on the

optimal structure and feature, and the mechanism is still

unclear.

The aim of this review is to provide an overview of the

recent experimental evidence to the relationship between

microtopography (including microporous structure,

microgrooves, micropillars, micropits, nanotubes, and other

features at macro-, micro-, and nanoscales) and cell adhesive/

osteoinductive properties. Implant with such potential would

accelerate implant osseointegration and healing. To this end,

this review particularly focuses on surface microtopography

modification and its application in implant biomaterials.

Briefly, the manuscript has the following aspects: the

physical properties of the microtopography, the relationship

between the surface microtopography and the cellular in vitro

and osteogenesis in vivo, the potential mechanism regarding

how microtopography affects osteogenic differentiation of

cells, the presently available strategies of surface

microtopography modification and the pros and cons for

every technique. It will provide reference for the future

design of implant surface morphology.

2 Physical properties of
microtopographies

Roughness and hydrophilicity are important physical

properties of the implant’s microtopography, which have

important effects on the biocompatibility. Surface with

microstructure creates higher roughness and specific surface

area compared to smooth ones, which enhances the contact

area between bone tissue and implant; make it more

conducive to the anchoring of bone tissue on material, thus

improving the stability of bone tissue. Cell adhesion state (Yang

et al., 2016), migration (Martínez-Calderon et al., 2016),

proliferation (Rabel et al., 2020) and differentiation

(Manivasagam and Popat, 2021) can be governed by surface

properties.

2.1 Surface roughness

Surface roughness of the implant is essential for integration

in tissue regeneration (Matos, 2021). Increasing the average

roughness of the implant surface was capable of achieving

higher rates of osseointegration. This may be due to the

positive influence of surface roughness on protein adsorption

and osteoblastic function, as well as higher micromechanical

retention of bone on rougher substrates. Surface roughness has

high surface energy, which enhances initial protein adsorption

and facilitates cell interaction at the implant interface (Srivas

et al., 2019). Surface roughness can strongly influence cell

adhesion (Majhy et al., 2021), migration and the geometric

shape of cells (Petrini et al., 2021). Study has shown that

higher levels of cell adhesion were obtained on the rougher

surfaces functionalized with the peptide. It has been reported

that surface roughness affects cell behavior directly by enhancing

the formation of focal contacts or indirectly via selective

adsorption of serum proteins required for cell adhesion

(Zhang et al., 2016). By sensing the roughness gradient, the

cytoskeleton of cells exhibited higher tension on the rougher

surface, which was further transferred to the nucleus and

ultimately affected the expression of osteogenic related

proteins (Chen et al., 2022).

2.2 Surface hydrophilicity

In the presence of the microstructure, the hydrophilicity

increased appreciably. The surface wettability can be tuned

from hydrophobicity to hydrophilicity by controlling surface

topography (Han et al., 2021). The effect of microtopography

on surface hydrophilicity has been reported. Compared with

untreated surfaces, the contact angle of the microgroove surface

is lower (Wang C. et al., 2019). Surface hydrophilicity can

modulate the bonding strength, total amount, and

conformation of adsorbed proteins that can influence early

cell adhesion, proliferation and differentiation. It was found

that cells on hydrophilic surface expressed higher level of

integrin genes than those on hydrophobic surfaces (Zan et al.,

2020). As we know, integrins are a large family of cell surface

receptors, which mediate the interactions between cells and

matrix (Siebers et al., 2005). They can regulate some members

of the cyclin family in a cooperative manner to progress in the cell

cycle. The establishment of specific integrin-matrix stimulation

can also lead to enhancement gene expression related to

differentiation. Studies have demonstrated that integrin

mediated focal adhesion maturation promotes osteoblast

differentiation (Hendesi et al., 2015). Integrins play an

important role in regulating cell behaviors during bone

development and repair (Allori et al., 2008). Surface

hydrophilicity has been shown to influence osteogenic

differentiation of cells via integrin (Kwon and Park, 2018).
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The higher the hydrophilicity of the material, the better the

adhesion of the cells and the better the binding ability to the bone

(Sun et al., 2021).

3 Microtopography on bone
formation and osseointegration

An ideal bone implant should promote early cells adhesion,

osteogenic differentiation and adequate bone integration at the

bone-implant interface. After the material is implanted,

osteoprogenitor cells migrate to the implant site and

differentiate into osteoblasts. Therefore, the properties of

implant surface play critical roles in the interactions between

the biological environment and the implant, interacting with cells

to harmonize their adhesion, migration, proliferation,

differentiation, and the consequential bone formation (Srivas

et al., 2019). Various functional microstructure surfaces have

been proposed to improve the osteogenic differentiation behavior

of osteoprogenitor cells and improve osseointegration, achieving

immediate or early functional loading in patients with reduced

bone density (Chen et al., 2022).

3.1 Osteogenic differentiation behavior of
cells

A number of in vitro studies have been performed to

evaluate whether surface microtopography can promote

cellular reactions that promote bone formation. The most

important finding is that textured substrate surfaces can be

exploited in inducing osteogenic differentiation of MSCs

without any differentiation supplements (Hasturk et al.,

2019). At the implant-bone interface, cell adhesion is

considered important in defining cells to osteoblast

differentiation (Kurashina et al., 2019). What’s important

for bone formation is not the number of adhesions that a

cell can form, but the size of adhesions (Mas-Moruno et al.,

2019). It was reported that stem cells with large spreading and

strong contractility prefer osteogenic differentiation, while

cells with small spreading and low contractility tend to

adipogenic differentiation (Chen and Kawazoe, 2020).

Microtopographies with appropriate size and spatial

arrangement may provide the basic physical clues required

by cell receptors to regulate cell morphology, reorganize

cytoskeleton and transmit mechanical signals to the

nucleus, which may eventually promote cell differentiation.

Numerous studies proved that surface microtopography was

able to trigger osteogenic commitment of stem cells, as

confirmed by the activation of bone-related markers

RUNX2, ALP or ongoing deposition of extracellular matrix

supported by the expression of COLI, OPN and OCN (Di

Tinco et al., 2020; Xia et al., 2020). For instance, hMSCs on

modified topography displayed a noteworthy higher

expression of osteogenic transcription factors and the

formation of mineralized extracellular matrix when

compared to the unmodified materials (Carvalho et al.,

2018). Further research also found that the feature size,

such as width, height, depth, length, diameter or gap size,

can also affect the expression of diverse genes including

cellular adhesion, migration and osteogenic differentiation

(Stanciuc et al., 2018; Hasturk et al., 2019; Zhu et al., 2019).

Therefore, the specific microtopographies feature could

induce the osteogenic differentiation of cells, as well as

regulate the cell adhesion and morphology (Figure 2, Sun

et al., 2021).

3.2 Osseointegration in vivo

One of the requirements for biocompatibility of implants is

that the material should integrate with the bone, known as

osseointegration. For a long-term and reliable fixation of

implants, osseointegration has been proven to be a powerful

solution. Numerous reports have demonstrated that the surface

microtopography of implants affects the rate of osseointegration

and biomechanical fixation. Rough surfaces seem to accelerate

and enhance osseointegration by increasing contact osteogenesis

(Pellegrini et al., 2018). Wang and his collaborators (Wang G.

et al., 2019) fabricated microgroove with graphene oxide coating

on Ti6Al4V alloys implant surface by laser processing and

chemical assembly techniques. Results indicated that the

binding capacity between bone and implants was obviously

enhanced in vivo. Wang et al. (Wang G. et al., 2016)

constructed hierarchical structure on titanium surface by 6-h

treatment of thermal oxidation. Results confirmed that the in

vivo bone-implant contact showed enhanced osseointegration

than the control group. Another study showed that the

hierarchical micro-nano (HMN) surface structure remarkably

improved the hydrophilicity of Ti6Al4V and the bone-to-

implant contact area and new bone volume were significantly

improved on the HMN surface structure compared with the

mciro-roughened surface on Ti6Al4V (Moon et al., 2017). A

recent experiment also showed that micro/nano structure on

composite implant could enhance osteogenesis and

osseointegration, evidenced with greater bone-implant

contacts and push-out force (Wu et al., 2020). Topographical

differences can result in differences in bone-to-implant contact

and pullout strength in vivo (Schwartz et al., 2008).

Nanostructuring on a surface with micro-sized roughness has

been proposed to induce fast regeneration of the surrounding

tissues by regulating the protein interactions (Mendonca et al.,

2008). The structural similarity of an HMN structure with native

bone that composed of macro-, micro-, and nano-scale

components might endow implant surface with favorable

osseointegrative activity.
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4 Signaling pathways of interface
morphology on osteogenesis

Extracellular mechanical signals induced by

microtopography are transformed into intracellularly

biochemical signals, which are achieved by

mechanotransduction process (Burridge et al., 2019; Stewart

et al., 2020). This process involves mechanosensing, which in

turn activates multiple signaling pathways. Studies have proven

that mechanotransduction is involved in micromorphology

induced osteogenesis (Fu et al., 2020).Microtopography-

induced signals can be transported via cytoskeleton and the

changes in cell shape to adapt to the underlying surface. Actin

cytoskeleton has been shown to remodel in response to

microtopography. This remodeling instigates subsequent

mechanotransductive pathways, ultimately leading to the

osteogenic differentiation (Chen et al., 2022). The molecular

mechanisms are mainly known to include Wnt/β-catenin and

yes-associated protein and transcriptional coactivator with the

PDZ-binding motif (YAP/TAZ) pathway (Figure 3).

4.1 Wnt/β-catenin pathway

Wnt signaling is one of the pivotal pathways controlling cell

proliferation and differentiation in tissue homeostasis and is

known to play a crucial role in bone regeneration, bone

formation and osseointegration (Steinhart and Angers, 2018;

Staehlke et al., 2020). Hydrophilic rough surface enhanced the

expression level of osteogenesis related genes and significantly

increased the expression of several Wnt ligands such as Wnt3a,

Wnt5a, and the Wnt receptors of the Frizzled family in Wnt

signaling pathway (Galli et al., 2010; Donos et al., 2011; Li et al.,

2017). Wnt proteins interact with frizzled-LRP surface receptors

such that the down stream effector β-catenin is increasingly

translocated to the nucleus (Li et al., 2017), while at the same time

inhibiting the complex that degrades β-catenin, namely AXIN1

(Hutchings et al., 2020; Rougerie et al., 2021). Under these

conditions, the increased signaling through Wnt/β-catenin
signaling pathway is associated with the expression of

calcification and osteogenic markers. In addition, RhoA plays

a role in controlling Wnt upregulation on microstructured

titanium surfaces (Lumetti et al., 2014). Noncanonical Wnt

factors bind to receptor Frizzled-Ror2C, which activate RhoA.

RhoA, in turns, activates downstream target to phosphorylate

Myosin II. Acto-Myosin filaments create cell tension, which

facilitates the activation of canonical Wnt/β-catenin signaling.

A feedback loop from tension-activated structures controls RhoA

activation levels. Actin microfilaments can also control RhoA,

too (Lumetti et al., 2014). It is likely that the modification of

integrin-based adhesions by the topography is involved at the

starting point of the Wnt-mediated response to topography. The

silencing of the integrin β3 not only blocked the osteogenic

behaviour of MSCs cultured on nanoroughness, but also

decreased the expression of β-catenin and Frizzled (Lopes

et al., 2019). Osteogenic rough surfaces also increase the

expression of Wnt5a together with the expression of the

integrins in MSC (Olivares-Navarrete et al., 2011).

Importantly, the exogenous addition of Wnt5a and Wnt5a

knock-down experiments demonstrated that the integrin

FIGURE 2
Cell adhesion on materials with different microtopography. (A–D) Low magnification and (E–H) high magnification. PL: polished group, SLA:
sandblasted group, SLA-AC: sandblasted acid-etched group, MG:microgrooves (Sun et al., 2021). Copyright 2021, the Authors. Published by Elsevier.
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upregulation was Wnt-dependent (Olivares-Navarrete et al.,

2011), suggesting a mutually reinforcing crosstalk between

integrin adhesions and Wnt signalling (Barlian and Vanya,

2022). Integrin regulates differentiation through the Wnt

pathway, and Wnt increases the expression of integrin,

resulting in further regulation of osteogenic differentiation

(Sun et al., 2018; Rougerie et al., 2021).

4.2 YAP/TAZ pathway

YAP and TAZ are homologous transcriptional coactivators

in the Hippo signaling pathway, identified as an important

regulatory pathway that restricts cell proliferation and

differentiation. Phosphorylated forms of YAP/TAZ are

sequestered in the cytoplasm. Both of them act as the nuclear

relays of mechanical signals exerted by ECM properties and cell

shape and their function depends on Rho and tension of the actin

cytoskeleton, as well as cell spreading (Dupont et al., 2011).

Studies have shown cell adhesion to matrix proteins can trigger

YAP nuclear localization through and integrin/FAK/Src axis,

which was involved in nanotube induced differentiation (Tong

et al., 2020). Cell mechanotransduction comprises signaling

pathways, such as the Rho/ROCK pathway, that result in cell

contractility, cytoskeletal and ECM remodeling, or activation of

YAP/TAZ that triggers the initiation of a cascade of transcription

factors. Contractile actomyosin complexes act as central

mediators between microtopography cues and YAP/TAZ

signaling in various mechanotransduction environments (Jo

et al., 2020). Controlling cells adhesive area on micropatterned

substrates can regulate the nucleo-cytoplasmic localization of

YAP/TAZ, whose target genes partly explained the proliferation

and differentiation of MSCs. Cells with large spreading area

exhibited enhanced formation of actin stress fibers and YAP

FIGURE 3
Schematic representation of signaling pathways to regulate osteogenic gene expression induced by microtopography.
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nuclear location. Inhibiting either the actin polymerization or

actomyosin contractility reduced the nuclear localization of YAP

through disrupting the formation of actin stress fibers. It

demonstrates that the mechanical stimuli induced nuclear

translocation of YAP/TAZ is determined by cytoskeletal

interaction (Wada et al., 2011). A stiffer or tailored surface

will increase integrin clustering and FA formation, thereby

increasing F-actin polymerization and stress fiber formation.

Larger cell spreading area on the microstructure surface will

support the translocation of YAP to the nucleus, as well as the

expression of preosteogenic genes (Zhang et al., 2016). It is this

balance between the YAP/TAZ ratio in cytoplasm and nucleus

that plays a role in the regulation of cell differentiation (Heng

et al., 2020; Seong et al., 2020; Zhang et al., 2021). The role of TAZ

protein in osteogenesis is coactivating transcription by

RUNX2 for osteogenesis, while at the same time inhibiting

transcription by PPARγ for adipogenesis (Heng et al., 2020).

The Wnt/β-catenin and YAP/TAZ pathways have in

common with the remodeling of integrin-mediated adhesions

in contact with microtopography. This indicates that the

transduction of the topographical cues starts at the cell-

implant interface and may be attributed to the features of

adhesion sites. Compared to a flat surface, the

microtopography provides fewer adhesion sites for cells.

Therefore, for cells in order to adhere to the morphology

surface steadily, the focal adhesion complex begins to

assemble and mature, the F-actin becomes strong and stable.

F-actin is one of the major components of the cytoskeleton and

can be regulated by RhoA (Tong et al., 2020). Integrins couple the

substrate to the other focal adhesion proteins so as to facilitate

cell attachment. The adhesion mediated topography sensing

involves the signaling pathways classically associated with

osteogenic differentiation. Topography, however, can be

sensed by the cell as a whole due to the morphological

deformation it imposes. Deformation induced

microtopography sensing is still unclear, because it involves

the whole cell as a unique and complex mechanical unit.

Therefore, that is really an attractive future challenge in this field.

5 Strategies of surface topology
modification

Improvement of the implant’s bioactivation to achieve

enhanced interfacial bonding and osseointegration has been

classically addressed by various surface engineering methods.

These methods mainly focused on increasing the roughness and

hydrophilicity by constructing micro, nano or nano/micro

hierarchical structure of the implant surface (Wang X. et al.,

2016; Wang G. et al., 2019; Sun et al., 2021). The surface

roughness is associated with increased wettability. Surface-

roughening procedures may also affect the surface chemical

composition of the implants, which impacts the hydrophilicity

of the implant surface (Junker et al., 2009). A study has shown

that micro roughness induces hydrophobicity but subsequently

enhances hydrophilicity compared with Ti surfaces without

microstructuring (Rupp et al., 2004). Surface modification

with high roughness and hydrophilicity were capable of

promoting the proliferation and differentiation of cells and

achieving higher rates of osseointegration (Wennerberg et al.,

2014). The following techniques can be utilized either

individually or in combination. Each method has its own

specific advantages and limitations (Table 1).

5.1 Uncontrolled microtopography

5.1.1 Plasma spraying
Plasma spray is one of the methods to produce roughness

that projected out from the implant surface. This is a thermal

spraying technology using plasma arc as heat source and has been

widely used in the biomedical field. The technology is simple and

easy to operate, and provides a cost-effective, straightforward,

and reliable approach for constructing materials with micron

scale characteristics on implant surface. Many parameters

involved in this method, which can potentially affect the

microstructure of coatings. Plasma spray was highly irregular

in form, but it can stimulate osteoblast differentiation in vitro and

support osteogenesis in vivo (Ratha et al., 2022; Udduttula et al.,

2022). Liu et al. proposed a novel vapor-induced poreforming

atmospheric plasma spraying to prepare bioactive porous HA

coating with the potential to promote osteoblast attachment and

differentiation (Liu et al., 2020b). However, plasma spray

implants were gradually replaced by implants with more

stable and improved surface morphology in the marketplace

because of the leakage of ions, which were taken up by the

surrounding cells (Rautray et al., 2011). In addition, the

temperature of plasma spray is extremely high, and the

coating surface subjects to large thermal stresses. More

attention should be paid to the improvement in the

preparation of coatings on small and special-shaped workpieces.

5.1.2 Grit blasting
Blasting the implants with forcing abrasive particles against

the surface is another approach for roughening the surface.,

thereby facilitating cell adhesion. According to the size of grit

particles and the length of sand blasting process, pits of various

sizes can be created on the implant surface (Guehennec et al.,

2007). Roughness was in the scale of hundreds of microns to tens

of microns. Different ceramic particles have been utilized, such as

aluminum oxide, titanium oxide, calcium phosphate and

magnesium sulfate particles. Experimental studies have

indicated a higher bone-to-implant contact for blasted

surfaces in comparison with control surfaces (Hoornaert et al.,

2020). Other experiments have demonstrated higher marginal

bone levels and survival rates for TiO2 grit-blasted implants than
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for machined turned implants (Steenberghe et al., 2000; Sirello

et al., 2018). Grit blasting may also have the disadvantage of low

processing efficiency. The blasting material is commonly

embedded into the implant surface and residue remains even

after ultrasonic cleaning, acidic passivation and sterilization

(Guehennec et al., 2007).

5.1.3 Chemical etching
Chemical etching including acid, alkali, hydrothermal

treatments and other similar treatment have been reported to

develop superhydrophobic surfaces (Kim et al., 2019; Lian et al.,

2020). This method consists of a selective and controlled

corrosion process and is one of the most promising methods

for its commercial application development, due to its low

manufacturing costs (Sun et al., 2020). It has been reported

that leaf-like, needle-like or pyramid-like nanostructures can be

developed on implant surface by autoclaving in presence of

distilled water or NaOH solution at 120–240°C (Obata and

Kasuga, 2007). The nest-like structure on the surface of metal

implants can be prepared by utilizing hydrothermal method in

KOH (Wandiyanto et al., 2020) or NaOH solution (Lin et al.,

2014), most of which are hydrothermally treated at 110–150°C

for 2–24 h, and some need to be calcined at 450–500°C for 2–4 h.

However, high KOH/NaOH concentration and longer

fabrication duration (often exceeds 24 h) limit the usage of

this method. Hydrothermal utilizes aqueous solution as the

reaction system in a specific sealed reactor, such as autoclave.

Hydrothermal treatment is considered as the inexpensive

technique with high engineering potential for irregularly

shaped implants (Srivas et al., 2019). Generally, this method

often utilizes expensive apparatus and corrosive fluoride based

chemicals, has a long reaction cycle, restricts equipment

requirements and has technical difficulties such as strict

temperature and pressure control.

5.1.4 Anodic oxidation
Anodic oxidation is an accelerated electrochemical

process, in which oxide film is applied to the implants

surface while immersed in an electrolyte bath. It is now

ordinarily utilized to increase the thickness of TiO2 layer

and fabricate controllable nanostructures on titanium

implant surfaces (Liu et al., 2020a). Several possible

morphologies can be produced by anodic oxidation

technique, which depend not only on cell voltage, but also

on the composition of the electrolytic solution, in which the

electrodes are immersed. Microarc oxidation (MAO) is

developed based on conventional anodizing technology and

its process predominantly relies on the matching adjustment

of the electrolyte and the electrical parameters. The process is

performed on the surfaces of Ti and other valve metals and

their alloys at instantaneous high temperatures and pressures

generated by arc discharge (Xue et al., 2020). By the principle

of plasma electrolytic oxidation, MAO can generate a macro

porous and tightly adherent TiO2 film on the Ti substrate,

which got a lot of attention (Zhang L. et al., 2020; Shen et al.,

2020). The enhanced surface hydrophilicity of the porous

coating prepared by MAO can stimulate the interaction

between the implant and the surrounding biological

TABLE 1 Characteristics of the surface modification techniques for microtopography.

Types Techniques Process Advantages Limitations

Uncontrolled
Microtopography

Plasma
Spraying

Thermal spraying technique; Vacuum
deposition

Easy to operate; High bonding strength;
Economical

Leakage of ions; Difficult to coat inner
surface of small holes

Grit Blasting Forcing abrasive particles against the
implant surface

Simple and low-cost; Roughen the surface Low processing efficiency; Blasting
material residue

Chemical
Etching

Removing materials and fabricating
roughness

Low-cost; Leaf-like, needle-like or pyramid-
like nanostructures can be obtained

Depending on acid concentration,
temperature, and time

Anodic
Oxidation

An accelerated electrochemical process Simple process; High hardness; Nanometer
features; High stability; Enhancing the
corrosion resisitance

High energy consumption; Bonding
strength with matrix needs to be further
improved

Controlled Micro-
topography

Laser
Treatment

A physical technique of high density
form

Able to fabricate complex and high
resolution topography; Rapid and clean;
Good repeatability

Optimization of all parameters is a big
challenge; Multiple treatment sessions
and limited

Photo-
lithography

Selectively dissolving photosensitive
polymer and leaving latent on
substrate

Ideal for microsturcture Usually requires flat surface and needs
chemical post-treatment

Hot Embossing Form a relief pattern at an elevated
temperature by pressing master into
the polymer

Cost-effcctive; Precise; Rapid, and mass
production

Restricted to thermoplastics and
difficult to fabricate comlex 3D micro-
structures

Micro-milling Material-removal process using
microscale milling tools

Simple; Without affecting the key
characteristics of implant surface

Slow and inefficient; Restricted by the
available smallest diameter of milling
cutters
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environment. Although anodic oxidation is convenient and

economical, the bonding strength with implant matrix needs

to be further improved. The multilevel structure designs,

multiscale coating or coating with novel surface

morphology should also be developed.

5.2 Controlled microtopography

Micromachining may be the best way to prepare an implant

surface in a controlled manner. Micro/nano fabrication provides

a wide opportunity for the modification of surface with ordered

shape, size, and spatial arrangement for controlling or inducing

stem cell differentiation. Compared with traditional mechanical

and chemical processing methods, it has the advantages of high

precision, less pollution, flexible use and high controllability.

5.2.1 Laser treatment
Laser treatment is a contactless process, which does not

pollute the implant surface, and has the advantages of wide

applicability, high resolution, fast speed, good repeatability

(Vanithakumari et al., 2021; Chen et al., 2022). Femtosecond

laser micromachining has been efficiently applied to supply

microtopography in implant surface (Carvalho et al., 2018;

Stanciuc et al., 2018; Wang C. et al., 2019; Trueba et al.,

2021). The principle of femtosecond laser is that the laser

pulses travelled through air to the focusing device, which can

focus the beam and position the sample. The sample is placed on

a motorised platform with three-axis motion, so that the pulse

can impinge perpendicularly onto its surfaces (Luo et al., 2021).

Femtosecond laser technology has the advantages of high

precision and low heat production on the material surface

(Vanaei et al., 2021). Femtosecond laser treatment can

significantly increase the surface roughness, hydrophilicity and

surface area of the implant, and reduce residual elements, which

provides greater potential for the integration of material and

bone (Sun et al., 2021). Many previous studies on the use of laser

treatment of ceramic surfaces reported that the hydrophilicity of

the surfaces was improved (Hao et al., 2005; Hao and Lawrence,

2006). However, the optimization of all parameters, including

power density, scanning speed, frequency and pulse duration, is

still a big challenge.

5.2.2 Photolithography
Photolithography is widely used in the microelectronics

industry to create micropatterns on flat surfaces. Desired

pattern in titanium and silicon have also been generated by

photolithography (Kim et al., 2018; Ponomarev et al., 2019).

Mainly, the patterning of a layer of photosensitive polymer

(photoresist) was produced by utilizing UV or X-ray light at

first. The light is shone through a patterned mask giving the

designed pattern in the form of UV-opaque features on a UV-

transparent background. Then, the desired pattern was

transferred to the substrate by dry etching or wet etching of

the uncoated areas (Kang et al., 2017). Photolithography is an

ideal method for fabricating microstructure, but the disadvantage

is that it usually requires a flat surface to start with and needs

chemical post-treatment.

5.2.3 Hot embossing
Hot embossing is another technique used for

micropatterning. Sun et al. produced microgrooved

polystyrene substrates by hot embossing and demonstrated

the effect of microgrooved PS surfaces on the morphology,

metabolic activity, proliferation and osteogenic differentiation

of MG-63 osteoblast-like cells (Sun et al., 2016). Briefly, hot

embossing imprint lithography is to press a micromachined

master directly into the polymer at an elevated temperature to

form a relief pattern. The major advantages of this technology are

cost-effectiveness, accuracy and the ability to generate 3D

features. However, this technology is limited to thermoplastics

and it is difficult to fabricate complex 3D structures (Chen et al.,

2022).

5.2.4 Micro-milling
As one of the micromachining methods, micro-milling

technology provides high flexibility by manufacturing complex

3D microscale products and has promising applications in

preparation of controllable, microscale surface modification,

which provides firm support for the surface modification of

titanium (Yue et al., 2019; Zhang X. et al., 2020; Kiswanto

et al., 2020). By selecting appropriate cutting parameters,

superior surface quality can be obtained using micro-milling.

The cutting force, temperature, vibration and deflection have a

great impact on the quality of the machining process and results.

Several studies have been done to identify the appropriate cutting

parameters in micro-milling process of Ti6Al4V (Bandapalli

et al., 2018; Dadgari et al., 2018). Cai et al. manufactured

microstructures on stainless steel using micro-milling, and

investigated the effect of microstructure on surface contact

angle (Cai et al., 2017).

It should be noted that the aforementioned strategies could be

combined to achieve synergies and special structures to improve

biological responses (Liang et al., 2022). Generally,microstructures

at micron level can be prepared by sandblasting, acid etching,

micromachining, electrochemical machining, etc, while nanoscale

surface microstructure can be achieved by hydrothermal, alkali

heat treatment, anodic oxidation and other technologies. Although

all scales of topography are capable of inducing cell alterations,

different scales can influence the osteogenic behavior of cells in

different ways due to the cellular interaction with the surrounding

environment. Nanoscale topography regulates cell behavior

primarily through spatial restrictions on the location and size

of adhesion complexes, which can modulate cell adhesion to

adsorbed proteins through integrin and consequently induce

intracellular expression of target genes (Davison et al., 2016).
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Cell-matrix interaction with microscale topography generates

effects by modifying the entire cell morphology, that is,

inducing cell deformation due to cytoskeletal remodeling to

adapt to substrate shape (Rabel et al., 2020). Natural bone is a

hierarchical structure containing macroscale, microscale, and

nanoscale organizations (Wang X. et al., 2016). From a

biomimetic perspective, micro/nano textured surface can mimic

the structure of bone tissue and enhance cell responses. Themicro/

nano hierarchical architecture has been accounted to accelerate

cell functions by synergistic equilibrating between cellular

proliferation and differentiation (Srivas et al., 2019; Sun et al.,

2022). Studies have shown that it is possible to create hierarchical

textures through the combination of micro and nano features on

the same surface. For instance, Maher et al. (Maher et al., 2021)

created bioinspired multistructured surfaces on SLM-printed

Ti6Al4V implants by combining electrochemical anodization

and hydrothermal methods. The implants display unique

surfaces with a distinctive dual micro to nano topography

composed of micron-sized spherical features and vertically

aligned nanoscale pillar structures, which can increase the

deposition of hydroxyapatite minerals in simulated body fluids

and the adhesion of human osteoblast-like cells. It should be

pointed out that most of the modification strategies resulted in a

surface that had a complex multi-scale roughness. The hydrophilic

properties added to the roughened surfaces have shown higher

biocompatibility and have induced faster osseointegration,

compared to the existing modified surfaces (Yeo, 2014). After

roughening the surface by combination of sandblasting and acid

etching (SLA), increased hydrophilicity can promote bone

formation and exhibit higher osteogenic potential compared to

samples without modifications to hydrophilic properties (Wall

et al., 2009). A hydrophilization technique evaluated clinically used

phosphonic acid coupled to blasted and acid-etched surfaces to

generate a “biomimetic” surface with increased hydrophilicity

(Esposito et al., 2013). Taken together, it is essential to choose

an appropriate method in terms of implant materials, applying

situations and fabricating procedures. Construction of hierarchical

microtopography mimicking native bone on the implant surface is

an effective modification strategy to improve cell responses and

osseointegration.

6 Summary

For a long-term and stable fixation of implants, osseointegration

has been considered as a pivotal process. Osseointegration is affected

by various factors including materials, surface microtopography, the

environment of bone-implant interface, the design of the implant

itself, and so on. Materials determine the principal characteristics of

implants. Qualified materials should have enough mechanical

properties, high corrosion and good biocompatibility (Liu et al.,

2020b). Surfacemodification is used tomodify the chemical, physical,

and biological properties of implant surface for better

osseointegration and has raised increasing attention in modern

orthopedic medicine recently. Moreover, bone is a 3D

inhomogeneous structure with complex topography. Porous

implants that have a similar hierarchical structure on multiple

scales with native bone may facilitate osseointegration. The pores

enhance the permeability of implants and create the space for

nutrient exchanges, which grant better biocompatibility and

osseointegration potential for implants (Cheng et al., 2018).

Microtopography of the implant surface is potent modulator of

the osseointegration. Different cell types prefer various

microenvironments. Fibroblasts adhere more strongly to smooth

surfaces while rough surfaces facilitate the adhesion and proliferation

of osteoblasts. Modifying the biomaterial surface properties to

enhance host cell adhesion and function has been a major focus.

Biomaterial surfaces with physical properties of roughness or

hydrophilicity and have complex HMN surface structure, are

more effective in supporting osseointegration. Roughness,

hydrophilicity and chemical composition are the bridges

connecting the physicochemical properties and biological

properties of implant surfaces. Although it is possible to induce

stem cells differentiation towards the osteoblast lineage by controlling

the microtopography, no optimal micropattern structure and size

have been confirmed yet. To further analyze the connection between

cell behaviors and the microtopography, potential

mechanotransduction mechanisms need to be investigated. At

present, Wnt/β-catenin and YAP/TAZ signal pathways

were recognized as mediating the regulation of cell adhesion and

cytoskeleton organization on the microtopography, which ultimately

affected the expression of osteogenic genes.

A large number of surface treatment approaches emerged

for modifying implant surfaces with the purpose of increasing

surface roughness. These modification techniques can be

combined to create hierarchical textures mimicking host

bone structure. However, each method has its own specific

advantages and limitations. It is still urgent to develop a simple,

efficient, easy-to-operate, safe, and controllable method or to

combine various surface modification methods to play a

synergistic effect, and combine their advantages to conquer

deficiencies. Nonetheless, it is increasingly accepted that

infection is also a major cause of implant failure. Implant

surfaces that support osseointegration may also favor

colonization of bacterial cells. Therefore, to improve the

success of implants, biomaterial surfaces should ideally

discourage the attachment of bacteria without affecting

osteogenic cell functions (Spriano et al., 2018). Future

strategies should explore a combined goal.

In conclusion, surface microtopography of the implant plays a

very important role in osseointegration. Further research is still

required on the preparation of tailored and standardized

microtopography. In addition, how cells sense the

microenvironment and transform mechanical cues into

intracellular signals, the underlying mechanisms of interaction

between microtopography and cells need further investigation,
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which could help to create tailored implant surfaces to promote bone

formation around the implant.
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