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Increased average air temperatures and more frequent and prolonged periods of

high ambient temperature (HT) associated with global warming will increasingly affect

worldwide poultry production. It is thus important to understand how HT impacts

poultry physiology and to identify novel approaches to facilitate improved adaptation

and thereby maximize poultry growth, health and welfare. Amino acids play a role in

many physiological functions, including stress responses, and their relative demand

and metabolism are altered tissue-specifically during exposure to HT. For instance,

HT decreases plasma citrulline (Cit) in chicks and leucine (Leu) in the embryonic brain

and liver. The physiological significance of these changes in amino acids may involve

protection of the body from heat stress. Thus, numerous studies have focused on

evaluating the effects of dietary administration of amino acids. It was found that oral L-Cit

lowered body temperature and increased thermotolerance in layer chicks. When L-Leu

was injected into fertile broiler eggs to examine the cause of reduction of Leu in embryos

exposed to HT, in ovo feeding of L-Leu improved thermotolerance in broiler chicks. In ovo

injection of L-Leu was also found to inhibit weight loss in market-age broilers exposed

to chronic HT, giving rise to the possibility of developing a novel biotechnology aimed at

minimizing the economic losses to poultry producers during summer heat stress. These

findings and the significance of amino acid metabolism in chicks and market-age broilers

under HT are summarized and discussed in this review.
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INTRODUCTION

The 0.9◦C rise in the world’s average surface temperature since
the late 19th century has been mainly caused by the increase
in carbon dioxide and other human-made emissions into the
atmosphere (1). This warming has mostly happened in the past
35 years, with the five warmest years on record having been
since 2010 (1). The year 2020 was no exception, with a very high
ambient temperature (HT) worldwide in the summer. The HT is
a growing challenge for all living organisms, including chickens.
In general, because they do not possess sweat glands, but instead
rely on evaporative cooling (panting) as main thermoregulatory
mechanism, HT is stressful to chickens and interferes with
their ability to maintain a homeothermic body temperature (2).
The exposure of chickens to HT can cause hyperthermia (3–
5). If heat production exceeds heat dissipation capacity, HT
can induce stress in chickens (6). This heat stress decreases
food intake and body weight (BW) gain, ultimately hindering
production and increasing mortality (7–9). Balnave and Oliva
(10) reported that absorption of arginine (Arg), an essential
amino acid in chickens, significantly decreased when chickens
are exposed to heat stress. Several reports showed that the dietary
supplementation of certain essential amino acids canmitigate the
problems resulting from heat stress in birds (11–16). Increased
dietary levels of certain amino acids could be useful to counteract
the negative effects of heat stress in chickens. Thus, it is crucial
to better understand the importance of this dietary strategy,
as well as the role of the amino acids in the metabolism of
heat-stressed birds.

Traditionally, it is thought that chicks are not subjected
to heat stress. However, series of studies showed that chicks
around 2 weeks old are susceptible to HT (35–40◦C) when
compared with the control thermoneutral temperature (30◦C;
4, 5). Several free amino acids have been found to increase
in the blood, brain, and muscle of layer chicks within a short
time (15 or 30min) following exposure to HT at 35◦C (17);
however, when layer chicks were exposed to prolonged HT
at 35◦C for 48 h, most of these amino acids decreased in the
brain and plasma (18). On the basis of these findings, we
noticed that citrulline (Cit), which increased in the plasma

of layer chicks after short-term heat stress (15 or 30min
at 35◦C) and decreased as a result of long-term heat stress
(24 or 48 h at 35◦C), acts hypothermically in chicks when
administered to them orally (19, 20). In addition, thermal
manipulation (TM) during embryogenesis was associated with
reduced concentrations of leucine (Leu) in the brain and liver
of broiler embryos. Notably, in ovo injection of L-Leu afforded
thermotolerance in broiler chicks (21, 22). Thus, those amino
acids that either increase or decrease in chicks, depending on the
length of exposure to heat stress, may be used as biomarkers of
heat stress.

In this review, we summarize how heat stress affects amino

acid metabolism, with a particular focus on the means by

which L-Cit and L-Leu afford thermotolerance. Furthermore, we

describe the use of in ovo feeding of L-Leu to attenuate the BW
reduction that occurs in market-age broilers under heat stress.

METABOLISM OF AMINO ACIDS IN
HEAT-EXPOSED EMBRYOS AND CHICKS

Animal proteins are commonly consisted of 20 amino acids. In
growth-phase chicks, 11 of these [arg, histidine, isoleucine, Leu,
lysine (Lys), methionine, phenylalanine, threonine, tryptophan,
valine, and glycine] are essential amino acids, while the
remaining are non-essential (23). Heat stress induces catabolism
in organisms (24) in order to provide energy to counter the heat
stress. Therefore, any variations in free amino acids that occur
under heat stress (17, 18, 25, 26) can be assumed to be the result
of catabolic activity. All tissue contains enzymes for amino acid
catabolism and synthesis, but their expression and activity varies
depending on the tissue’s metabolic requirements. In catabolism,
deamination/deamidation reactions occur in amino acids, which
are followed either by reamination of the carbon skeleton that
results to produce non-essential amino acids or by channeling the
carbon skeleton into the Krebs cycle. Then, it is either oxidized,
funneled toward gluconeogenesis via pyruvate carboxylase, or
converted from pyruvate into acetate for the synthesis of fatty
acid (27). Glycine is an integral part of the uric acidmolecule, and
whenever amolecule of uric acid is excreted, amolecule of glycine
lost also occurred, particularly during the catabolic phase (28).
Amino acids are well-documented to function not only as protein
constituents but also as important physiological and behavioral
regulators, and this includes the regulation of stress responses
(29–34). While there have not been many investigations into the
altered free amino acid concentrations found in chickens exposed
to heat stress, Ito et al. (17) observed increases in several free
essential and non-essential amino acids in the plasma, muscle,
and brain in layer chicks following short-term heat stress (15–
30min at 35◦C); however, they also found significant reductions
in the levels of some other amino acids.

It is still unknown why various amino acids increase in the
plasma under short-term heat stress. It is interesting that during
short-term heat stress (35◦C, 15 or 30min; 17) the free amino
acids have been found to be highly concentrated, in complete
contrast to the situation during long-term heat stress (35◦C, 24
or 48 h; 18), which was characterized by a reduction in most
of the free amino acids. For instance, there was a reduction in
tryptophan, Cit, and ornithine (Orn) in the plasma of layer chicks
exposed to long-term heat stress (18), whereas the same amino
acids increased during short-term heat stress (17). Levels of a
variety of free amino acids in the chick brain and breast muscle
are also affected by heat stress (17). Interestingly, however, the
free amino acids found in the brain and skeletal muscle differ
for the most part from those in plasma (17). This suggests that
changes in free amino acid concentrations may vary by tissue and
be related to tissue-specific enzymatic activity in connection with
amino acid metabolism and protein turnover. The concentration
of 3-methyl histidine, a marker of proteolysis (35, 36), was found
to decline in response to short-term heat stress (17), which
suggests that there is a reduction in protein degradation under
short-term heat stress (35◦C, 15 or 30min; 17). There is always
a balance in the body between protein synthesis and protein
degradation, so under short-term heat stress protein synthesis
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may also be decreased, it may lead to increase in the free amino
acid pool in the tissue.

TM during embryogenesis involves increasing the incubation
temperature, leading to neonatal chicks (37) and chickens (38)
acquiring thermotolerance under HT. We recently reported a
significant reduction in some amino acids, including Leu, Lys,
and phenylalanine, in the brain and liver of embryos subjected
to TM (21). To summarize, amino acid metabolic activity can be
influenced by heat stress in broiler embryos and layer chicks.

AMINO ACIDS AFFORD
THERMOTOLERANCE IN HEAT-EXPOSED
CHICKS

When L-Cit, L-Orn, and L-Arg were administered in the
left ventricle of the brain, there was no reduction in body
temperature (19); however, orally administered L-Cit, but not
L-Arg or L-Orn, did decrease it under control thermoneutral
temperature (19). Furthermore, oral L-Cit lowered the body
temperature in layer chicks under heat exposure (20). These
results indicate that L-Cit has a hypothermic role.

Nitric oxide (NO) is produced when L-Arg is converted to L-
Cit by NO synthase (39) and may act as a hypothermic factor
in chicks because thermoregulation has been proposed to be an
important physiological function of NO (40), occurring through
cutaneous dissipation (41). However, our findings suggest that
NO may not be the main factor in L-Cit–dependent reduction
of body temperature and thermotolerance (20). Further research
is needed to find out the factor(s) involved in L-Cit–dependent
reduction of body temperature. It could be concluded that
the production of NO may not be a significant factor in
L-Cit–dependent reduction of body temperature. As orally
administered L-Cit affords thermotolerance in layer chicks, this
amino acid could possibly be proposed as a novel nutritional
candidate in assisting poultry to cope with heat stress.

A further finding was that there was a significant reduction
in Leu in the embryonic brain and liver as a result of the
TM. In ovo feeding of L-Leu led to hypothermia in broiler
chicks at hatching (21). Metabolic activity was also high during
embryogenesis after in ovo feeding of L-Leu. Lipid metabolism
increased in broiler embryos and chicks as a result of in ovo
administration of L-Leu, which might have been due to greater
mitochondrial activity, as Liang et al. (42) reported that L-
Leu and its metabolites [α-ketoisocaproate and β-hydroxy-β-
methylbutyrate] can stimulate mitochondrial biogenesis and
oxidative activities. Plasma triacylglycerol (TG), non-esterified
fatty acids (NEFAs), and ketone bodies were higher in broiler
chicks fed L-Leu in ovo under heat stress than in heat-exposed
control chicks. One might surmise that broiler chicks would
benefit from in ovo feeding of L-Leu because fat generates less
heat, and dietary fats have well-known beneficial effects in hot-
weather feeding programs (8).

As high levels of plasma ketone bodies were found in broiler
chicks subjected to L-Leu administration in ovo, the liver might
be assumed to produce and release more ketone bodies into the
bloodstream (22). As a result, a higher demand for acetyl-CoA

may occur in the liver, ultimately stimulating the β-oxidation
of fatty acids for the production of more acetyl-CoA. Fatty
acid oxidation is heavily exergonic in comparison with glucose
oxidation, with a high ATP yield (43). Yahav (44) surmised
that hyperthermia during heat stress in meat-producing broilers
might be the result of a reduced investment in energy under
such conditions. Therefore, the fact that the energy produced
through lipid metabolism in male broiler chicks given L-Leu is
more readily available might assist in affording thermotolerance
under heat stress (Figure 1). However, we have not observed any
changes in lipid metabolism in chronic heat–exposed market-age
broilers subjected to in ovo L-Leu feeding (45; Figure 1). Thus,
it might be predicted that lipid metabolic activity, which was
greater in embryos administered L-Leu in ovo, could persist until
the neonatal period.

IN OVO ADMINISTRATION OF L-LEU
AFFORDS THERMOTOLERANCE,
SUPPORTS GROWTH, AND MODULATES
AMINO ACID METABOLISM IN
MARKET-AGE BROILERS

As stated above, in ovo administration of L-Leu affords
thermotolerance in broiler chicks. However, it is important
practically to examine whether this effect continues until market
age. Han et al. (45) conducted a study where broilers (4 or 6
weeks old) injected with L-Leu in ovowere examined under acute
and chronic heat stress conditions. They measured changes in
body temperature and BW, as well as amino acid metabolism
and plasma metabolites. After in ovo administration of L-Leu,
male broilers (29 or 30 days old) were subjected to acute
heat stress (30 ± 1◦C for 120min) or to chronic heat stress
(over 30 ± 1◦C; aged from 15 to 44 days old). Under acute
heat stress, the increased body temperature was found to be
suppressed in broilers receiving the in ovo administration of L-
Leu, without affecting food intake, plasma TG, NEFA, ketone
bodies, glucose, lactic acid, or thyroid hormones. Under chronic
heat stress, in ovo administration of L-Leu increased the daily
body temperature. Of note, under chronic heat stress, in ovo
administration of L-Leu resulted in a higher daily BW gain in
comparison with the control group. Furthermore, under acute
heat stress, there was a significant increase in several essential
amino acids, including Leu and isoleucine, in the liver, and a
decrease in their concentration in the plasma, following in ovo
administration of L-Leu. These findings indicated that in ovo
administration of L-Leu in broilers up to market age produces
thermotolerance under conditions of acute heat stress chiefly by
altering the amino acid metabolism.

Although there is limited information available on the in
ovo injection of amino acids on the performance of broilers
under heat stress, dietary administration of some amino acids
was found to be beneficial related to growth and meat quality
under heat stress. For instance, El-Naggar et al. (46) reported
that dietary supplementation of γ-aminobutyric acid (GABA)
increased food intake and BW gain in broilers under heat stress.
It was found that dietary glutamine improved the antioxidative
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FIGURE 1 | Schematic overview of metabolic possibilities resulting from in ovo administration of L-Leu in embryos, young broiler chicks, and market-age broilers. The

broken curved line indicates a possible lipid metabolic memory extending from the embryo to the young chick. Arrows indicate the progression (→ ), increase (↑), or

reduction (↓) of metabolites and metabolic processes. L-Leu, L-leucine; TG, triacylglycerol; NEFA, non-esterified fatty acid; HP, heat production; O2, oxygen; CO2,

carbon dioxide; GABA, γ-aminobutyric acid.

state of broiler muscles under heat stress (47). Del Vesco et al.
(48) showed that dietary methionine supplementation improved
protein deposition in acute heat-exposed broilers. Therefore,
amino acids could play important role to protect the growth of
broilers under heat stress.

In birds, body temperature is considered to be a reliable
indicator of thermotolerance acquisition (44). Previously, we
have demonstrated that in ovo administration of L-Leu in
broilers under acute heat stress produced thermotolerance by
lowering body temperature and reducing the mRNA expression
of heat-shock proteins (22, 49). In market-age broilers, enhanced
body temperature due to acute heat stress was lowered by L-
Leu, suggesting that in ovo administration of L-Leu affords
thermotolerance under acute, but not chronic, heat stress until
market age is reached. It could be that the reduced body
temperature resulted from less heat production, from greater heat
loss, or from both. Neither food intake nor plasma metabolites

(TG, NEFA, and ketone bodies) were influenced by L-Leu
administration following 120min of heat exposure in market-
age broilers, suggesting that food intake and lipid metabolism
may not contribute much to L-Leu–induced thermotolerance
(45). Thyroid hormones, in particular triiodothyronine (T3), are
important in modifying the metabolic rate, which influences
body-temperature regulation (44). In ovo administration of L-Leu
(34.5 µmol) had no effect on T3 concentrations, even when there
was a reduction in body temperature during hatching (50). Thus,
as suggested by Han et al. (45), plasma thyroid hormones are not
influenced by L-Leu under conditions of acute heat stress. TM
during embryogenesis, which affords thermotolerance, results in
a reduction in thyroid hormones at hatching and in posthatch
chicks, as well as in chicks exposed to heat stress (51). L-Leu–
mediated thermotolerance could be assumed to be a different
mechanism to that of TM. Interestingly, in ovo administration
of L-Leu in broilers resulted in an increase in body temperature
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under chronic heat stress. Under continuous heat stress, higher
body temperature might be considered to be an adaptive strategy
in the broilers treated with L-Leu, because the increased body
temperature has been found to enhance sensible heat loss (44).
However, the mechanisms underlying the various responses of
body temperature under short-term and chronic heat stress are
not clear, and as mentioned by Han et al. (45), molecular and
physiological analyses are needed.

Chronic heat stress in broilers has negative effects on feed
intake, BW gain, and feed-conversion ratios (52). However,
in ovo administration of L-Leu has been found to attenuate
the reduction in BW induced by heat stress in broilers (45).
In conditions of continuous heat stress, between 31 and 44
days of age, the difference in BW between the in ovo water–
administered control and the L-Leu–administered groups tends
to be reduced. It is well-known that long-term feed restriction
during heat waves in the summer leads to an improvement
in heat resistance and thermotolerance, although significantly
reducing broiler performance (53). It could be thought that
there is a conflict between feed restriction and thermotolerance
because feed restriction causes nutritional deficiency in broilers.
However, the L-Leu–treated group showed a significantly higher
BW compared with the control heat-exposed group, where at 23
days of age the average BW of the L-Leu–administered group
was 8.4% higher than that of the control group (45). In ovo
administration of L-Leu has been reported to enhance growth
in chicken embryos (54), and in neonatal pigs, muscle protein
synthesis has been found to be improved by dietary L-Leu
supplementation (55, 56). Because in ovo administration of L-
Leu appears to maintain a normal growth under cyclic heat stress
(45), it might be assumed that in ovo administration of L-Leu
accelerates protein synthesis tomaintain growth in broilers under
heat stress.

Acute heat stress induces catabolic activity in organisms (24).
It is well-documented that the liver plays a vital role in the
regulation of metabolism, including amino acid metabolism,
and it regulates many physiological processes affected by heat
stress (57). Many essential amino acids, including Leu, Lys, and
isoleucine, were found to be significantly increased in the liver
and decreased in the plasma following in ovo administration
of L-Leu in comparison with control broilers. Acute heat stress
alters amino acid metabolism in chicks (17) and decreases
some free amino acid concentrations in the brain and plasma
of chick embryos (49). During heat stress, higher amino acid
concentrations in the liver might be expected, in order to match
other tissues’ energy need. Han et al. (45) reported higher hepatic
concentrations and lower plasma concentrations of amino acids
in the L-Leu–treated group than in the control group, which
suggests that there were stronger heat-stress responses related
to amino acid metabolism in broilers treated with L-Leu. Thus,
in ovo administration of L-Leu might improve amino acid
metabolism during acute heat stress. Amino acids are derived
from catabolized proteins and provide carbon backbones for
glucose or fatty acid production (57); thus, L-Leu administration
might enhance energy metabolism in broilers, and high energy
is needed to maintain thermoregulation under heat stress (44).
Han et al. (45) showed that the concentration of Lys in the liver

increased without any reduction in food intake after 120min of
heat stress, which might indicate that this is a form of metabolic
support for various organs via the blood circulatory system,
because it has been shown that the dietary Lys requirement
increases during heat stress (58). In broilers, food intake was
not affected, and body temperature was lowered significantly
following L-Leu treatment under 120-min heat stress (45). With
180-min heat stress, food intake was reduced significantly, and
Lys concentrations remained higher in the plasma and brain
in L-Leu–treated broiler chicks in comparison with control
chicks (49). Limesand et al. (59) reported that L-Lys oxidation
was significantly increased under chronic hypoglycemia for
supporting the growth of fetus. The higher concentrations of
Lys in the broiler liver fed L-Leu in ovo (43) may be connected
to increasing β-oxidation for a higher need of energy supply
under heat stress. This suggests that, under heat stress, increased
Lys might be a source of higher energy for organs, including
the brain, because Lys supplementation compensated for heat
stress–induced feed-intake suppression (60). Methionine has
been reported to be involved in the expression of stress-related
genes, and it provides cellular protection against oxidative stress
(61). It has also been reported that supplementation of branched-
chain amino acids (Leu, isoleucine, and valine) accelerated
protein synthesis and assisted in recovery following a heat-
related injury (62). Thus, the changes in amino acid metabolism
related to in ovo administration of L-Leu could contribute to
thermotolerance in broilers, rather than to lipid metabolism
as previously predicted in broiler chicks (Figure 1; 22). Future
studies are expected to clarify themechanisms involved in greater
detail. The diencephalon is the area of the brain concerned
with thermoregulation (44), and oxidative damage has been
found here under conditions of prolonged heat stress (18). Han
et al. (45) reported a significantly higher concentration of GABA
in the brain of the broilers fed L-Leu in ovo in comparison
with the controls under conditions of chronic heat stress. Al
Wakeel et al. (63) reported that supplementation with GABA
countered the adverse effects of chronic heat stress on growth,
antioxidant status, and immune function in broilers. It might
be predicted that increased diencephalic GABA concentration
from in ovo administration of L-Leu would reduce the negative
effects caused by heat stress because GABA is a major inhibitory
neurotransmitter, which plays an important role in controlling
excitability (64), and it might therefore have helped to protect
growth under conditions of chronic heat stress (Figure 1).

CONCLUSION

Heat stress causes changes in amino acid metabolism in chicks
and market-age broilers. Research collectively points to L-Cit and
L-Leu because the levels of these two amino acids were affected by
heat stress, and treatment with them afforded thermotolerance
in chicks and market-age broilers, respectively. Notably, in ovo
administration of L-Leu supported a higher BW in market-age
broilers in comparison with the control group under conditions
of heat stress. Heat stress presents a major problem for poultry
production both today and in the future, and our study and
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others (53, 65–69) can contribute to alleviating this serious
global challenge.
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