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The Warburg effect, one of the hallmarks of tumors, produces large amounts of lactate and
generates an acidic tumor microenvironment via using glucose for glycolysis. As a
metabolite, lactate not only serves as a substrate to provide energy for supporting cell
growth and development but also acts as an important signal molecule to affect the
biochemical functions of intracellular proteins and regulate the biological functions of
different kinds of cells. Notably, histone lysine lactylation (Kla) is identified as a novel post-
modification and carcinogenic signal, which provides the promising and potential
therapeutic targets for tumors. Therefore, the metabolism and functional mechanism of
lactate are becoming one of the hot fields in tumor research. Here, we review the production
of lactate and its regulation on immunosuppressive cells, as well as the important role of Kla
in hepatocellular carcinoma. Lactate and Kla supplement the knowledge gap in oncology
and pave the way for exploring the mechanism of oncogenesis and therapeutic targets.
Research is still needed in this field.

Keywords: the Warburg effect, lactate, histone lysine lactylation, metabolic reprogramming, immunosuppression
INTRODUCTION

The Warburg effect, proposed by Otto Warburg in the 1920s, suggests that cancer cells
predominantly relied on increased glycolysis in the presence of oxygen, accompanied by the
generation of lactate and the acidic microenvironment (1). This process is also known as aerobic
glycolysis. It has been thought that it is only the cancer cells that consume lots of glucose, but
accumulating evidence has found that immune cells, predominantly myeloid cells, also do (2, 3).
What is more interesting is that these cells continue to proliferate and establish immunosuppressive
networks in the presence of lactate to gain unlimited immune escape potential (4). Thus, lactate acts
as a mediator between metabolic reprogramming and immunosuppression (5). It is worth noting
that in 2019, Zhang et al. proposed histone lysine lactylation (Kla), a mechanism with global
influence, which provides a new research direction for exploring carcinogenesis and effective
therapeutic targets (6). The liver is an organ that constantly metabolizes glucose, fat, and amino
acids according to the needs of the body. The changes of related enzymes and metabolites are
valuable to be used to evaluate liver function and predict the development of cancer in clinic (7–9).
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METABOLIC REPROGRAMMING TO
PRODUCE LACTATE

Glucose and glutamine are important sources of energy for
tumor cells and immune cells, with glucose predominating.
Nutritional competition occurs between two types of cells.
Tumor cells consume large amounts of both substances,
resulting in immune cell starvation and decreased antitumor
immunity (10).

The Warburg Effect
The end point of the Warburg effect is lactate regulated by many
key enzymes. First, the glucose transporter (GLUT), which is
expressed in most cells, is involved in transporting glucose into
cells in metabolically active tissue. A variety of tumors highly
express GLUT1 and have many regulatory factors (11). Hypoxia-
inducible factor-1a (HIF-1a) and CD147 have positive relations
with GLUT1, respectively (12, 13). MiR-455-5p also promotes
the upregulation of GLUT1 by the IGF-1R/Akt/GLUT1 pathway
(14). Long non-coding RNAs (lncRNAs), which were previously
considered as “transcriptional noise” because of the non-protein-
coding function, play a significant role in the development of
tumors (15). For example, HOX transcriptional antisense RNA
(HOTAIR) increases the expression of GLUT1 by activating the
mTOR signaling pathway (16). Upregulating the GLUT1 and
expediting glucose absorption are only the first step in lactate
production. Second, hexokinase (HK) handles the conversion of
glucose to glucose-6-phosphate. There are four types of HK,
HK1–4, of which HK2 trumps others in hepatocellular
carcinoma. Caveolin1 (CAV-1), miR-199a-5p, and miR-125a
take effect (17–20). HOTAIR is also one factor by adsorbing
miR-130a-3p without oxygen (21). Glucokinase, an isoenzyme of
HK, is required for migration of regulatory T cells (Treg) (22).
There are few studies on HK2, and focusing on it may lead to
special findings. Moreover, pyruvate kinase 2 (PKM2) is the final
rate-limiting enzyme regulating pyruvate accumulation. The
Lamc1/PTEN/AKT pathway causes an increase in PKM2
expression, as does the downregulation of miR-122 (23, 24).
The interaction between PKM2, heat shock protein 90 (HSP90),
and HIF-1a is to stabilize PKM2 and induce aerobic glycolysis to
inhibit cell apoptosis (25). In addition, lactate dehydrogenase
(LDH), pyruvate dehydrogenase kinase (PDK), and pyruvate
dehydrogenase (PDH) are the key enzymes that determine the
destination of pyruvate. LDHA and LDHB encode LDH and
form five types in different proportions: LDH1 (B4), LDH2
(AB3), LDH3 (A2B2), LDH4 (A3B), and LDH5 (A4) (26).
Interestingly, LDH5 is more significantly expressed than other
types in hepatocellular carcinoma. Thus, inhibition of LDHB
transcription or induction of LDHA transcription is an essential
mechanism that promotes the generation of lactate (27).
Decreased miR-142-3p and N-myc downstream-regulated gene
2 (NDRG2) and elevated miR-34c-3p stimulate the upregulation
of LDHA (28–31). The generated lactate continues to mediate
the activity of PDK to phosphorylate PDH, causing a blocked
entry of pyruvate into the tricarboxylic acid cycle (TAC) (27). On
the one hand, it reduces the consumption of glucose by oxidative
phosphorylation (OXPHOS), and on the other hand, it can cause
Frontiers in Endocrinology | www.frontiersin.org 2
the accumulation of pyruvate and indirectly facilitate the
production of lactate. Differently, it is FoxP3 in Treg cells that
impairs glycolysis and promotes OXPHOS that confer migratory
and inhibitory functions on Treg cells (32). Finally, the acidic
env i ronment a l so depends on the pH-dependent
monocarboxylate transport system (MCT), a tool for lactate to
shuttle between cells and the microenvironment. The flow of
lactate into and out of cells relies on MCT1 and MCT4,
respectively (33). The transfer of lactate disrupts extracellular
pH homeostasis, which not only affects the activity of enzymes
but also participates in regulating immune cells. Lactate can also
act as a substrate to energize cells, which is referred to as the
“reverse Warburg effect” (34). In this way, the role of lactate is
too diverse and complex to be ignored. Figure 1 shows the
production and regulation mechanism of lactate in
hepatocellular carcinoma cells.

Glutamine Metabolism
Glutamine metabolism has two main ways in vivo. On the one
hand, it provides C–N (amide group) for the synthesis of protein,
lipid, and nucleotide (35); on the other hand, metabolites such as
aspartate and oxaloacetate can be converted to substances for
glycolysis (36). Cancer cells contain high levels of glutaminase 1
(GLS1), which decomposes glutamine into glutamate. Targeting
GLS1 can inhibit not only cell growth but also stemness
characteristics (37–39). In addition, there was a possible
inhibitory relationship between glutamine metabolism and
glycolysis. However, glucose is not severely limited because of
the presence of resident cells (such as immune cells and
endothelial cells), which can enhance glucose intake (2). More
unexpectedly, glutamine metabolism also promotes cell growth
FIGURE 1 | Production and reduction mechanism of lactate. It shows the
classical intracellular pathway(s) that generates lactate and their upregulators
or downregulators from the proteomic, genomic, and transcriptomic domains.
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and suppresses immunity because of lactate (40). Therefore,
targeting glutamine is a meaningful therapeutic strategy that
deserves to explore more mechanisms.
LACTATE FACILITATES THE ASSEMBLY
OF IMMUNE ESCAPE NETWORK

The liver possesses unique immune properties containing large
populations of NK cells, cytotoxic CD8+ T cells, and others, but the
incidence of hepatocellular carcinoma remains high, most possibly
because an external environment suppresses immunity (41).
Lactate can facilitate the assembly of an immune escape network
to make the proliferation of tumor cells uncontrolled (42, 43).
Lactate-mediated immune escape networks are shown in Figure 2.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) comprise a group of
heterogeneous cells derived from immature bone marrow. MDSCs
are the precursor of mature monocytes, dendritic cells, and
granulocytes. However, they are an important assistant to favor
tumor proliferation and inhibit immune response (44, 45).Multiple
cytokines prevent MDSCs from differentiating and maturing, then
MDSCs expand and migrate. Lactate is one (Table 1 shows the
mechanism of other factors) (55–57). M6A demethylase ALKBH5
ensures the m6A methylation level and RNA stability of MCT4,
followed by lactate transporting out of cells with the help of MCT4
and stimulating MDSC increase (58). The knockdown of LDHA
reconfirms the role of lactate with reduced MDSCs and weakened
cytolytic function of NK cells (59). How does lactate assume this
responsibility? Lactate induces the accumulation of MDSCs
through granulocyte-macrophage colony-stimulating factor (GM-
CSF) and IL-6. Besides, lactate inhibits the expression of activated
receptorNKp46 inNKcells (59).This shows that lactate candirectly
and indirectly inhibit the antitumor activity, and thus the more
vigorous the tumor metabolism, the poorer the immune function.
More interestingly, MDSCs are necessary for tumor-associated
macrophage (TAM) accumulation. When MDSCs migrate to the
tumor site, its CD45 phosphatase activity increases because of
hypoxia and local acidification, which inhibits STAT3 and thus
promotes the conversion of MDSCs to TAMs (60). In addition,
lactate-induced HIF1a can also promote the differentiation of
MDSCs into TAMs by regulating the expression of inducible
nitric oxide synthase (iNOS) and arginase-1 (ARG1), which is
helpful to inhibit adaptive immunity (61–63). In summary, lactate
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is involved in multiple pathways to suppress the antitumor
immunity, so could lactate be a target for tumor treatment?
During radiotherapy for pancreatic cancer, lactate plays an
important role in enhancing the immunosuppressive phenotype
of MDSC through the G-protein-coupled receptor 81 (GPR81)/
mTOR/HIF-1a/STAT3 pathway. Therefore, targeting lactate may
provide a unique prospect for improving the radiosensitivity of
pancreatic cancer (64).

Tumor-Associated Macrophage
In the 1980s, the fact that monocytes differentiated into
macrophages under the recruitment of chemokines was
confirmed (65). Solid tumors exhibit hypoxic areas within the
tumor mass. Macrophages are attracted to these hypoxic tumor
sites by various chemodynamic stimuli secreted by tumor cells
under hypoxic pressure, and their movement is directly impaired,
causing tumor-associated macrophage (TAM) to become trapped
at the site of the ischemic tumor (66, 67). “Activatedmacrophages”
FIGURE 2 | Effect of lactate on infiltrating immune cells. The accumulation of
lactate can induce the differentiation of MDSC, Treg, and TAM and stimulate
their biological activities and then secrete immunosuppressive factors to
inhibit the immune response of NK cells and T cells, helping tumor cells
escape immune surveillance and gain unlimited growth potential.
TABLE 1 | Other factors stimulate MDSC accumulation in hepatocellular carcinoma.

Molecule Primary mechanism of action Reference

HSC Activation of the COX2/PGE2/EP4 and SDF-1/CXCR4 signaling pathways (46, 47)
TAF Activation of the SDF-1a/CXCR4 and IL-6/STAT3 pathways (48)
AMPK Suppression of the JAK/STAT, NF-kB, C-EBPb, and CHOP signaling pathways (49)
HIF-1a Conversion of extracellular ATP to 5′-AMP through its direct transcriptional target, ENTPD2, and promotion of the interaction between CCL26

and CX3CR1
(50, 51)

PIWIL1 Induction of P38MAPK signaling (52)
PKM2 Activation of PI3K-AKT and JNK signaling pathways and upregulation of HIF-1a expression (53)
RIP3 Promotion of the interaction between CXCL1 and the cognate receptor CXCR2 (54)
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induce vascular proliferation, and “non-activatedmacrophages” do
not (68).Nowthese two stateshavebeennamedselectively activated
macrophages (M2) and classically activated macrophages (M1),
respectively. TAMs are broadly heterogeneous, and their functional
status depends on the conditions of exposure (69). For example,
Toll-like receptor agonists, interferon-g (IFN-g), and
lipopolysaccharide (LPS) promote the phenotype of M1, while IL-
4, IL-13, IL-10, transforming growth factor-b (TGF-b), and lactate
are inducers of M2 (70–72).

Lactate promotes M2 by stabilizing the expression of HIF-1a,
and in this process ARG1 and vascular endothelial growth factor
(VEGF) are increased, which are closely related to wound healing,
angiogenesis, and tissue remodeling (73). In addition, HIF-2a is
also implicated. Lactate negatively regulates transcription factor EB
(TFEB) by activating mTORC1 to reduce the expression of
ATP6V0d2, which mediates the degradation of HIF-2a by
lysosomes, ensuring the activated state of M2 (74). Epigenetics
also contributes to an important mechanism. Histone lysine
lactylation (Kla) has been shown to promote M2 activation, but
the exact mechanism is not well understood (6). M2 secretes IL-10
and TGF-b in response to lactate stimulation to weaken the
anticancer ability of NK cells and lymphocytes (73). Thus, it is
established that lactate affects immune function through M2 and
lactate could be a therapeutic target.MachilinA inhibits cell growth
and M2 polarization by decreasing lactate production (75). When
macrophages were cultivated in acidic pH conditions, HIF-1a,
ARG1, and VEGF were found increased. So is it lactate or acidic
conditions that are required to promote tumor development? This
deserves further study and exploration.

Regulatory T Cells
Lactate also induces aggregation of regulatory T cell (Treg), the
phenotype of CD4+CD25+FoxP3+ T cell. Its metabolic pathway
varies with activity and function (13, 76). First, the high-speed
glycolysis of Treg driven by the mTOR signal will not only
metabolically restrict antitumor cells such as T lymphocytes,
which is called T-cell starvation, but provide energy for Treg
proliferation and migration from the thymus to the tumor
periphery (10, 22). In addition, lactate-induced HIF-1a activates
the CCL20/CCR6 axis by inducing myeloid trigger receptor-1
(TREM-1) expression in TAM, attracting aggregation and
initiating immunosuppressive effects of Treg (77). Most
unexpectedly, Treg’s activity requires a switch from glycolysis to
OXPHOS, when forehead box P3 (FoxP3) comes into play. It not
only inhibits glycolysis by suppressing the oncogene Myc but also
regulates LDH to promote the conversion of lactate to pyruvate and
even drives lipid oxidation metabolism to promote OXPHOS,
which endows Treg with inhibitory activity (32, 78, 79). A stable
expression of FoxP3 is associated with epigenetic modifications,
particularly methylation. Promoters and CpG islands are the main
methylation sites of FoxP3. The methylation level is negatively
correlated with the proportion of Treg, whichmeans that the lower
the methylation level of FoxP3, the higher the proportion of Treg
cells and the higher the tumor malignancy (80). TGF-b can induce
FoxP3 demethylation (81). Treg performs glycolysis, OXPHOS,
and fat metabolism. Different activities and functions utilize
different metabolisms, which adds some complexity to Treg.
Frontiers in Endocrinology | www.frontiersin.org 4
HISTONE LYSINE LACTYLATION

In 2019, a new epigenetic modification of gene transcription,
histone lysine lactylation (Kla), was proposed, which is based on
lactate and lysine (6). This finding highlights how lactate has an
advanced effect on tumor progression, and provides a mechanism
bywhich some pathways of angiogenesis,migration, andmetastasis
may be activated. Kla fills an important gap in our understanding of
variousphysiopathologies (suchas cancer) that are closely related to
lactate. Using M1 macrophage polarization as a model, it was
confirmed that Kla regulated gene expression. Because of a low
level ofARG1,M1macrophagesmetabolize arginine throughnitric
oxide synthase (NOS) to produce nitric oxide (NO) to kill
pathogens, while M2 macrophages have a higher level of ARG1,
which produces ornithine to promote wound healing (82). After
inhibiting LDH, the yield of lactate and the degree of Kla decreased,
including the Kla markers on ARG1 promoters. Then M1
macrophages were treated with exogenous lactate to find that the
global Kla and ARG1 expression increased (6). These conclusions
have also been confirmed in melanoma and lung cancer (6). It
scientifically and rigorously verified the positive role of lactate and
Kla in inducing the polarization of M1 macrophage to
M2 macrophage.

Kla cancause carcinogenic signals and represent a clear target for
tumor therapy.Convincing evidence suggests thatKla promotes the
transcription of YTHN6-methyladenosine RNA-binding protein 2
(YTHDF2). YTHDF2 recognizes the M6 A modification sites on
PER1 and TP53 and promotes their degradation, thus promoting
the occurrence of melanoma (83). This study revealed the cancer-
promoting mechanism of Kla, confirmed the interaction between
Kla and M6 A methylation for the first time, and provided a new
therapeutic target to treat melanoma. In addition, Kla has also been
found to regulate gene expression in non-small cell lung cancer
(NSCLC).After treatment ofNSCLCcells with lactate, the degree of
Kla andHIF-1a increases and the transcription ofHK-1, glucose 6-
phosphate dehydrogenase (G6PD), and PKM decreases, which
jointly regulates the metabolism of cancer cells (84). This further
confirms the important role of Kla in cancer.

CONCLUSION

Tosumup, lactate is theproduct of aerobic glycolysis. It is usedas an
energy source formanykindsof cells, including tumor cells, and as a
signal molecule to damage the immune response directly or
indirectly. Kla, a kind of posttranslational modification, can
regulate gene expression. Reducing the concentration of lactate
and Kla modification contributes to restoring the physiological
function of the body, so what promising strategies can achieve this
effect? One is to block the production pathway of lactate by
inhibiting the key enzymes of glycolysis and glutaminolysis, and
the other is to block the transport of lactate (85–87). Ideally, lactate
concentration and anticancer immunity return to the physiological
state (88). However, in view of the diversity of enzymes, it is critical
to find an enzyme that can regulate lactate to the maximum extent.
In addition, how to solve the damage to normal cells is also a big
problem.Therefore, targeting lactate andKla is a frontier treatment,
but there is a long way to go.
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GLOSSARY

Kla histone lysine lactylation
GLUT glucose transporter
HIF-1a hypoxia-inducible factor-1
lncRNAs long non-coding RNAs
HOTAIR HOX transcriptional antisense RNA
HK hexokinase
CAV-1 Caveolin1
Treg regulatory T cells
PKM2 pyruvate kinase 2
HSP90 heat shock protein 90
LDH lactate dehydrogenase
PDK pyruvate dehydrogenase kinase
PDH pyruvate dehydrogenase
NDRG2 N-myc downstream regulated gene 2
TAC tricarboxylic acid cycle
OXPHOS oxidative phosphorylation
MCT pH-dependent monocarboxylate transport system
GLS1 glutaminase1
MDSC myeloid-derived suppressor cell
GM-CSF granulocyte-macrophage colony-stimulating factor
iNOS inducible nitric oxide synthase
ARG1 arginase-1
GPR81 G-protein-coupled receptor 81
TAM tumor-associated macrophage
M2 selectively activated macrophages
M1 classically activated macrophages
IFN-g interferon-g
LPS lipopolysaccharide
TGF-b transforming growth factor-b
VEGF vascular endothelial growth factor
TFEB transcription factor EB
TREM-1 myeloid trigger receptor-1
FoxP3 forehead box P3
NOS nitric oxide synthase
NO nitric oxide
YTHDF2 YTHN6-methyladenosine RNA-binding protein 2
NSCLC non-small cell lung cancer
G6PD glucose 6-phosphate dehydrogenase
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