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Abstract

EVIDENCE, an automated variant prioritization system, has been developed to

facilitate whole exome sequencing analyses. This study investigated the diagnostic

yield of EVIDENCE in patients with suspected genetic disorders. DNA from 330 pro-

bands (age range, 0-68 years) with suspected genetic disorders were subjected to

whole exome sequencing. Candidate variants were identified by EVIDENCE and con-

firmed by testing family members and/or clinical reassessments. EVIDENCE reported

a total 228 variants in 200 (60.6%) of the 330 probands. The average number of

organs involved per patient was 4.5 ± 5.0. After clinical reassessment and/or family

member testing, 167 variants were identified in 141 probands (42.7%), including

105 novel variants. These variants were confirmed as being responsible for

121 genetic disorders. A total of 103 (61.7%) of the 167 variants in 95 patients were

classified as pathogenic or probably to be pathogenic before, and 161 (96.4%) vari-

ants in 137 patients (41.5%) after, clinical assessment and/or family member testing.

Factor associated with a variant being regarded as causative includes similar symptom
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scores of a gene variant to the phenotype of the patient. This new, automated variant

interpretation system facilitated the diagnosis of various genetic diseases with a

42.7% diagnostic yield.
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1 | INTRODUCTION

To date, of the over 7000 mendelian disorders, more than 5000 have

been shown to result from defects in a specific gene; pathogenic gene

mutations for the rest continue to be discovered, primarily by whole

exome sequencing (WES).1,2

In a group of patients suspected to have genetic diseases, the

diagnostic rate of WES has been found to range from 30% to 40%, a

variation that may be attributed to the numbers and phenotypes of

enrolled patients and the anthropologic characteristics of study

cohorts.3-10

Whole genome studies, such as, WES, are time-consuming and

labor-intensive, requiring clinical geneticists, and bioinformaticians to

match large numbers of candidate variants with various clinical symp-

toms in each subject analyzed.11 Moreover, in the absence of

supporting data, many variants remain variants of uncertain signifi-

cance (VUS), limiting the ability to confirm genetic diagnoses.12

Guidelines of the American College of Medical Genetics and

Genomics (ACMG) attempted to prioritize genetic variants, which led

to the development of several bioinformatic tools.13,14 These tools;

however, have limited ability to accurately predict the pathogenicity

of each variant. Phenotype-centric interpretation methods developed

using several computational tools, which automatically prioritized the

genetic variants in each patient and ranked them according to the bio-

logical function of each gene; the molecular, structural, and charge

impact of the variant; and the relationship between the variant gene

and the phenotype of the patient.9,15,16 Although these approaches

noticeably reduced the number of candidate variants responsible for

the disease phenotype in each patient, the numbers varied among

studies, without significantly improving genetic diagnostic rates,

which have remained at approximately 30% to 35%.5,16

This study describes a new, streamlined, automated variant priori-

tization system, termed EVIDENCE (3billion Inc., Seoul, South Korea),

which analyses over 100 000 variants, according to ACMG

guidelines,17 and prioritizes variants based on each phenotype of each

patient within minutes. A symptom suggestion system based on

Human Phenotype Ontology (HPO) was created to capture most

patient phenotypes. Finally, the EVIDENCE system was able to calcu-

late “similarity scores” between the clinical phenotypes suggested by

the candidate variants and actual patient phenotypes, to match this

score with the genetic diseases listed in the OMIM database (www.

omim.org). This pilot study found that EVIDENCE significantly

improved the speed and rate of diagnoses of a variety of genetic

diseases.

2 | MATERIALS AND METHODS

2.1 | Recruitment of patients

The study enrolled an unselected series of 330 consecutive patients,

clinically suspected of carrying a genetic disorder, from 330 non-

consanguineous families, who presented at the Medical Genetics Cen-

ter, Asan Medical Center, Seoul, South Korea, from April 2018 to

August 2019. Their detailed demographic and clinical characteristics,

including age and diagnosis at presentation, sex, family history, labora-

tory findings, radiologic findings, and genetic testing results, were

reviewed.

Patients aged ≥5 months were included if they were strongly

suspected by clinicians of having a genetic disease and were

undiagnosed, despite application of conventional genetic tests, such

as, chromosome analyses, chromosome microarray, or single or

targeted gene panel testing. Patients aged <5 months were included if

they had a congenital anomaly in one or more major organs, including

the brain or the heart; or the gastrointestinal, urological, or musculo-

skeletal systems; or if they were strongly suspected by clinicians or

radiologists of having a genetic disease.

Informed consent was obtained from patients or their legal guard-

ians after genetic counseling regarding the WES test. The study was

approved by the Institutional Review Board for Human Research of

the Asan Medical Center (IRB numbers: 2018-0574 and 2018-0180).

2.2 | Whole exome sequencing, variant calling, and
variant annotation

Blood, saliva, or buccal swab samples were collected from each

patient, and genomic DNA was extracted from each sample. All exon

regions of all human genes (~22 000) were captured using the Agilent

SureSelect kits (version C2, December 2018) and sequenced using the

NovaSeq platform (Illumina, San Diego, CA). The quality of FASTQ

files obtained by sequencing with the Illumina Novaseq 6000 was

assessed using FASTQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). Subsequently, the base and sequence adapters with

low base quality were removed using Trimmomatic.18 Pre-processed

FASTQ files were aligned to the reference sequence (original GRCh37

from NCBI, February 2009) by BWA-MEM (v.0.7.17).19 Aligned BAM

files were sorted and extracted using the statistical metric by samtools

(v.1.9).20 Duplication was marked by Picard (v.2.20.8) (http://

broadinstitute.github.io/picard/). Single nucleotide variants and indel
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variants were called by HaplotypeCaller of GATK (v.3.8).21 Finally, var-

iant call formats (VCF) were generated. The mean depth of coverage

was 100 X (>10 X = 99�2%).

2.3 | EVIDENCE: Prioritization of variants and
symptom suggestion system

The streamlined variant prioritization software program, EVIDENCE,

was developed in-house to prioritize variants based on ACMG guide-

line and the phenotype of each patient and to interpret these variants

accurately and consistently. This system has three major steps: variant

filtration, classification, and similarity scoring for patient phenotype. In

the first step, allele frequency was estimated in population genome

databases, including gnomAD (http://gnomad.broadinstitute.org/) and

3billion Inc. (https://3billion.io/).22 Common variants with a minor

allele frequency of >5% were filtered out in accordance with rule BA1

of the ACMG guidelines.17

In the second step, Evidence of the pathogenicity of the variants

was obtained from disease databases, including OMIM (www.omim.

org), ClinVar, and UniProt; the factors included gene function, domain

of interest, mechanism of development, inheritance pattern, and clini-

cal relevance of the disease.1,23,24 The predicted functional or splicing

effect of each variant and its degree of evolutionary conservation was

evaluated using several in silico tools, including REVEL, adaptive boo-

sting, and random forest score.25,26 Scores above 0.5 in each tool

predicted a detrimental effect on the variant. The pathogenicity of

each variant was evaluated according to the recommendations of the

ACMG guidelines.17 In the third step, the clinical phenotype of each

proband was transformed to its corresponding standardized HPO

term and was assessed to measure the similarity with each of ~7000

rare genetic diseases.27,28 The similarity score between the phenotype

of each patient and symptoms associated with that disease, caused by

prioritized variants, according to ACMG guidelines, ranged from 0 to

10. For any given symptom in a patient, the symptom was compared

with each of the known symptoms of a target disease. At each com-

parison of two symptoms, the maximal depth of a common ancestor

node of two symptoms was registered as a weight candidate. As the

given symptom of the patient was compared with each of the disease

symptoms, the number of weight candidates and the number of dis-

ease symptoms were the same. The weight of a symptom was set as

the maximum value of the registered candidate weights. Weights

were calculated for all patient symptoms and averaged to S1. Using

the same procedure, all known symptoms of the target disease were

weighted and averaged to S2. The value, (S1 + S2)/2, was used as the

score for symptom similarity between the patient and the target dis-

ease. The formula used to calculate the similarity score is (supplemen-

tary file 1):

w p,ð Þ=max s∈S :MCAd p,sð Þf g ð1Þ

d p,dð Þ= 1
j p j

X
s∈p

w p,pð Þ ð2Þ

score p,dð Þ= 1
2

d p,dð Þ+ d d,pð Þð Þ ð3Þ

Incidental findings were not included in this study. Finally, EVI-

DENCE prioritized variants that were classified as pathogenic, proba-

bly pathogenic, or VUS according to ACMG guidelines, were

categorized into a three tier system based on the Bayesian score.29

The first tier was scored above 0.9, the second tier above 0.499, and

the third tier above 0.1. These variants were ranked higher as the sim-

ilarity score within each tier was high. A diagram highlighting each

step of the filtering process used for variants and databases related to

this process are presented in Supplementary Figure 1 and Table S1,

respectively.

The entire process of genetic diagnosis, including processing of

raw genome data, determining variant prioritization, and measuring

the similarity between each phenotype and disease, was integrated

and automated into a computational framework.

2.4 | Variant interpretation and confirmation

Relevant candidate variants, including VUS, based on EVIDENCE,

were manually reviewed, related to applied ACMG rules and disease

characteristics, and then selected by medical geneticists. After another

examination in the outpatient clinic, the DNA of each patient and/or

their parents was subjected to Sanger sequencing to confirm the can-

didate variant(s). If necessary, a chromosomal microarray was per-

formed to assess uniparental disomy (UPD) or structural variants after

Sanger sequencing of the family members.

2.5 | Statistical analysis

All statistical analyses were performed using the R studio software

(version 3.5.1). Principal component analysis (PCA) of symptoms and

genetic variations required construction of a symptom matrix and a

genetic variation matrix for each patient, with entries of 1 for patient

j having symptoms or variant i, and entries of 0 otherwise. All patho-

genic variants aggregated from the entire patient cohort were used.

10 types of functional variations were treated separately, resulting in

1285 combinations of genetic and functional variants. The entries in

both matrices were calculated using a custom-made program and an

Eigen C++ linear algebra library, with P < .05 considered statistically

significant.

3 | RESULTS

3.1 | Patient demographics

The demographic characteristics of the 330 patients have been shown

in Table 1. Mean ages at clinical presentation and when WES was
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performed were 5.9 ± 12.9 years (range, 0-68 years) and 11.9

± 16.2 years (range, 0-70 years), respectively. Of the 330 patients,

246 (74.5%) were under 18 years of age. Patients manifested a broad

range of phenotypes across organ systems. The average number of

systems manifesting phenotypic abnormalities per patient was 4.5

± 5.0. Abnormalities in the nervous system were the most frequent,

observed in 60% of patients, followed by those in the musculoskeletal

system (53.9%), the head and neck (43.3%), the cardiovascular system

(26.9%), and the endocrine system and metabolism (24.2%) (Table 1).

Of the total 16 000 HPO terms, 550 terms were identified in

330 patients. These terms were broadly distributed throughout the

genome, with the HPO terms matching patient symptoms highlighted

in red, as visualized by the Cytoscape 3.7.1 (Supplementary Figure 2).

These findings indicate that the phenotypes of the patients in this

study represent almost the entire range of human disease phenotypes

described to date.

Of the 330 patients, 214 (64.8%) underwent genetic testing

before WES. Further, 38 patients underwent targeted exome

sequencing, which included 4813 OMIM genes, and 6 underwent

array comparative genome hybridization, with none showing diagnos-

tic variants. A total of 93 patients underwent single gene testing for

monogenic disorders. Other genetic tests included karyotyping and/or

fluorescence in situ hybridization (N = 131), multiplex ligation-

dependent probe amplification analyses for chromosomal micro-

deletion or duplication syndromes (N = 45), and mitochondrial full

genome sequencing analysis (N = 20). No test revealed a specific diag-

nosis in the patients tested.

3.2 | Diagnostic yield and classification of
identified variants

The number of patients with variants and the identity of these vari-

ants have been summarized in Figure 1. EVIDENCE provided list of an

average 65 variant-disease pairs based on the ACMG guideline and

similarity score. Medical geneticists and bioinformaticians evaluated

each candidate variant-disease pair and selected the variant-disease

most closely associated with the phenotype of each patient.

EVIDENCE identified 223 variants, including 121 VUS, in

195 (59.1%) of 330 patients. Among these, 175 variants from

149 (45.2%) patients were assessed by Sanger sequencing and family

member testing, with 119 variants in 95 (28.8%) patients confirmed as

being causative. In addition, 48 variants from 46 (13.9%) patients

were confirmed, based on the function of the identified gene and the

predicted pathogenicity of the variant, in addition to its frequency in

the general population. In summary, 167 variants, including 105 novel

variants, in 141 (42.7%) patients were confirmed as being responsible

for 121 genetic disorders. The remaining 56 variants in 54 (16.3%)

patients were not regarded as causative because they were inherited

from an asymptomatic parent, and the putative gene represented a

dominant disorder with expected high penetrance or was found in cis

in a recessive disorder.

Rates of diagnosis did not differ significantly between patients

who did and did not undergo genetic testing before WES (44.5%

[93/209] vs 41.4% [48/116], P = .491).

The inheritance pattern of identified variants in the 141 patients

was autosomal dominant (N = 99, 70.2%), autosomal recessive

(N = 34, 24.1%), and X-linked (N = 9, 6.4%). Of the 167 confirmed var-

iants, 56 (33.5%) were confirmed as being de novo, and 23 (13.8%)

were assumed to be de novo. Moreover, 49 variants from 25 patients,

inherited in an autosomal recessive manner, were detected in a trans

pattern.

According to ACMG guidelines, 15 (9%) variants were classified

as pathogenic, 88 (52.7%) probably pathogenic, and 65 (38.9%) of

uncertain significance (Figure 2). After clinical assessment, including

TABLE 1 Demographic and clinical characteristics of the patient
cohort

Category Number (%)

Sex (male:female) 164:166 (49.7:50.3%)

Age at presentation, years 5.9 ± 12.9

(range, 0-68)

Age at time of whole exome sequencing,

years

11.9 ± 16.2

(range, 0–70)

Average number of overlapping phenotypes 4.3 ± 5.0

Nervous system, including behavior and/or

cognition

198 (60%)

Head or neck, including facial dysmorphism 143 (43.3%)

Eye system 79 (23.9%)

Ear system 62 (18.8%)

Cardiovascular system 89 (26.9%)

Respiratory system 17 (5.2%)

Gastrointestinal system 56 (16.9%)

Genitourinary system 76 (23%)

Endocrine and metabolism/homeostasis

system

80 (24.2%)

Musculoskeletal and limb system 178 (53.9%)

Connective tissue system 21 (6.4%)

Blood and immune system 57 (17.3%)

Skin 56 (16.9%)

Neoplasm 29 (8.8%)

Growth 74 (22.4%)

Abnormality of prenatal development or

birth

42 (12.7%)

Previous genetic analysis 214 (64.8%)

Karyotype 123 (37.3%)

Fluorescence in situ hybridization 8 (2.4%)

Multiplex ligand dependent probe

amplification

45 (13.6%)

Array comparative genome hybridization 6 (1.8%)

Single gene test 93 (28.2%)

Targeted exome sequencing or panel test 38 (11.5%)

Mitochondrial full genome sequencing 20 (6.1%)

Note: Results presented as mean ± SD or as number (%).
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biochemical tests, imaging analysis, and physical examination, in the

follow-up with identified variants, 54 (32.3%) variants were classified

as pathogenic, 67 (40.1%) probably pathogenic, and 46 (27.5%) of

uncertain significance. After subsequent family member testing,

80 (47.9%) variants were classified as pathogenic, 81 (48.5%) probably

pathogenic, and 6 (3.6%) of uncertain significance. In total, 137 patients

(41.5%) had pathogenic or probably pathogenic variants. Details in all

variants and diseases have been listed in Table S2.

With additional microarray, patients 182 and patient 241 had

maternal UPD 14 and maternal UPD 9, respectively, showing a loss of

F IGURE 1 Schematic diagram
showing the number of patients with and
without variant identification and family
member testing

F IGURE 2 Distribution of the
probably pathogenicity of identified
variants by EVIDENCE before family

member testing, after addition of
phenotypic specific rules (PP4), and after
family member testing
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heterozygosity encompassing the entire chromosome 14 and

9. Patient 182 and 241 had homozygous variant of c.713 C > T (p.

Ser238Phe, probably pathogenic) in the SLC7A7 gene and c.615 G > T

(p.Met205Ile, VUS) in the FRRSIL gene, respectively. The family mem-

ber testing detected the heterozygous variant only in the mother in

both patients. We performed microarray because two patients

showed highly specific phenotype associated with each variant.

3.3 | Characteristics of confirmed variants

The characteristics of 167 variants, confirmed to be disease-causing,

and 56 variants, designated as non-disease-causing, were compared

based on ACMG guidelines and symptom similarity. Of the 108 patho-

genic or probably pathogenic variants, 103 (95.4%) were confirmed as

being causative, in contrast to 69 (527.0%) of the 121 VUS. Of the

56 variants regarded as being non-disease-causing, 52 (92.8%) were

classified as being of uncertain significance, whereas only 4 (7.1%)

were classified as probably pathogenic; These four variants were

found in the asymptomatic parents of a child with an autosomal domi-

nant disorder with an expected high penetrance (Spastic Paraplegia,

Intellectual Disability, Nystagmus, and Obesity, Sialuria, congenital

muscular dystrophy, Neurodevelopmental Disorder with Dysmorphic

Facies and Distal Limb Anomalies). Patient 91 with c.850del in the

KIDINS220 gene (NM_020738.2) showed failure to thrive, microceph-

aly, global developmental delay, mild dysmorphism, that is, not consis-

tent with phenotype of Spastic paraplegia, intellectual disability,

nystagmus, and obesity. Patient 125 with c.1807G > C in the GNE

(NM_0011282272) showed facial dysmorphism, congenital heart

defect, vertebral anomaly, diaphragmatic hernia, and skeletal

dysplasia. GNE is responsible for two genetic diseases: GNE related

myopathy and sialuria. c.1807G > C is not located on hot spot

region for sialuria.30 Patient 132 with c.1304 G > A in the LMNA

(NM_170707.3) showed failure to thrive, muscle weakness, and con-

tractures at age 2 years. She showed spasticity, hyper Ig E level, skin

rash, arthritis on follow-up physical examination, which is not consis-

tent with Muscular dystrophy, congenital. Patient 287 with

c.7927-1G > A in the BPTF gene (NM_182641.3) showed intrauterine

growth restriction, global developmental delay, facial dysmorphism,

facial asymmetry, clinodactyly, which was considered as Silver-Russell

syndrome. However, 11p15 methylation-specific multiplex ligation-

dependent probe amplification analysis was normal. She did not have

skeletal anomalies, such as, pes planus, broad halluces, and pes planus

and ophthalmologic problems caused by BPTF variant.

The average numbers of HPO items in patients without an identi-

fied variant, in those with a confirmed variant, and in those with a

rejected variant were 6.4 ± 5.0, 7.4 ± 5.3, and 9.0 ± 4.9, respectively

(P > .05). There was no significant difference in the probability of con-

firmation of a certain variant identified by EVIDENCE among the

affected organ types (Table S3). Notably, the confirmation rate was

significantly higher when the similarity score of a gene variant was >5

than when it was <5 points (P = .032, Figure 3).

3.4 | Genotypic and phenotypic diversity of
enrolled patients

No significant differences were observed in the distribution of clinical

symptoms between patients with and without a variant identified by

EVIDENCE (by 2-dimensional Kolmogorov-Smirnov test; Figure 4A). A

similarity of principal component (PC1) values in symptom PCA of

two patients implies a similarity in symptoms between these patients

(Figure 4B).

Based on data shown in Figure 4B, we divided patients with iden-

tified variants into two groups using a PC1 of 0.5 in symptom PCA as

a threshold. Of the 195 patients with identified variants, 89 (45.6%)

were clustered together in PC1 of symptom PCA ranging from 0.5 to

0.93 (13% of total symptom PC1 range). In other words, the pheno-

types of 45.6% patients covered only 13% of the total symptom PCA

space, with the remaining 54.4% of patients covering the other 87%.

The two patient groups showed similar diversity of genetic variants,

as shown by the Student's t test of PC1 of genetic variation

PCA (P = .899).

3.5 | Identification of ultra-rare genetic disorders
and its impact on clinical management

An ultra-rare genetic disease is defined as affecting 1 < 50 000 indi-

viduals.31 In this study, 91 (75.2%) of 121 genetic disorders identified

were ultra-rare genetic disease (Table S1).

Three patients changed their clinical management after WES and

82 patients received disease-specific surveillance for the known com-

plications. For example, patient 10 presented with hypernatremia at

age 1 year, which did not respond to desmopressin. Thiazide was

given with the clinical impression of nephrogenic diabetes insipidus,

although no pathogenic variants were identified in AVPR2 and AQP2.

EVIDENCE suggested c.1679 T > C (p.Leu560Pro) and c.382C > T (p.

Arg128Ter) in SLC12A1; subsequently, she was confirmed as having

Bartter syndrome, type 1, and discontinued unnecessary medications.

0.76 

0.74 

0.84 

1 1

0.70

0.75

0.80

0.85

0.90

0.95

1.00

3 4 5 6 7

F IGURE 3 Distribution of symptom similarity scores of patient
phenotypes and genetic phenotypes suggested by the automated
system. *P < .05
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Patient 44 presented with recurrent renal stones after renal transplan-

tation at the age of 41 years. The kidney biopsy showed accumulation

of calcium oxalate crystals, but no pathogenic variant of AGXT was

found. Homozygous APRT mutations, c.294G > A (p.Trp98Ter), were

identified and adenine phosphoribosyltransferase deficiency was diag-

nosed. Thereafter, the patient was treated with allopurinol to inhibit

renal stone progression. Patient 72 showed lactic acidosis and hyper-

bilirubinemia at birth, with a negative mitochondrial genome test. She

had been on a low carbohydrate diet because mitochondrial disease

with a respiratory chain defect was suspected, owing to high lactic

acid level. However, after WES, she was diagnosed with pyruvate car-

boxylase deficiency caused by c.2874dup (p.Phe959ValfsTer8) and

c.179dup (p.Ile61HisfsTer9) in PC and dietary management was chan-

ged to a high carbohydrate diet, which improved the biochemical find-

ings of the patient.

4 | DISCUSSION

EVIDENCE, an automated variant prioritization system, was found to

be useful in the entire WES process, including raw data processing,

variant prioritization, and measurement of phenotypic similarity

between patients and suggested candidate diseases.

The diagnostic yield of EVIDENCE in the present study (42.7%)

was comparable with that previously reported for automated systems

(30-35%).9,15,16 This finding was important, as the phenotypes of the

enrolled patients were quite heterogeneous, broadly dispersed, and

not limited to certain organ categories. In addition, most of the dis-

eases identified (75.2%) were ultra-rare genetic diseases. The distribu-

tion of inheritance patterns in the identified genetic disorders was

generally similar to those in these reported studies, except that the

proportion of autosomal dominant disorders was higher in our

study.6,8,10

Diagnosis rates over 40% have been reported in the absence of

an automated system in patients with select disease phenotypes,

including hearing loss, visual impairment, or abnormalities of the mus-

culoskeletal system, as well as in patients with critical conditions and

in new-borns presenting with symptoms.4,8,32 Moreover, in the

absence of an automated system, a large amount of time is required

to interpret a significant number of variants in each patient.6,11 The

results presented here indicate that our automated variant prioritiza-

tion system can contribute to diagnosing various types of genetic dis-

eases with comparable accuracy, but with much greater speed, than

non-automated analyses.

The comparable rate of diagnosis achieved by the automated sys-

tem may be due to its high-performance efficiency. Based on the sys-

temic analysis of each variant and the relationship of each variant to

patient phenotype, the results of this analysis suggested an average of

65 variants, putatively responsible for the phenotype of the patient.

This reduction in variant number shortened the time required to select

the variant most probably responsible for the phenotype of that

patient, and it minimized the likelihood of missing the disease-causing

variant.

Another factor responsible for the high diagnostic rate of this

automated system was that a substantial proportion of the variants

suggested by the system were VUSs. These VUSs were subsequently

tested in family member segregation analysis and phenotype

reassessment, as it is unclear whether VUSs are causative variants in

the absence of segregation analysis and clinical reassessment.

Updated information on variants in genome databases can result in

VUSs being classified as pathogenic or benign.12,33,34 Before family

member testing and clinical reassessment, 67.3% of the patients in

(A) (B)

F IGURE 4 A, Distribution of patients in symptom space. B, Distribution of patients with identified variants in symptom and genetic variation
space
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our study had variants classified as pathogenic or probably patho-

genic. After family member testing and reassessment; however,

97.2% of our patients had these variants. Following family member

testing and clinical reassessment, 59 (90.8%) of 65 VUSs were

reclassified as pathogenic or probably pathogenic. Two of 6 VUS vari-

ants was compound heterozygous with other pathogenic and proba-

bly pathogenic variants, and highly matched with disease relevant

symptoms. One patient had maternal UPD 9 encompassing region

located on VUS variant. Thus, these 3 patients were performed a defi-

nite diagnosis. The remaining 3 patients (Patient 20, 89, and 124) with

VUS also showed highly specific phenotypes associated with each

variant. Among two of 3 patients performing family member testing,

patient 124 had symptomatic sibling with the same variant and

patient 89 was confirmed in trans phase as a homozygous state.

Patient 20 did not perform family member testing. Thus, these 3 vari-

ants were considered as responsible for patients' phenotypes. There-

fore, all these 6 VUS were included in the diagnostic yield.

In variant prioritizing systems, the score of the top-ranked variant

increases when patient symptoms more precisely match those caused

by the responsible gene, and when the number of HPO terms of a

patient increases.35 The present study found no significant differences

in the average numbers of HPO terms and organ types between

patients in whom causative variants have and have not been identi-

fied. This finding was probably related to the wide range of pheno-

types among our patients. In contrast, similarity scores were

calculated as previously described27,28 with slight modifications. Maxi-

mal depth of the common ancestor node of two symptoms in the

HPO tree structure was used instead of its information content

because the latter depends on symptom-disease mapping data. Nota-

bly, we observed that scores ≥5 points were associated with a signifi-

cantly higher probability of confirmation of a certain variant as

causative. The ancestor HPO term has relatively low accuracy; how-

ever, improvements in the determination of similarity scores and a

more detailed description of symptoms are required to enhance the

accuracy of variant prioritizing systems.

Most importantly, WES using EVIDENCE exerted a significant

impact on the clinical management of diagnosed patients. Previous

studies have reported that WES changed clinical managements in 5%

to 65% of diagnosed patients.8,32,36 In our study, EVIDENCE helped

to change clinical management in about half of the diagnosed patients,

and this change was critical in some cases for the improvement of

patient care, for medication or dietary management, or for disease-

specific surveillance.

This study had several limitations. First, most of the patients

were pediatric patients. Pediatric patients have a higher likelihood of

genetic diseases than do adults, which may have contributed to the

relatively high rate of diagnosis in our patient cohort. Second, family

member testing could not be performed in 46 of the 141 patients

diagnosed with genetic diseases because samples from family mem-

bers were unavailable. Third, the use of the ClinVar and Uniprot

databases may change variant classification as the variant informa-

tion is updated, and even two databases are not consistent, given

the concordance rate of approximately 88%.37 Therefore, the rule

application can be added or removed, according to the updated

information, and the variant classification can be changed. Fourth,

the actual causative variant may have been missed by the automated

system.

In conclusion, the rate of detection of variants by the automated

system did not differ significantly in patients who did and did not

undergo genetic testing before WES. This automated system achieved

a comparable diagnostic yield in patients with a broad range of genetic

diseases, suggesting that WES may be one of the first diagnostic

methods used in patients suspected of having a genetic disease, and

that the automated system can facilitate the diagnostic process. This

new method is available to others (https://portal.3billion.io/) allowing

the efficiency of this system to be evaluated by other groups for

larger patient cohorts. Phenotype-centric tools, such as, Phenovar or

Exomiser have been recently developed.9,15,16 EVIDENCE also uses a

phenotype-centric approach, but prioritized variants are ranked in

order in EVIDENCE (but not in the other systems). Furthermore, we

are currently developing an ungraded system that prioritizes variants

by merging the variant classification and similarity score into a single

system, which will improve the analytical methods used to evaluate

variants by EVIDENCE.
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