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Dissecting the midlife crisis: disentangling social,
personality and demographic determinants in social
brain anatomy
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In any stage of life, humans crave connection with other people. In midlife, transitions in

social networks can relate to new leadership roles at work or becoming a caregiver for aging

parents. Previous neuroimaging studies have pinpointed the medial prefrontal cortex (mPFC)

to undergo structural remodelling during midlife. Social behavior, personality predisposition,

and demographic profile all have intimate links to the mPFC according in largely disconnected

literatures. Here, we explicitly estimated their unique associations with brain structure using

a fully Bayesian framework. We weighed against each other a rich collection of 40 UK

Biobank traits with their interindividual variation in social brain morphology in ~10,000

middle-aged participants. Household size and daily routines showed several of the largest

effects in explaining variation in social brain regions. We also revealed male-biased effects in

the dorsal mPFC and amygdala for job income, and a female-biased effect in the ventral

mPFC for health satisfaction.
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Humans are inherently social organisms. As early as the first
days of life, infants show signs of distress in the absence of
social stimulation1. As humans grow older, a thirst for

social embeddedness persists and may even intensify2,3. At mid-
life, roughly between the ages of 40–704–7, adults have gathered
decades of social experience that shape how they navigate their
daily social encounters. For example, the ability to form accurate
social judgments about other individuals is known to mature
throughout life8. The continuous refinement of social skills well
into adulthood may, in turn, mold other factors that impact how
we navigate our social environments, such as personality dis-
position and demographic standing. Midlife is a special life period
when many important milestones have often been reached, such
as creating a family and establishing oneself in an occupation6.

For example, during midlife, one’s overall social network size
usually starts to shrink9,10. When choosing with whom to spend
time, middle-aged participants prefer familiar over new social
interaction partners, compared with younger people11. Similarly,
middle-aged men and women preferentially interact with close
family members12. The consolidation of social circles towards a
select core confers a feeling of social embeddedness and promotes
well-being10,13. Overall, there is an age-related tendency to rela-
tively disengage from social ties at the network periphery and
prioritize spending time with emotionally close others10. As such,
midlife can be viewed as a pivotal period in the lifespan when
adults transition their focus from exploring new social relation-
ships to fostering existing social connections.

The typical midlife changes in social network configuration are
likely accompanied by changes in brain architecture. At this stage
of life, hints from the neuroimaging literature suggest that
structural alterations in frontal or prefrontal brain regions may
occur as a part of normal aging14,15. Importantly, the loss in brain
volume during healthy aging is not evenly distributed across the
brain16,17. In a previous structural brain-imaging study in 547
participants aged 19 to 86, age-related reductions in gray matter
volume were observed especially in the frontal and parietal lobes,
including regions of the prefrontal cortex18. Indeed, the pre-
frontal cortex, among other frontal cortex regions, has been
emphasized to show the strongest age effects in gray matter
structure as people grow older, compared with the rest of the
brain5,14,15,17–22 (but see these references reporting no such
changes:16,23). Structural imaging research based on T1-weighted
brain scanning has so far struggled to attach unambiguous
meaning to findings of more or less gray matter volume in spe-
cific brain locations24. An increase in gray matter volume could
indicate higher density of cell populations, including neurons and
their substructures like cell bodies or axons. While an increase of
this quantity has repeatedly been observed to be associated with
enhanced cognitive performance, various counterexamples have
reported reduced functional capacity. In particular, neuronal
pruning processes are one candidate mechanism for how less
regional volume may allow for computational efficiency gains in a
specific cognitive process24.

Previous brain-imaging research suggests that the medial pre-
frontal cortex (mPFC) serves as a common computational
resource for separate domains of social cognition25, including
cognitive processes that implicate self-concept or thinking about
other people’s mental states25,26. In parallel to how brain struc-
ture differs as a function of age, these social cognitive processes
may also show characteristic changes across the lifespan. For
example, a previous functional brain-imaging study investigated
differences between younger and older adults in understanding
the mental state of other individuals27. In a battery of social-
cognitive tasks, the authors found older adults to consistently
show deficits compared with younger adults in understanding the
thoughts and actions of others, accompanied by isolated

reductions in mPFC task responses. Moran and colleagues sug-
gested specific involvement of the mPFC in mentalizing skills,
and proposed that aging is associated with impairments in pro-
cessing the intentions and internal states of other people27.

In addition to capacities implicated in social interaction, neural
activity in the mPFC has also been closely linked to other key
domains of everyday life, especially personality and
demographics25,28,29. An individual’s personality is an important
source of interindividual variability in approaching everyday life
and reflects an individual’s disposition in their thought processes
and behavior30. For example, higher levels of the personality trait
neuroticism in early adulthood were associated with overall lower
well-being later on in midlife and less positive relations with other
individuals31. Indeed, individuals with higher levels of neuroti-
cism were shown to have a lower quality of social relationships
with others in general and romantic relationships in particular32.
Moreover, a previous structural brain-imaging study found that
higher levels of neuroticism were associated with gray matter loss
in the mPFC in adults beginning around the age of 4428. How-
ever, the same study found that ranking high on the personality
trait conscientiousness, a trait associated with positive and satis-
fying romantic relationships32, was linked to larger mPFC
volumes and less gray matter decline28. Furthermore, another
structural brain-imaging study found that extraversion, a trait
associated with seeking and engaging in satisfying social inter-
actions, was linked to increased cortical thickness in the pre-
frontal cortex in adults in late midlife30. The collective evidence
suggests that personality traits may have an enduring influence on
the social behavioral patterns of individuals, and are linked to
correlates in brain morphology.

At the broader societal level, interindividual differences in
social interaction tendencies also depend on the demographic
characteristics of one’s place in society, such as economic
resources, occupational prestige and education attainment33,34.
Indeed, a brain-imaging study interrogated the relationship
between gray matter volume and socioeconomic disadvantage, a
composite measure of household poverty level, public assistance,
education level, employment status and household income35. The
authors reported smaller gray matter volume in the mPFC for
middle-aged adults who experience more socioeconomic hard-
ship compared with adults without precarious socioeconomic
circumstances. Similarly, a previous structural brain-imaging
study (n= 431) found that experiencing current financial hard-
ship during midlife was also linked to smaller gray matter volume
in the hippocampus and amygdala, two limbic regions with direct
axonal connections to the mPFC36. Furthermore, Butterworth
and colleagues found that middle-aged adults with financial
hardship had fewer close social relationships, such as a partner,
compared to middle-aged adults more financially stable. The
authors speculated that experiencing financial hardship may be a
source of stress on an individual, with downstream consequences
of reduced brain structure due to corticosteroid exposure36.
Correspondingly, a previous brain-imaging study (n= 359)
linked high socioeconomic status to thicker cortical gray matter
in brain regions including the prefrontal cortex, in middle-aged
adults (ages 35–64) compared to middle-aged adults with a lower
socioeconomic standing37. This effect was not observed among
the younger (ages 20–34) and older (ages 65–89) age groups37.
Chan and colleagues suggest that higher social status may be
protective against age-related brain decline. These structural
brain-imaging studies exploring aspects of demographics thus
suggest that differences in broader sociocultural experiences may
have characteristic imprints in mPFC structure in middle-aged
individuals.

In these ways, earlier neuroimaging findings have highlighted
the medial prefrontal cortex as a hub that bridges key factors at
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the individual, interpersonal, and societal level. These disparate
domains are usually studied in isolated literature streams,
although they may reflect common or distinct manifestations in
the mPFC of the human social brain. Factors of personality traits
and social behavior dispositions may have inadvertently influ-
enced each other in previous social neuroscience studies, since
these indicators were unlikely to be assessed or assessable in the
same kind of quantitative analysis (e.g., refs. 38,39). Additionally,
many such neuroscience studies have been based on small par-
ticipant samples as well as sampled participants of student age40.

To supplement these earlier research efforts, we have tailored a
probabilistic generative modeling approach to jointly study a rich
set of measures from three complementary lifestyle domains, with
their extent of similarity and divergence in brain volume asso-
ciations. Our fully probabilistic modeling framework directly
tested against each other 40 traits—tracking everyday experiences
in the social, personality, and demographic domains in 10,000
UK Biobank participants in midlife. As the key advantage of this
modeling tactic, we could carefully dissect the unique contribu-
tion of each examined trait, after accounting for the respective
other traits, to explaining regional gray matter variation in the
social brain. Given previous findings in the neuroimaging lit-
erature, we hypothesized that we will observe the most prominent
effects in the medial prefrontal cortex and limbic temporal system
in our brain-behavior analyses of brain structure. This expecta-
tion reflects the earlier proposition that the medial prefrontal
cortex may act as a hub for different aspects of social cognition25,
including those that relate to personality, interpersonal exchange,
and societal dynamics.

Results
By quantitatively mining the UK Biobank resource, we could
juxtapose an envelope of 40 lifestyle factors in the context of social
brain. Our analyses provide an alternative perspective on the
question of how the measured traits are reflected in brain structure
in middle age (Table 2; 40–69 years at recruitment). The examined
traits offered by the UK Biobank cohort can be placed into three
main domains: (i) social exchange, (ii) personality profile and (iii)

demographic status (Supplementary Data 1). By integrating all of
these indicators into the same analysis framework, we were able to
disentangle which specific traits, relative to the other considered
candidate traits, contributed most to explaining social brain
volume (i.e., each trait’s marginal association or partial correlation
with region variation). We estimated 36 different probabilistic
models, one for each target region in the social brain atlas. Hen-
ceforth, the term ‘trait effect’ refers to the marginal posterior
parameter distributions that were obtained from the estimated
probabilistic models. The inferred quantities expose the magni-
tude, directionality, and model uncertainty in the brain association
of the collective analyzed traits (cf. Methods).

Social brain midline: overview of key findings. During midlife,
parts of the prefrontal cortex were previously shown to undergo
structural reorganization5,14,15,17–22. We paid special attention to
these regions in the prefrontal cortex because they are also known
to assist in realizing social cognition (e.g.,25), including broader
social aspects that may bear relation to personality and demo-
graphics. In addition, previous research has shown that the mPFC
has direct connectivity inputs to key limbic input regions, espe-
cially the amygdala and hippocampus41–44 from the medial-
temporal system45. Thus, we tested the hypothesis that there
would be a medial prefrontal cortex and limbic temporal dom-
inance in age effects. Yet, in disagreement with our primary
hypothesis, midline regions did not show the strongest trait
effects in comparison to those of the other social brain regions.
However, we did observe several noteworthy brain-trait associa-
tions in limbic and midline regions.

Within the mPFC and its limbic partner inputs, our study
aimed to disentangle trait effects linked to social dynamics from
trait effects linked to personality features and demographic status.
Our results revealed that several traits related to the richness of
one’s daily social encounters contributed to explaining social
brain volume in the mPFC and its limbic connections (Fig. 1).

For example, sharing the home environment with other
individuals emerged as a top contributor to explaining gray
matter volume in the AM_L and bilateral HC (see Supplementary

Fig. 1 Social brain variation is preferentially explained by social traits in women, and by personality and demographic traits in men. Extending previous
social neuroscience studies, the richness of the UK Biobank resource allowed uniquely isolating marginal correlations, which prevail over a wide variety of
competing explanatory factors. A generative probabilistic model was estimated for each of the 36 social brain regions in our population sample of middle-
aged adults. These region-by-region analyses revealed numerous dominant specific (i.e., partial) trait associations in social brain structure. Colors indicate
which individual traits have the largest magnitude (i.e., strongest positive or negative association) in explaining its regional gray matter volume, relative to
the other 39 out of 40 total examined traits (cf. Supplementary Data 1). Red indicates markers in the social trait category, purple indicates the personality
trait category, and blue indicates the demographic trait category. Sharing one’s home with other individuals was the single most frequent trait association
to show the largest magnitude in explaining social brain volume for women, in atlas regions including the AI, AM, HC, IFG TPJ and pSTS (left). The
personality trait of being a morning person was the most common trait to show the strongest trait association in social brain structure for men, in atlas
regions including the AI, HC, FP, IFG, PCC and pMCC (right). Dominant trait associations from the partial correlation analysis are shown in Supplementary
Fig. 1 (cf. Table 3 and Supplementary Data 2 for a description of the social brain region abbreviations).
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Data 2 for abbreviation list of the social brain regions; women:
AM_L: mean of the population trait posterior distribution=
0.035, highest posterior density interval (HPDI) of the population
trait posterior distribution covering 95% model uncertainty=
0.005–0.069; HC_L: posterior mean= 0.040, HPDI= 0.012–0.072;
HC_R: posterior mean= 0.056, HPDI= 0.019–0.093). In parallel
with these dominant trait findings on household size, markers
related to interaction with close others, such as friends, showed
unique trait associations in our middle-aged population
cohort, relative to the other 39 competing traits. For example,
feeling satisfied with one’s friendships was a top trait association
in the higher associative dmPFC region (women: posterior
mean= 0.039, HPDI= 0.000–0.078). Moreover, we also observed
that the lifetime number of romantic partners showed a
strong trait effect in the AM_R (women: posterior mean=
0.031, HPDI= 0.009–0.056).

In addition to traits characterizing aspects of one’s social lifestyle,
we also found personality effects in regions of our social brain atlas
(Fig. 1). Specifically, being a morning versus evening person showed
the largest magnitude in explaining gray matter volume in the FP and
bilateral HC, compared to the other candidate traits (men: FP:
posterior mean= 0.052, 95% HPDI= 0.002–0.104; HC_L: posterior
mean= 0.051, HPDI= 0.020–0.084; HC_R: posterior mean= 0.054,
HPDI= 0.022–0.087).

Regarding traits capturing the societal level, we observed several
demographic indicators to show unique trait effects in midline social
brain regions and limbic inputs (Figs. 1 and 2). Our posterior
parameter distributions showed that earning a high yearly income
explained the biggest fraction of region volume in the vmPFC and
bilateral AM, compared with the other considered traits (men:
vmPFC: posterior mean= 0.053, 95% HPDI= 0.011–0.100; AM_L:
posterior mean= 0.060, HPDI= 0.022–0.104; AM_R: posterior
mean= 0.048, HPDI= 0.017–0.084). In the vmPFC, a similar
strong trait effect was observed (Fig. 2). Health satisfaction, a trait
plausibly linked to socioeconomic status, was the top contributor to
vmPFC gray matter volume compared with the other examined
traits (women: posterior mean= 0.067, HPDI= 0.030–0.105). In
addition, working a manual, as opposed to a knowledge-based job,
showed a dominant trait effect in the FP (women: posterior mean=
0.059, HPDI= 0.007–0.115). Taken together, our probabilistic
evidence revealed specific trait effects that were mostly linked to
social experience and demographics in social brain midline and
limbic regions.

Moreover, the reiteration of our analyses based on partial region
volumes of the social brain (cf. Methods) shed a different light on
the dominant trait associations in social brain midline and limbic
regions. The partial correlation analysis also revealed a richer
variety of dominant trait effects across atlas regions, mostly in the
category of demographic traits (Supplementary Fig. 1; cf.
Supplementary Note for a full description of the partial correlation
analysis results). For example, having an occupation that requires
working more than 40 hours a week showed a dominant trait
association in the vmPFC (men: posterior mean= 0.005, 95%
HPDI=−0.006–0.016). However, completing full-time education,
another trait indexing an aspect of demographic profile, showed
dominant trait associations in the limbic AM, HC and FP (men:
AM_R: posterior mean= 0.009, HPDI=−0.002–0.020; women:
FP: posterior mean= 0.039, HPDI= 0.008–0.075; HC_L: posterior
mean=−0.006, HPDI=−0.016–0.003). Taken together, the
partial correlation analysis findings for the midline social brain
regions revealed a wider assortment of dominant trait associations
mostly linked to demographic profile.

Social markers: household size is consistently linked to social
brain structure. Our fully probabilistic region-by-region analyses

revealed at the interpersonal level that social traits associated with
social network composition and quality of interpersonal exchange
showed consistently strong trait effects across social brain regions
(Fig. 1). In our middle-aged population cohort, sharing the home
environment with other individuals was the most common trait to
explain the most region volume in about half of our 36 region
analyses.

Living with others in the same household, as opposed to living
alone, showed trait effects in regions of the higher associative network
of our social brain atlas, including the bilateral TPJ (women: TPJ_L:
posterior mean= 0.070, 95% HPDI= 0.015–0.127; TPJ_R: posterior
mean= 0.059, HPDI= 0.010–0.109). Compared with the other
candidate traits, sharing the home environment with other
individuals also explained the largest fraction of volume variation
in regions of the intermediate network, including the bilateral AI and
bilateral IFG (men: AI_L: posterior mean=−0.045, HPDI=
−0.107–0.011; women: AI_L: posterior mean= 0.056, HPDI=
0.012–0.101; AI_R: posterior mean= 0.058, HPDI= 0.024–0.100;
aMCC: posterior mean= 0.070, HPDI= 0.021–0.120; IFG_L: poster-
ior mean= 0.039, HPDI=−0.005–0.083; IFG_R: posterior mean=
0.065, HPDI= 0.014–0.118; SMG_R: posterior mean= 0.040, HPDI
=−0.005–0.087). Furthermore, this social trait showed dominant
population trait effects in regions of the visual sensory network of the
social brain, including the bilateral pSTS and MT/V5_L (women:
MT/V5_L: posterior mean= 0.050, HPDI= 0.004–0.097; pSTS_L:
posterior mean= 0.058, HPDI= 0.010–0.110; pSTS_R: posterior
mean= 0.049, HPDI= 0.000–0.096).

Additionally, social markers related to close interpersonal
relationships also revealed large magnitudes in explaining gray
matter volume in regions of the visual sensory, limbic, and higher
associative networks. In particular, the lifetime number of romantic
partners showed dominant trait effects in several visual
sensory, limbic, and higher associative social brain regions
including the FG, rACC, and TP (women: FG_L: posterior mean
= 0.032, 95% HPDI= 0.005–0.060; MTV5_R: posterior mean=
0.054, HPDI= 0.012–0.094; TP_L: posterior mean= 0.0
37, HPDI= 0.010–0.067; TP_R: posterior mean= 0.033, HPDI=
0.000–0.065; rACC posterior mean= 0.057, HPDI= 0.018–
0.099; men: FG_L: posterior mean= 0.048, HPDI= 0.009–0.086).
This pattern of trait effects linked to social interaction with close
family and friends extended to a region of the visual sensory
network. Specifically, being a member of a sports club, a social trait
related to regular involvement in social groups, showed the largest
trait effect in the FG_R (men: posterior mean= 0.045, HPDI=
0.002–0.086).

In interindividual differences of social support, regular
exchange with emotionally close others explained the most
region volume in the bilateral NAC, compared with the other
analyzed traits (women: NAC_L: posterior mean= 0.076, 95%
HPDI= 0.018–0.133; NAC_R: posterior mean= 0.040, HPDI=
−0.010–0.091). In a related social marker indexing the quality of
close relationships, feelings of loneliness showed a unique trait
association in several limbic and intermediate network brain
regions, including the reward-related NAC (men: NAC_R:
posterior mean=−0.051, HPDI=−0.128–0.020; aMCC: poster-
ior mean=−0.051, HPDI=−0.114–0.011). Collectively, dimen-
sions on the strength of social closeness to close family and
friends were associated most with gray matter volume in a
majority of social brain regions. Notably, sharing a home with
other individuals was the most frequently observed dominant
trait association in our participant sample.

Our reanalyses based on partial volume correlations revealed
dominant trait associations similar to that of the main analysis (cf.
Supplementary Fig. 1; cf. Supplementary Note for a full description of
the partial correlation analysis results). For example, having a job that
requires much social interaction was a most frequent trait to
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contribute to social brain volume in regions of the visual sensory,
limbic, and intermediate brain networks (women: FG_R: posterior
mean=−0.015, 95% HPDI=−0.036–0.004; IFG_L: posterior
mean=−0.004, HPDI=−0.020–0.008; NAC_R: posterior mean
=−0.008, HPDI=−0.025–0.007; SMA_L: posterior mean=
−0.010, HPDI=−0.031–0.009). As such, our social trait findings
from the partial correlation analysis here identified a similar set of
dominant trait associations to that of the main analysis.

Personality markers: top brain associations are explained by
daily routine and well-being. Focusing on trait effects from the

personality category, markers associated with daily routines and
psychological well-being showed large magnitudes in explaining gray
matter volume (Fig. 1). In general, the personality trait of being a
morning versus evening person explained the largest fraction of
volume variation in 11 different social brain regions, compared to the
other candidate traits (Fig. 1). This biorhythm indicator showed
dominant trait effects in regions of the intermediate network of our
social brain atlas, including the AI_R (men: posterior mean= 0.050,
95% HPDI= 0.015–0.089), bilateral CB (men: CB_L: posterior mean
= 0.069, HPDI= 0.016–0.123; CB_R: posterior mean= 0.083, HPDI
= 0.028–0.140), SMA_L (men: posterior mean= 0.056, HPDI=

Fig. 2 vmPFC anatomy is linked to social lifestyle markers of social, personality, and demographic traits with sex-differentiated population effects.
During midlife, regions of the mPFC have been found to show an accelerated decline in gray matter structure (cf. introduction). For the sake of illustration,
the marginal posterior population distributions from our vmPFC analysis are depicted using raincloud plots (1 of the 36 region-by-region analyses that we
have conducted on the UK Biobank). We reveal to what extent vmPFC region volume is specifically explained by the 40 examined lifestyle traits at the
population level (cf. Supplementary Data 1). The half violin plots show the posterior parameter distributions of the specific contributions of each single trait
to vmPFC volume, not explained by the other traits, in middle-aged men and women. The boxplots and scatterplots underneath depict the probabilistic
parameter guesses that together form the marginal posterior distributions. Each brain-behavior HPDI communicates three kinds of information: direction
(e.g., a positive parameter value indicates a tendency for a higher brain volume in the presence of that particular trait), magnitude (e.g., a parameter mean
further above or below zero indicates a bigger dependence of region volume on that particular trait), and certainty (e.g., a narrower interval indicates that
the model is more sure about the estimated direction and magnitude of a particular brain-behavior effect). For middle-aged women, satisfaction with health
contributed most to explaining vmPFC region volume. In contrast, for middle-aged men, earning a higher job income explained most vmPFC gray matter
volume. Error bars/dispersion shows uncertainty of Bayesian posterior parameter distributions. Source data are provided in Supplementary Data 3.
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0.014–0.101), and IFG_R (men: posterior mean= 0.058, HPDI=
0.015–0.106). Morning versus evening chronotype also contributed to
gray matter volume in regions of the higher associative network, such
as the MTG_L (men: posterior mean= 0.043, HPDI= 0.006–0.081),
PCC (men: posterior mean= 0.051, HPDI= 0.013–0.088), and
pMCC (men: posterior mean= 0.044, HPDI= 0.012–0.075).

Additionally, our region-by-region analyses identified different
personality traits related to long-term well-being to show
dominant trait effects in several social brain regions belonging
to the limbic, intermediate, and higher associative networks. For
example, for our middle-aged participants, having a happy mood
showed the largest trait effect in the limbic rACC (men: posterior
mean= 0.059, 95% HPDI= 0.017–0.100). However, neuroticism
explained the most variation in several regions of the inter-
mediate and higher associative networks, including the TPJ_R,
compared to the other analyzed traits (men: TPJ_R: posterior
mean=−0.044, HPDI=−0.106–0.015; SMG_L: posterior mean
=−0.050, HPDI=−0.113–0.009). Taken together, the person-
ality traits associated with daily routine schedules and personal
well-being emerged top traits to explain gray matter volume in a
number of social brain regions.

The supplementary partial correlation analysis revealed a wider
variety of personality traits to explain social brain region volume
in our middle-aged population cohort (Supplementary Fig. 1; cf.
Supplementary Note for a full description of the partial
correlation analysis results). For example, the feeling of miser-
ableness revealed dominant trait associations in several inter-
mediate and higher associative social brain regions including the
TP_R (men: posterior mean= 0.006, 95% HPDI=
−0.007–0.020) and SMG_L (women: posterior mean= 0.014,
HPDI=−0.010–0.041). Similarly, we observed the risk-taking
indicator to show dominant trait associations in the limbic HC_R
(men: posterior mean=−0.011, HPDI=−0.024–0.001) and
intermediate SMG_R region (women: posterior mean= 0.008,
HPDI=−0.011–0.029). As such, results from the partial
correlation analysis revealed a larger range of personality traits
to contribute to social brain gray matter volume, compared with
the main analysis.

Demographic markers: traits related to income and occupation
are associated with limbic and higher associative brain regions.
At the broader societal level, we observed a variety of demographic
traits related to social status and occupation to explain social brain
gray matter volume in our middle-aged population sample (Fig. 1).
In particular, earning a high yearly wage showed dominant trait
effects in several higher associative and visual sensory regions of our
social brain atlas (men: MTG_R: posterior mean= 0.069, 95%
HPDI= 0.027–0.111; pSTS_L: posterior mean= 0.065, HPDI=
0.016–0.113; women: MTG_R: posterior mean= 0.047, HPDI=
0.006–0.090).

Our region-by-region probabilistic results further revealed
granularity in aspects related to one’s occupational environment.
For example, working a manual job explained the most variation
in four social brain regions of the visual sensory, intermediate,
and higher associative brain networks (men: MTV5_R: posterior
mean= 0.042, 95% HPDI=−0.007–0.091; SMG_R: posterior
mean= 0.058, HPDI= 0.011–0.108; women: PCC: posterior
mean= 0.042, HPDI= 0.009–0.074; SMA_R: posterior mean=
0.070, HPDI= 0.025–0.120). Similarly, having a job that requires
walking or standing for most of the workday showed a dominant
trait effect in the higher associative TP_L (men: posterior mean
= 0.045, HPDI= 0.009–0.078). In the context of the work
environment, feeling satisfaction with one’s occupation contrib-
uted to explaining region volume in regions of the visual sensory
and intermediate networks (men: MTV5_L: posterior mean=

0.033, HPDI=−0.003–0.075; SMA_R: posterior mean= 0.042,
HPDI=−0.002–0.086; pSTS_R: posterior mean= 0.059, HPDI
= 0.018–0.102). Taken together, our dominant demographic trait
findings at the general societal level revealed that during midlife,
several aspects of one’s job environment contributed most to
explaining gray matter volume variation in a variety of social
brain regions.

Results from the partial correlation analysis revealed that
demographic traits related to occupation were also the top
contributing traits in a number of social brain regions (cf.
Supplementary Fig. 1; cf. Supplementary Note for a full
description of the partial correlation analysis results). For example,
feeling satisfied with one’s occupation was the most frequent trait
to contribute to social brain volume in several limbic, inter-
mediate, and higher associative network brain regions (men:
AI_R: posterior mean=−0.011, 95% HPDI=−0.032–0.002;
IFG_R: posterior mean= 0.010, HPDI=−0.011–0.034; NAC_L:
posterior mean=−0.025, HPDI=−0.052–0.000; NAC_R: pos-
terior mean= 0.007, HPDI=−0.006–0.021; Prec: posterior mean
=−0.007, HPDI=−0.023–0.008; women: pSTS_R: posterior
mean= 0.010, HPDI=−0.004–0.030). Similarly, the partial
correlation analysis showed that working more than 40 h a week
contributed to social brain gray matter volume (men: CB_L:
posterior mean=−0.007, HPDI=−0.020–0.004; MTG_R: pos-
terior mean= 0.007, HPDI=−0.008–0.024; MT/V5_L: posterior
mean=−0.010, HPDI=−0.032–0.009; vmPFC: posterior mean
= 0.005, HPDI=−0.006–0.016). As such, the demographic
indicator related findings from the partial correlation analysis
revealed that the strongest trait associations with social brain gray
matter volume were related to occupation.

In summary, our region-by-region analyses on a diverse
selection of social, personality, and demographic traits together
showed manifestations in social brain gray matter structure in a
population cohort of adults. Compared with the social and
demographic domains, traits from the personality category
showed less dominant trait associations for our participant sam-
ple. Instead, markers indexing social exchange at the interperso-
nal and broader societal level contributed more to explaining
volume variation in social brain regions during midlife.

Participant age drives trait associations dominant in mPFC
and limbic regions. Our analyses also revealed substantial con-
tributions of age to jointly explaining gray matter variation
together with other lifestyle traits (Fig. 3 and Supplementary
Fig. 2; cf. Supplementary Fig. 3 for results from the partial cor-
relation analysis). Furthermore, most of the joint age-trait effects
in the medial prefrontal cortex and its interaction partners from
the limbic system were manifested differently in our sample of
men and women.

For example, in the dmPFC, age and high friendship
satisfaction (the top trait association in the dmPFC for women)
were together associated with largely divergent manifestations of
dmPFC region volume for men and women across midlife
(Fig. 3). Similarly, age and earning a higher income (the top trait
association in the dmPFC for men) was differentially linked to
dmPFC region volume for men and women. However, as a
function of age, working a manual job was related to FP variation.
For women, working a manual job was the top FP trait
association (cf. Fig. 1). Similarly, age and the personality
disposition of being a morning person showed only slightly
overlapping posterior parameter distributions in the FP for men
and women (Fig. 3). For the top female trait association in the
vmPFC, high health satisfaction and age jointly explained region
variation with largely incongruent posterior distributions for men
and women. In conjunction with age, having a high yearly job
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income (the top male trait association in the vmPFC) showed
overlapping model posteriors in explaining vmPFC volume
variation for men and women.

Furthermore, we also observed age to jointly drive the strong
trait effects in several limbic regions of the social brain that are

known to have connections to the mPFC. For example, age and
the number of lifetime romantic partners (the top female trait
association in the AM_R) showed largely divergent posterior
distributions for men and women. In a similar social context, age
and sharing one’s home with other individuals (the top female
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trait association in the AM_L) showed largely incongruent
posterior distributions for men and women (Supplementary
Fig. 2). Moreover, high job income (the top male trait association
in the bilateral amygdala) showed large posterior divergences in
explaining gray matter volume for men and women (Fig. 3 and
Supplementary Fig. 2). In the memory-related region of the social
brain, age and sharing a home with other individuals influenced
bilateral hippocampal architecture differently for men and
women. In conjunction with age, morning chronotype (the top
male trait association in the bilateral hippocampus) showed an
opposite trend for hippocampal region volume in men and
women (Fig. 3 and Supplementary Fig. 2).

Taken together, the joint age-trait effects revealed mostly
divergent manifestations of gray matter volume in midline and
limbic brain regions for men and women. For women, these
population volume effects were more apparent in sociodemo-
graphic and social indicators, as a function of age. For men, co-
relationships between age and sociodemographic or personality
indicators were more prominent.

Network-by-network summary: volume variation of specific
regions is better explained by the collective traits. In each of the
four networks of the social brain atlas (cf. Methods), we calcu-
lated posterior predictive checks for each region model. This
diagnostic assessment is based on simulation of new replicated
data using our previously inferred probabilistic models46. The
simulated model outcome could then be compared to the actual
observed outcomes to get a sense of our already estimated model
parameter distributions. For each of the 36 examined regions
from the social brain atlas, we computed the amount of explained
variance from the posterior predictive checks (coefficient of
determination, R2) (Fig. 4A). In this way, we interrogated which
of the four networks were best explained from the 40 examined
lifestyle traits for the total population sample and for men and
women separately (Fig. 4B).

The total explained variance was highest for the bilateral pSTS
(pSTS_R: ~16%; pSTS_L: ~15%), two regions of the visual-
sensory network (Fig. 4A). In the intermediate network, aMCC
and AI_L volumes showed the highest total explained variance
(aMCC: ~16%; AI_L: ~12%). Instead, the TPJ_L (~16%) and
TPJ_R (~12%) were the most explanatory parts of the higher
associative network. In the limbic network, the HC_R (~11%) and
NAC_L (~11%) showed the best R2 scores. Taken together, our
results suggest that, in each of the canonical networks of the social
brain atlas, at least one region was able to achieve an explained
variance of >10% in our population sample.

Sex specific trait effects are found for health satisfaction and
income in midline and limbic regions. Finally, we directly
quantified the extent of sex differentiation in our brain-trait
associations by calculating the difference between the marginal
posterior distributions. We carried out the subtraction

(female–male) of the model posterior parameter distributions for
each trait in each social brain region analysis. The obtained dif-
ference contrasts of the marginal posterior parameter distribu-
tions could reveal relatively more male- or more female-driven
effects for a trait at hand. In the medial prefrontal regions and its
limbic partners we observed more male-driven population trait
effects (Fig. 5 and Supplementary Fig. 4; cf. Supplementary Fig. 5
for results from the partial correlation analysis). However, results
in the FP showed more female-biased trait effects. Compared to
the other midline social brain regions, the posterior distributions
for the FP also showed much more uncertainty in the difference
contrasts of the model posteriors.

In the vmPFC, a large female-biased trait effect became
apparent. Health satisfaction contributed more to explaining
volume variation in the vmPFC for women than for men. Further,
in the dmPFC and bilateral amygdala regions, we observed a few
specific, strong male-biased population trait effects. Notably, in
the dmPFC, AM_L and AM_R, earning a higher job income
showed a much larger effect for men, compared to that for
women (Fig. 5 and Supplementary Fig. 4). In addition, the feeling
of embarrassment and the personality trait of being a morning
person showed larger trait effects in the AM_R for men compared
with women. In the memory-related region of the social brain,
male-specific trait effects were apparent in the bilateral hippo-
campus. Regular weekly contact with close individuals contrib-
uted more to explaining volume variation in the bilateral
hippocampus for men than for women (Supplementary Fig. 4).
However, sharing a home with other individuals showed stronger
female-specific trait effects in the HC_L and HC_R. In sum, the
findings from the female vs. male contrast analyses revealed
degrees of sex differentiation in population associations in the
limbic and higher associative regions across trait domains.

Discussion
During midlife, many aspects of social life are subject to
transition6. By designing a fully probabilistic modeling approach,
our study interrogated social brain architecture through the prism
of 40 indicators that describe the (i) social, (ii) personality, and
(iii) demographic profile of ~10,000 UK Biobank participants.
Many previous social neuroscience studies were limited in jux-
taposing a wide breadth of lifestyle markers, partly because of the
scarcity of datasets that provide deep phenotyping with a diversity
of behavioral assessments. The present study confronts such a
rich collection of lifestyle traits, which covers the individual,
interpersonal, and broader societal level in one coherent analysis
framework.

Previous neuroimaging research has reported that during this
stage of life, the brain undergoes concomitant structural changes,
especially in regions of the cortical midline14,15,18. More gen-
erally, the medial prefrontal cortex has been recognized to be a
common denominator for disparate fields of neuroscience that
are usually studied in isolation25,26, especially social interaction27,

Fig. 3 Participant age is a driving factor in how dominant lifestyle traits are linked to midline social brain regions. The co-relationship between age and
a trait association in explaining region variation is quantified by the joint posterior parameter distribution for one particular social brain region (black arrow)
for men (blue) and women (pink). This summary visualization exposes the traits with top effects in the full analysis (cf. Fig. 1; cf. Supplementary Data 2 for
a description of the social brain region abbreviations). The left column shows these brain-trait associations for women and the right column shows the top
trait contributions for men. Middle-aged men and women showed diverging age-trait associations in dmPFC volume in the context of social interaction
quality and social status. However, in the context of two socioeconomic status measures, men and women were more similar in age-trait associations with
vmPFC volume. The joint posteriors of trait associations in the FP revealed socioeconomic status as measured by job type and personality to show
incongruent population parameter distributions. The limbic AM and HC regions additionally showed non-overlapping posterior distributions between
middle-aged individuals for social network size and social lifestyle. Supplementary Fig. 3 showcases the age-trait associations in the midline and limbic
regions from the partial correlation analysis. Error bars/dispersion shows uncertainty of Bayesian posterior parameter distributions.
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Fig. 4 Explained variance of brain-trait associations differs across social brain networks. In each of the four networks of our social brain atlas (cf.
Methods; cf. Supplementary Data 2 for a description of the social brain region abbreviations), we computed posterior predictive checks for every analysis of
a given target region. These model-based simulations of replicated data were then compared to the actually observed data47 to compute the overall
explained variance (coefficient of determination, R2) for A the whole population cohort and B men and women, separately. Posterior predictive checks thus
safeguarded against several important issues related to model fit by evaluating model-simulated empirical expectations of target region volumes.
Intuitively, we asked the Bayesian model: “Based on drawing examples from the previously inferred model posterior, what should the region volume in each
particular participant be given his or her 40 trait indicators?”. We thus evaluated model-predicted data that could have been observed or will potentially be
observed in the future. This practical check of model-based predictions of observations is a well-recognized approximation to external validation given the
actual data at hand48. The collective population-level results suggest that in each of the four subnetworks of the social brain atlas, at least one region
showed an explained variance of >10% in our middle-aged participant cohort. Source data are provided in Supplementary Data 3.

Fig. 5 Degree of sex bias in brain-trait associations in the social brain midline. Left/Right: In each of the 40 examined traits (cf. Supplementary Data 1),
boxplots show the difference contrasts between the marginal posterior population distributions of each sex (female–male). Means of posterior parameter
distribution above zero indicate a relatively female-biased effect for a specific trait association (pink). For means below zero, there is a relatively male-
biased effect for that specific trait (blue). Middle: To provide a summary visualization, we counted across the 40 trait associations, for each brain region, to
see how many traits were biased predominantly towards males (blue) or females (pink). Purple shows an equal number of male- and female-biased trait
associations. Transparency indicates the strength of the sex divergence. Overall, a male bias in volume effects becomes apparent in almost all examined
medial prefrontal and limbic regions. In the dmPFC and AM_R, yearly job income showed a stronger effect in men compared to women. However, women
drive the trait associations in the FP of the higher-associative social brain, especially with regards to several demographic traits, such as the age of full-time
education completion and working a manual job (cf. Supplementary Fig. 5 for sex differentiation in lifestyle trait associations from the partial correlation
analysis; cf. Supplementary Data 2 for a description of the social brain region abbreviations). Error bars/dispersion shows uncertainty of Bayesian posterior
parameter distributions. Source data are provided in Supplementary Data 3.
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personality28, and demographics29. Integrating these separate
results points to the medial prefrontal cortex to be a common
neurocomputational resource for different processes related to
daily experiences and social identity. As the hypothesis that
motivated the present study, we expected to observe dominant
trait effects in medial prefrontal and medial temporal limbic
regions of the social brain, compared to the other atlas regions.
Our collective findings did not confirm that these midline regions
show the strongest volume effects for the examined target traits.
In particular, our structural brain-imaging results do not fall in
line with the idea that the medial prefrontal cortex acts as a
singular hub for different domains of social experience. While we
do find relevant brain-behavior effects in the hypothesized medial
prefrontal and limbic regions, notable trait effects became
apparent in several other regions of our atlas. Our middle-aged
population results thus showcase in ~10,000 individuals that
interindividual variation in gray matter volume in social brain
atlas regions is linked to important determinants of day-to-day
experience. Here, we highlight that at midlife, aspects of social
support and social status may contribute most to explaining
variation in the examined brain region volumes.

Key elements of daily experience include interacting with close
friends and family members. Previous behavioral studies have
highlighted that during midlife, adults tend to interact especially
with individuals they consider to have a close, social and emo-
tional bond with10. Maintaining close social bonds depends on
mentalizing, or understanding the mental states of other
individuals49. As part of the higher associative network of
the social brain50, the dmPFC is widely acknowledged for its
role in Theory-of-Mind processes25, which involve taking the
perspective of other individuals to understand their emotions,
beliefs, and motivations51. Here, we observed that, comparing 40
traits against each other, friendship satisfaction emerged as a
dominant trait effect in the dmPFC, perhaps related to the ten-
dency that adults prioritize maintaining close friendships during
midlife.

A previous behavioral study reported that feeling unsatisfied
with personal relationships is associated with the experience of
loneliness2. Although loneliness is a subjective perception, it can
have wide ranging consequences, including decreased mental and
psychological well-being52, and even increased mortality53.
Indeed, a cohort study on loneliness in ~900 middle-aged
participants7 found that loneliness was linked to higher levels of
stress and systemic inflammation. The authors suggest these
observations to be linked to poor health outcomes, with increased
risk for morbidity and mortality. In our population-level results,
we observed the feeling of loneliness to be associated with gray
matter volume in the NAC and aMCC. Commonly considered to
be a key node of the reward circuitry, the NAC has also been
found to be a neural correlate of social reward54. A previous
structural imaging study found that individuals with a higher
disposition towards social relationships displayed larger NAC
volumes54, which may reflect the rewarding aspects of social
attachment or social interaction. Our results suggest that middle-
aged adults may show a sensitivity to social reward in the NAC,
especially during midlife when social circles are selectively smaller
and more intimate10.

Furthermore, Rotge and colleagues found across 46 different
studies that areas of the midcingulate cortex, including the
aMCC, were consistently linked to social pain, which involves the
subjective feelings of loss, social disconnection, rejection or
exclusion from other individuals55. The authors also found that
being exposed to social pain for longer periods of time was linked
to aMCC activity. These findings suggest a link between social
brain anatomy and a role for social pain processing. These pre-
vious findings on social exclusion may relate to our finding that

the trait loneliness contributed most to aMCC social brain
volume. Indeed, using multimodal brain-imaging, Spreng and
colleagues found that perceived isolation, or loneliness, was
associated with gray matter volume, white matter integrity and
functional connectivity of regions of the default mode network,
including the aMCC56. Together, this constellation of findings on
interpersonal social relations adds support to the idea that the
amount of regular investments in social networks is closely linked
to our structural measurements of atlas regions in the reward
circuitry and intermediate network.

Consistent with the perspective that adults characteristically
place their social investments on people already in their social
circles during midlife, we found markers of social closeness to
also relate to the AM and HC—two limbic brain regions with
immediate anatomical connections to the mPFC, as evidenced in
humans and monkeys41,42,44. Gauging 40 candidate traits, our
probabilistic modeling results isolated the lifetime number of
romantic partners as a top interpersonal trait to explain variation
in AM volume. Consistently, previous structural brain-imaging
studies have also linked the AM to variation in social group size
in several age groups57,58. In particular, a relationship was
reported between larger gray matter volume in the AM and
increasing size of social networks57. According to these investi-
gators’ interpretation, interindividual variation in amygdala
volume is linked to differences in the complexity of one’s social
life57. Furthermore, the lifetime number of romantic partners
showed dominant trait manifestations in the limbic rACC and
visual-sensory FG_L regions of our social brain atlas. These two
brain regions were previously found to share functional con-
nectivity or similar functional associations with the amygdala in
the context of integrating affective and social scenes59,60. Toge-
ther, our observed volumetric trends at population scale show
that the amygdala and its close connections may have coherent
links to social indices at an interpersonal level.

In a similar vein, our results from a middle-aged cohort
revealed that sharing one’s home environment with others
emerged as the most frequent dominant trait association across
analyses in over half of the 36 target regions. Notably, these
dominant trait associations were found across levels of the pro-
cessing hierarchy50, from the pSTS and AM to HC and AI to TPJ.
Previous neuroimaging studies have also shown some of these
brain-trait effects based on the richness and frequency of their
social interactions57,61. The prominence of these volumetric
findings in a majority of the social brain regions may underlie
middle-aged individuals’ propensity to selectively interact with
close family and friends12. Indeed, middle-aged adults living
alone often report feeling less satisfied with their personal rela-
tionships, suggesting an unmet need for belonging2. Together,
these considerations support the perspective that during midlife,
individuals typically invest resources in close relationships with
friends and family.

In addition to consolidating social circles, other milestones are
accomplished during midlife, such as establishing oneself in an
occupation6. Social status is an abstract construct of individuals’
standing in society compared with others62,63. In our middle-aged
population results, we observed that having a job that earns a high
yearly income was a top contributor to gray matter region volume
across visual sensory, limbic and higher associative atlas regions
including the pSTS, AM, MTG, dmPFC, and vmPFC, compared
with the other examined traits. As a marker of socioeconomic
affluence, the amount of yearly income a person earns aids in
tracking one’s own place in the hierarchical layers of society as
well as the social status of other individuals64,65. A previous
functional MRI study explored the neural processing of social
hierarchies and found that participants generally tend to focus
more on superior versus inferior individuals63. In an unstable
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social hierarchy, brain regions of the occipital and parietal cortex
extending into the pSTS, AM and mPFC were recruited when a
participant viewed a superior individual63. The authors interpret
their findings in the pSTS, AM and mPFC in the context of
emotional processing and impression formation of other people’s
behavior. Hence, our findings on income as a dominant trait
manifestation in several social brain regions are consistent with
the possibility that social status may have volume adaptations in
the frontal and temporal cortices at different levels of the pro-
cessing hierarchy during midlife.

At the individual level, being more of a morning person is
associated with behavioral tendencies that promote prosociality,
social connection and cooperation, as well as personality traits of
conscientiousness and agreeableness66,67. Conscientiousness has
been linked to career success and overall physical and psycho-
logical well-being across the lifespan68,69. Compared against the
other examined traits, being a morning versus evening person
here showed a dominant trait association in the FP. Located in
the mPFC, the FP is a region that is not only closely linked to
perspective-taking capacity70, but also future- and goal-oriented
thinking71. In line with our social brain-trait associations, a
previous voxel-based morphometry study found morning
chronotype to be associated with gray matter volume in several
brain regions, including the AI, IFG, and mPFC66. Thus, having
an early-riser biorhythm may perhaps provide far-reaching ben-
efits during midlife, such as achieving certain career milestones.

Relatedly, our population-level results revealed that the early-
bird chronotype trait from the UK Biobank also emerged as a
dominant trait association in different atlas regions of the frontal,
parietal and temporal cortex, including the AI, HC, IFG, MTG,
PCC and pMCC. Several of these social brain regions have pre-
viously exhibited functional coactivation in meta-analytic con-
nectivity modeling or resting state functional connectivity, such
as the IFG and PCC50. The HC serves critical roles in memory
processes, and has been thought to be involved in social mon-
itoring, such as processes related to adhering to social norms72.
Indeed, previous research has shown that being a morning, rather
than evening, person is related to better adherence to social
norms, self-control, cooperation, respecting authority, and the
social desire to give off a positive impression73. Additionally,
being more of a morning person may sometimes require over-
riding one’s natural sleep-wake cycle to conform to prevailing
societal norms, even if one may be more of an evening person73.
Conversely, the night-owl chronotype, as captured in the UK
Biobank, has been linked to measures related to risk-taking,
creativity, and resistance to acting in conventional manners73.
The conjunction of these previous behavioral findings and our
present population-level results support several parts of our social
brain atlas to relate to morning versus evening orientation.

As a caveat to conclusions from our study, we used an atlas of
the social brain that was derived from functional MRI data as a
basis for structural MRI analyses. In a review, Suarez and col-
leagues describe how functional and structural MRI data do not
share all properties from a signal processing perspective and
expose certain differences in global organization, despite much
overlap74. For example, the authors emphasize that, although the
structural connectivity and functional connectivity of brain
regions are correlated, this correspondence is imperfect. A degree
of misalignment becomes especially evident in cases where brain
regions are functionally connected, but not structurally
connected74. As another example, from a mesoscopic perspective,
resting-state functional connectivity networks are characterized
mostly by spatially distributed systems related to cognition and
perception. However, these functional networks may not be
identified in brain structure, perhaps because the functional
networks do not share anatomical connections74.

Despite these considerations on the discordance between
functional and structural MRI data, we sought to link indices of
personality, social interaction and demographics to gray matter
brain structure. One key advantage of investigating brain struc-
ture, as opposed to investigating neural activity, is that structural
measurements capture information about stable states of the
individual, such as personality, that are less affected by factors
such as time of day66. Furthermore, the regions of our social brain
atlas derived using fMRI50 have consistently been associated with
social and affective processes in brain structure in the neuroi-
maging literature (e.g.,57,61,70). In our previous work, this atlas
has also served as a starting point to identify links between brain
structure and social cognitive processes (e.g.,58,75,76). More
broadly, neuroimaging studies using both functional and struc-
tural MRI data are mostly correlational in nature, by showing
associative relationships between the brain and a behavioral trait,
and they are typically impotent in establishing causal
relationships24. Hence, future studies should use different tech-
niques for intervention on the brain such as TMS to supplement
these efforts and make steps towards causal relationships between
behavior and the brain24.

We also acknowledge that manual quality control is a chal-
lenge, and has been argued to become infeasible at the scale of
several thousand participants77,78. Due to these constraints to
manual quality control, our study relied on the automated expert
pipelines for quality control and assurance from FMRIB
Oxford77,78. This widely trusted data pre-processing workflow
was specifically designed for the UK Biobank based on the first
10,000 participant data release, which is the same 10,000 parti-
cipant data release on which the present study focused. However,
we acknowledge that some sources of inaccuracy may have played
a role in our investigation, which is challenging to exhaustively
exclude given our large sample of participants.

As another limitation to the present study, the UK Biobank is a
prospective epidemiological study. This initiative collected a vast
portfolio of behavioral and demographic assessments, medical
and cognitive measures, and biological samples. However, UK
Biobank traits do not necessarily concur with measurements of
classical psychological constructs that are traditionally studied in
behavioral research on personality or demographics. Further-
more, it has been explicitly acknowledged that a complete picture
of demographics, for example, is difficult to obtain79. Addition-
ally, the usage of a limited scope of indicators may obscure a
comprehensive understanding of how different experiences in an
environment contribute to behavior or brain structure33. In this
sense, we encourage the readers to interpret our results with
appropriate caution. Nevertheless, the UK Biobank does provide
widely-used measures of demographic standing, including
household income, education attainment and occupation79.

As a final limitation, we admit that our approach is impotent to
isolating causal relationships or ground-truth directionality in the
examined effects (cf. above). However, our study illuminates
behavioral factors that co-occur with brain volume manifestations
in middle-aged men and women. On the one hand, our quanti-
tative findings can annotate how the decades-long accumulation
of social skills and experience in societal roles may resonate in
inter-individual variation in morphological measures of the cir-
cuitry implicated in navigating social environments. As an
alternative interpretation, on the other hand, distinct individual,
interpersonal and societal dimensions feed into life choices and
life experience well into midlife. Our population-level insights
provide a glimpse into how different lifestyles may be reflected in
long-term effects in social brain circuitry.

By elevating a Bayesian modeling framework to population
scale, we simultaneously put to the test 40 lifestyle traits with their
correspondences in the social brain. This analytical strategy
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allowed pinpointing some of the leading sources of population
variation with imprints in brain anatomy. In offering neurobio-
logical evidence in ~10,000 middle-aged individuals, we began
to shed light on potential intersections between three disparate
fields of neuroscientific inquiry: social interaction, personality
disposition, and demographic constitution.

Methods
Population data resource. The UK Biobank initiative (UKBB) is a prospective
epidemiology resource that contains a vast portfolio of behavioral and demo-
graphic assessments, medical and cognitive measures, as well as biological samples
from a large cohort. ~500,000 participants were recruited across the United
Kingdom80. This openly accessible population dataset aims to provide multimodal
brain-imaging for ~100,000 individuals to be completed in 202278. The present
study focused on 9,939 participants who provided T1-weighted structural brain
magnetic resonance imaging (MRI), comprising 48% males and 52% females.
These individuals were all in middle-age, ages 40 to 69 years at the time of
recruitment (mean = 55 years, SD= 7.5 years). All participants were uniformly
assessed and brain-scanned at the same scanning facility (i.e., Cheadle). To ensure
comparability and reproducibility with other and future UKBB studies, we relied
on the data preprocessing pipelines from FMRIB Oxford77,78. The present analyses
were conducted under UKBB application number 23827. All participants provided
informed consent to participate (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?
id=200).

Our present study co-analyzed a set of 40 behavioral indicators (Supplementary
Data 1) provided by the UKBB resource (Table 1). The 40 summary measures
belonged to three different domains: (i) social (12 items), (ii) personality (15 items),
and (iii) demographic (13 items). All UKBB participants were administered
questions for the particular trait measures (see here for further details: https://www.
ukbiobank.ac.uk/). For example, to obtain a measure of the risk-taking trait,
participants were asked “Would you describe yourself as someone who takes
risks?”. According to the responses given by the UKBB participants for each
interview question, participants were split into two evenly sized groups that reflect
the presence or absence of the particular trait: (a) not a risk-taker and (b) risk-
taker. To achieve direct comparability of the equal variable encoding in the rich
collection of lifestyle indices, all target items were represented with two-choice
encoding58.

Brain-imaging preprocessing procedures. MRI measurements were acquired
with a 3 T Siemens Skyra scanner at the same dedicated recruitment center (i.e.,
Cheadle), with the same acquisition protocols and same standard Siemens 32-
channel radiofrequency receiver head coils. To protect the anonymity of the study
participants, brain scans were defaced and any sensitive information from the
header was removed. Automated processing and quality control pipelines were
deployed77. To improve homogeneity of the imaging data, noise was removed by
means of 190 sensitivity features. This approach allowed the reliable identification
and exclusion of problematic brain scans, such as scans with excessive head
motion.

High-resolution T1-weighted images of brain anatomy were acquired using a
3D MPRAGE T1-weighted sequence at 1 mm isotropic resolution. Preprocessing

included gradient distortion correction, field of view reduction using the Brain
Extraction Tool81 and FLIRT82,83, as well as non-linear registration to
MNI152 standard space at 1 mm resolution using FNIRT84. To avoid unnecessary
interpolation, all image transformations were estimated, combined, and applied by
a single interpolation step. Tissue-type segmentation into cerebrospinal fluid, gray
matter, and white matter was applied using FAST (FMRIB’s Automated
Segmentation Tool85) to generate full bias-field-corrected images. In turn,
SIENAX86 was used to derive volumetric measures normalized for head sizes. The
ensuing adjusted volume measurements represented the amount of gray matter
corrected for individual brain sizes.

Social brain atlas definition. Our study benefited from a recently available atlas of
the social brain50, which provides a current best estimate of social brain topography
in humans. This atlas resulted from quantitatively synthesizing ~4000 experimental
functional MRI studies, involving thousands of participants50. Thirty-six con-
vergence locations of interest (Table 3) were derived in a data-led fashion that were
consistently involved in a wide assortment of social and affective tasks (see Sup-
plementary Data 2 for stereotaxic MNI coordinates for each of the social brain atlas
regions).

The 36 data-derived social brain regions are connectionally and functionally
segregated into four major brain networks (cf. Supplementary Data 2): (i) a visual-
sensory network (fusiform gyrus, posterior superior temporal sulcus, MT/V5), (ii) a
limbic network (amygdala, ventromedial prefrontal cortex, rostral anterior
cingulate cortex, hippocampus, nucleus accumbens), (iii) an intermediate network
(inferior frontal gyrus, anterior insula, anterior mid-cingulate cortex, cerebellum,
supplementary motor area, supramarginal gyrus), and (iv) a higher-associative
network (dorsomedial prefrontal cortex, frontal pole, posterior mid-cingulate
cortex, posterior cingulate cortex, precuneus, temporo-parietal junction, middle-
temporal gyrus, temporal pole).

The topographical specificity of the present quantitative analyses was thus
enhanced by guiding brain volume extraction of the 36 known regions of interest.
Neurobiologically interpretable measures of gray matter volume were thus
extracted in the ~10,000 participants. This was achieved by summarizing the
whole-brain anatomical maps guided by the topographical compartments of the
social brain. In particular, we applied a smoothing filter of 5 mm FWHM to the
participants’ structural brain maps to homogenize local neuroanatomical
differences58,76.

Next, gray matter volume was extracted in spheres of 5 mm diameter around
the consensus location from the atlas, averaging the MRI signal across the voxels
belonging to a given target region. We would like to note that using a smaller
sphere diameter of 2.5 mm or a bigger one of 7.5 mm yielded virtually identical
results, which led to the same conclusions. This way of engineering morphological
brain features yielded 36 volume brain variables per participant, that is, as many as
the total number of social brain regions. Each of the 36 brain volume variables was
subsequently z-scored across participants by centering to zero mean and unit-
variance scaling to one. These commonly employed estimates of population brain
volume variability78,87 in social brain anatomy served as the basis for all subsequent
analysis steps.

All of the regions of interest used in this study are available online for
transparency and reuse at the open-data sharing platform NeuroVault (http://
neurovault.org/collections/2462/).

Probabilistic multiple regression of region variation on lifestyle traits. To
explicitly interrogate the unique contribution of the 40 lifestyle traits to explaining
variation in a given social brain region, we implemented a generative probabilistic
multiple regression approach58,88,89. By adopting this Bayesian modeling frame-
work, we could directly learn from data the specific relevance of traits spanning
three different domains taken from the UK Biobank (cf. Supplementary Data 1):
social behavior, personality, and demographics. In this way, we were also able to
estimate the Bayesian posterior uncertainty intervals of trait effects, rather than
restricting attention to rigid categorical differences. Before implementation of the
region-specific probabilistic analyses, we performed a de-confounding procedure
on all 36 target region volumes to remove variation due to head size and body mass
index. This data cleaning step was performed in Python using nilearn (http://
nilearn.github.io/, version 0.6.2). The probability models were specified as follows.
For the jth social brain region (j= 1, …, 36):

yj ¼ βðjÞ0½g� þ x1 � βðjÞ1½g� þ ¼ þ x40 � βðjÞ40½g� þ cov age � β covðjÞ þ 2j; ð1Þ
where yj is the volume of the jth atlas region; xi is a considered social lifestyle trait
and β(j)i is the corresponding coefficient (i= 1,…, 40). The priors endow the
model parameters β(j)i with a Normal(0, 1) distribution for the location
component and with a HalfCauchy(1) distribution for the dispersion component,
while ϵj is the model error which is assumed to be normally distributed with
a variance component defined by HalfCauchy(5) distribution. Preliminary
sensitivity analysis confirmed that small changes to our choices of prior led to
virtually the same results, which was expected given the sample size of our UK
Biobank cohort89.

Approximate posterior inference was achieved by Markov Chain Monte
Carlo (MCMC) using PyMC3 in Python (https://github.com/pymc-devs/
pymc3, version 3.7), which sampled in a random walk towards the target

Table 1 UK Biobank demographic information.

Percent Mean SD Range

Age 55 7.5 40–70
Sex
Female 52.4
Male 47.6

Ethnic background
British 27.7
Irish 22.6
Any other white background 2.3
Others 3.3

Household income (£)
31,000–51,999 27.7
52,000–100,000 22.6
18,000–309,999 21.7
<18,000 12.4
>100,000 5.4

Age completed (school) education 17 2.3 5–35
Body Mass Index (BMI) 26.7 4.3 16.1–63.6
Fluid intelligence score 6.65 2.04 1.0–13.0
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posterior distribution. In 5000 draws, the approximate parameter distributions
were improved across MCMC steps in the sense of converging to the target
distribution. For the partial correlation analysis (cf. below), we carried out the
random walk using a number of 10,000 draws to ensure a more stable estimate
of the parameter space. At each step of the MCMC chain, the entire set of
parameter values were estimated to be jointly credible given the population
data. A range of possible explanations for the data or parameter configurations
for the relation between the social lifestyle traits and social brain volume were
browsed through by obtaining multiple plausible settings of model parameters
that could have led to the observed data. We searched through possible
configurations of parameters as an efficient way of exploring the important
part of the parameter posterior space. In particular, we dropped the first
4000 samples from the chain because (1) the chain had probably not yet fully
reached stationarity and (2) this step reduced dependence on the starting
parameter values. Proper convergence was assessed by ensuring the R-hat
metrics stayed below 1.0247.

In particular, for the purpose of posterior predictive checks, in each brain-
behavior analysis 500 candidate models were spawned. Each instance in that

collection of possible modeling solutions embodied a different realization of
the collective model parameters. In an empirical approach, the predictions
generated from each of the 500 distinct possible models were then examined for
plausibility against the real data at hand. We thus evaluated model-predicted data
that could have been observed or will potentially be observed in the future. Any
quantitative model predicts well in some situations but not in others. The used
framework allowed quantifying the limits of our Bayesian models based on the
cases in which they succeeded or failed.

Reanalysis after partial correlation analysis among social brain regions. In a
subanalysis of our main analysis approach (cf. previous paragraph), we introduced
a preceding partial correlation step to separate out the unique portion of variation
in the 36 region volumes of the social brain atlas using a linear de-correlation
procedure. For one specific region among the 36 total regions, this initial proces-
sing step partialed out the volume variation shared with any of the other respective
35 social brain regions, before carrying out the actual probabilistic Bayesian
analysis of interest (cf. previous paragraph).

Table 2 List of the 40 examined traits available in the UK Biobank. Each lifestyle indicator of interest from UK Biobank
participants is shown alongside its field identification number. Each indicator was analyzed in two groups according to sex. All
indicators were divided into one of three categories, defined by traits related to regular social interaction (social domain), traits
related to personality (personality domain), and traits related to demographic standing and environment (demographic domain).

UKBB-ID Domain Trait Men Women

22617 Social Social job (0= less social job, 1=more social job) 0.06 (±0.24 SD) 0.16 (±0.36 SD)
4570 Social Friendship satisfaction (0= low satisfaction, 1= high satisfaction) 0.21 (±0.41 SD) 0.24 (±0.43 SD)
4559 Social Family satisfaction (0= low satisfaction, 1= high satisfaction) 0.24 (±0.43 SD) 0.23 (±0.42 SD)
1031 Social Family visits (0= low number of visits, 1= high number of visits) 0.34 (±0.48 SD) 0.46 (±0.50 SD)
709 Social Living with others (0= living alone, 1= living with other individuals) 0.85 (±0.35 SD) 0.83 (±0.37 SD)
709 Social Household size (0= living with 3 or fewer housemates, 1= living with 4+

housemates)
0.22 (±0.41 SD) 0.20 (±0.40 SD)

5057 Social Siblings (0= only child, 1= has siblings) 0.87 (±0.33 SD) 0.88 (±0.32 SD)
2149 Social Romantic partners (0= one romantic partner, 1=more than one romantic partners) 0.78 (±0.41 SD) 0.75 (±0.44 SD)
2110 Social Social support (0= low social support, 1= high social support) 0.54 (±0.50 SD) 0.55 (±0.50 SD)
6160 Social Sports club (0= not in a sports club, 1= sports club member) 0.35 (±0.48 SD) 0.36 (±0.48 SD)
6160 Social Weekly social activity (0= no weekly social activity, 1=weekly social activity) 0.72 (±0.45 SD) 0.73 (±0.44 SD)
2020 Social Loneliness (0= not lonely, 1= lonely) 0.12 (±0.32 SD) 0.18 (±0.38 SD)
1180 Personality Morning/evening person (0= evening person, 1=morning person) 0.64 (±0.48 SD) 0.64 (±0.48 SD)
1920 Personality Mood swings (0= no mood swings, 1=mood swings) 0.37 (±0.48 SD) 0.45 (±0.50 SD)
1930 Personality Miserableness (0= not miserable, 1=miserable) 0.33 (±0.47 SD) 0.49 (±0.50 SD)
1940 Personality Irritability (0= not irritable, 1= irritable) 0.29 (±0.45 SD) 0.25 (±0.44 SD)
1950 Personality Sensitivity (0= is not sensitive, 1= sensitive) 0.44 (±0.50 SD) 0.59 (±0.49 SD)
1960 Personality Fed-up feelings (0= does not have fed-up feelings, 1= has fed-up feelings) 0.32 (±0.47 SD) 0.39 (±0.49 SD)
1970 Personality Nervous (0= not a nervous person, 1= nervous) 0.17 (±0.38 SD) 0.22 (±0.42 SD)
1980 Personality Worrier (0= not a worrier, 1=worrier) 0.44 (±0.50 SD) 0.60 (±0.49 SD)
1990 Personality Tense (0= not a tense person, 1= tense) 0.12 (±0.33 SD) 0.17 (±0.37 SD)
2000 Personality Embarrassment (0= does not worry too long after embarrassment, 1=worries after

embarrassment)
0.40 (±0.49 SD) 0.54 (±0.50 SD)

2010 Personality Suffers from nerves (0= does not suffer from nerves, 1= suffers from nerves) 0.19 (±0.39 SD) 0.17 (±0.37 SD)
2030 Personality Guilty (0= is not a guilty person, 1= guilty) 0.21 (±0.41 SD) 0.35 (±0.48 SD)
2040 Personality Risk-taking (0= not a risk-taker, 1= risk-taker) 0.35 (±0.48 SD) 0.20 (±0.40 SD)
20127 Personality Neuroticism (0= low neuroticism, 1= high neuroticism) 0.27 (±0.44 SD) 0.37 (±0.48 SD)
4526 Personality Happy mood (0= unhappy, 1= happy) 0.81 (±0.39 SD) 0.81 (±0.39 SD)
845 Demographic Age completed education (0= younger age, 1= older age) 0.22 (±0.42 SD) 0.27 (±0.44 SD)
728 Demographic Vehicles (0= few vehicles, 1=many vehicles) 0.61 (±0.49 SD) 0.56 (±0.49 SD)
738 Demographic Income (0= low income, 1= high income) 0.32 (±0.46 SD) 0.25 (±0.43 SD)
4537 Demographic Job satisfaction (0= low satisfaction, 1= high satisfaction) 0.86 (±0.35 SD) 0.84 (±0.36 SD)
4548 Demographic Health satisfaction (0= low satisfaction, 1= high satisfaction) 0.79 (±0.41 SD) 0.81 (±0.40 SD)
4581 Demographic Financial satisfaction (0= low satisfaction, 1= high satisfaction) 0.80 (±0.40 SD) 0.82 (±0.38 SD)
767 Demographic Working Hours (0= 40 hour work week, 1= 40+ hour work week) 0.26 (±0.44 SD) 0.11 (±0.31 SD)
796 Demographic Distance between work and home (0= close distance, 1= far distance) 0.23 (±0.42 SD) 0.14 (±0.34 SD)
806 Demographic Walking or standing job (0= job involves mostly sitting, 1= job involves mainly

walking or standing)
0.73 (±0.44 SD) 0.73 (±0.45 SD)

816 Demographic Manual job (0= job does not involve heavy manual or physical work, 1= job involves
heavy or manual work)

0.48 (±0.50 SD) 0.49 (±0.50 SD)

1677 Demographic Breastfed as Infant (0= no, 1= yes) 0.57 (±0.50 SD) 0.58 (±0.49 SD)
4674 Demographic Health care (0= public health care, 1= private health care) 0.27 (±0.44 SD) 0.26 (±0.44 SD)
20016 Demographic IQ (0= low IQ, 1= high IQ) 0.20 (±0.40 SD) 0.18 (±0.38 SD)

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02206-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:728 | https://doi.org/10.1038/s42003-021-02206-x | www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


Each of the new de-correlated residual region volumes ϵj for the social brain
atlas was obtained by regressing that region’s (z-scored) measures against the (z-
scored) measures from all remaining regions:

cy1 ¼ y2 � beta aþ y3 � beta bþ ¼ þ y36 � beta z þ 21

y2 ¼ y1 � beta aþ y3 � beta bþ ¼ þ y36 � beta z þ 22

¼
y36 ¼ y1 * beta aþ y2 � beta bþ ¼ þ y35 � beta z þ 236

ð2Þ

where the residuals ϵj represent the orthogonalized variance component of region j
across the UK Biobank participants that could not be linearly explained by any of
the 35 remaining brain region volumes. Note that the estimated values of the beta
parameters were not of scientific interest in this data preprocessing step. The
partialed region volumes ϵj served as the basis for the otherwise identical brain-trait
analyses.

In other words, the partial correlation subanalysis goes one step further and
accounts for the unique variance of each of the traits in addition to accounting for
the companion effects from the other social brain regions. Hence, any linear
variation shared with other brain regions was removed for a particular brain
region, such that the unique contribution of each trait is shown for that one specific
social brain region only. In this way, we were able to provide a complementary
perspective on how the 40 candidate traits are coherently associated with volume
variation in the social brain in our population cohort. As such, in this variant of our
original analysis, we revisited the interrogated social brain-trait associations while
disregarding volume variation that was shared between any pair of social brain
regions in our UKBB participants.

Technical note on neuroscientific interpretation of model coefficients. From a
quantitative perspective, compared to other imaging neuroscience work, our study
departs in important ways from linear latent factor modeling approaches, such as partial
least squares, reduced-rank regression, and canonical correlation analysis. Such

dimensionality-reducing tools would necessarily have considered all our 40 traits in
conjunction, that is, operating exclusively on the totality of input variables: how a linear
combination of the entire set of trait variables explains variation in a region volume at
hand. These latent factor models naturally ask for shared variation among the collective
trait variables that have a joint relationship with region variation. Instead of aiming at
correlated variable effects on a volumetric outcome, our elected multiple regression
approach asked for the marginal relationship of each individual trait variable with the
region volume, in direct competition with the 39 remaining traits examined in our
study (i.e., conditioning effects). In doing so, the 40 trait variables could be weighed
against each other to dissociate each trait’s separate role in explaining region variation.
For example, if a fraction of volume variation in the frontal pole was jointly explained
by personality trait A and demographic trait B, then the one of the two corresponding
trait parameters with the bigger magnitude of linear association would be attributed the
dominating role; since it explains more region volume compared to the competing
other trait. Thus, our quantitative approach aimed at singling out each trait’s unique
role for tracking interindividual differences in a social brain region, which is uncorre-
lated from the collection of candidate traits.

Statistics and reproducibility. To verify if our Bayesian regression analyses
generalize to other datasets with the same trait indicators, we have implemented
the identical data analysis pipeline (cf. above) in several new, independent parti-
cipant samples. For this purpose, we used the recently available 40,000 participant
release from the UK Biobank (Data Access Application: 25163). To assess replic-
ability, the unseen ~30,000 participants were randomly divided into three new
samples of ~10,000 participants each. The regression modeling workflow from the
main analysis was carried out again in each of the three data splits. Subsequently,
Pearson correlation coefficients were computed between the original analysis and
the three new analyses based on the mean of posterior parameter distributions
(Supplementary Fig. 6). This re-assessment confirmed the replicability of the
constellation of findings obtained in our original analysis in unseen participant
samples.

Table 3 Social brain atlas regions and their MNI coordinates. Social brain regions and their respective functional network51.

Social brain region Abbreviation MNI coordinates x y z Network

Left anterior insula AI_L −34 19 0 Intermediate
Right anterior insula AI_R 38 18 −3 Intermediate
Left amygdala AM_L −21 −4 −18 Limbic
Right amygdala AM_R 23 −3 −18 Limbic
Anterior mid-cingulate cortex aMCC 1 25 30 Intermediate
Left cerebellum CB_L −21 −66 −35 Intermediate
Right cerebellum CB_R 28 −70 −30 Intermediate
Dorsomedial prefrontal cortex dmPFC −4 53 31 Higher associative
Left fusiform gyrus FG_L −42 −62 −16 Visual-sensory
Right fusiform gyrus FG_R 43 −57 −19 Visual-sensory
Medial frontal pole FP 1 58 10 Higher associative
Left hippocampus HC_L −24 −18 −17 Limbic
Right hippocampus HC_R 25 −19 −15 Limbic
Left inferior frontal gyrus IFG_L −45 27 −3 Intermediate
Right inferior frontal gyrus IFG_R 48 24 2 Intermediate
Left middle temporal gyrus MTG_L −56 −14 −13 Higher associative
Right middle temporal gyrus MTG_R 56 −10 −17 Higher associative
Left middle temporal V5 area MT/V5_L −50 −66 5 Visual-sensory
Right middle temporal V5 area MT/V5_R 50 −66 6 Visual-sensory
Left nucleus accumbens NAC_L −13 11 −8 Limbic
Right nucleus accumbens NAC_R 11 10 −7 Limbic
Posterior cingulate cortex PCC −1 −54 23 Higher associative
Posterior mid-cingulate cortex pMCC −3 −29 32 Higher associative
Precuneus Prec −1 −59 41 Higher associative
Left posterior superior temporal sulcus pSTS_L −56 −39 2 Visual-sensory
Right posterior superior temporal sulcus pSTS_R 54 −39 0 Visual-sensory
Rostral anterior cingulate cortex rACC −3 41 4 Limbic
Left supplementary motor area SMA_L −41 6 45 Intermediate
Right supplementary motor area SMA_R 48 6 35 Intermediate
Left supramarginal gyrus SMG_L −41 −41 42 Intermediate
Right supramarginal gyrus SMG_R 54 −30 38 Intermediate
Left temporal pole TP_L −48 8 −36 Higher associative
Right temporal pole TP_R 53 7 -26 Higher associative
Left temporo-parietal junction TPJ_L −49 −61 27 Higher associative
Right temporo-parietal junction TPJ_R 54 −55 20 Higher associative
Ventromedial prefrontal cortex vmPFC 2 45 −15 Limbic
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 2, 4, and 5, as well as Supplementary Fig. 4–5, are presented
in Supplementary Data 3. All used data are available to other investigators online
(ukbiobank.ac.uk), or available from the corresponding author upon reasonable request.

Code availability
All analyses conducted for the present study are reproducible and the scripts used for the
analysis pipelines are available online (https://github.com/hannahkiesow/
social_brain_aging).
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