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Abstract

Acute kidney injury (AKI) is a common condition in multiple clinical settings. Patients with AKI are at an increased risk of
death, over both the short and long term, and of accelerated renal impairment. As the condition has become more
recognized and definitions more unified, there has been a rapid increase in studies examining AKI across many different
clinical settings. This review focuses on the classification, diagnostic methods and clinical management that are available,
or promising, for patients with AKI. Furthermore, preventive measures with fluids, acetylcysteine, statins and remote ische-
mic preconditioning, as well as when dialysis should be initiated in AKI patients are discussed. The classification of AKI in-
cludes both changes in serum creatinine concentrations and urine output. Currently, no kidney injury biomarkers are
included in the classification of AKI, but proposals have been made to include them as independent diagnostic markers.
Treatment of AKI is aimed at addressing the underlying causes of AKI, and at limiting damage and preventing progression.
The key principles are: to treat the underlying disease, to optimize fluid balance and optimize hemodynamics, to treat elec-
trolyte disturbances, to discontinue or dose-adjust nephrotoxic drugs and to dose-adjust drugs with renal elimination.
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Introduction

Acute kidney injury (AKI), formerly termed acute renal failure,
is characterized by a sudden deterioration in renal function [1].
Numerous studies have found that AKI is associated with an

increased mortality and adverse outcomes regardless of patient
characteristics and the context in which injury occurs [2, 3].

Until a decade ago, there was a lack of uniform diagnostic
criteria for AKI that led to a number of various definitions being
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used, making comparisons between studies difficult. In 2004,
the risk, injury, failure, loss, end-stage renal disease (RIFLE) cri-
teria for AKI was established [4]. In 2007, the AKI Network
(AKIN) modified RIFLE criteria with the inclusion of an absolute
change of serum creatinine (SCr) [5]. RIFLE and AKIN were later
unified with the 2012 Kidney Disease: Improving Global
Outcomes (KDIGO) criteria [1]. The KDIGO criteria define and
stage patients (three severity stages) according to changes in
SCr levels and urine output (Table 1).

Urine output may be measured in real time, but commonly
urine output has not been reported in studies on AKI, and thus
the association between changes in urine output and outcomes
in AKI are not well documented. Furthermore, it has been
argued that the specificity of the urine output criteria for AKI is
low, leading to many patients without AKI being misclassified
to AKI [6]. However, oliguria without SCr elevation is not un-
common, and may also be associated with fluid overload where
the elevation in SCr levels may be masked. Fluid overload in the
context of AKI has been associated with poor outcomes [7].
Although, the KDIGO criteria for classification of AKI do not
combine urine output with increases in SCr levels, there may be
advantages in doing so. In a recent study, it was found that pa-
tients meeting both the SCr and urine output criteria had a dra-
matically worse prognosis than patients who only met either
one of the two criteria [8].

The duration of injury is not included in the definition of
AKI, but has been shown to be related to prognosis [9]. The term
‘acute kidney disease’ has been suggested for patients who
have persistent AKI, defined as a duration >7 days, but <3
months. Thus, among patients who meet both SCr and urine
output criteria for AKI, those in whom AKI is persistent have
the worst prognosis.

Despite the uniform AKI criteria that have been developed,
AKI remains a clinical diagnosis and has to be put into the clin-
ical context where it occurs. The AKI criteria should not be used
by the clinician as an absolute ‘truth’, but rather as a frame for
decisions, for example, on when to initiate measures aimed at
preventing further damage to the kidney.

Kidney injury biomarkers

By the time KDIGO SCr criteria for AKI are met, the decline in
glomerular filtration rate (GFR) and likely structural damage
that preceded that decline have been present for several hours.
It has been hypothesized that delayed detection of AKI is one of
the reasons why intervention trials aimed at treating AKI have
failed. Therefore, a lot of effort has been put into finding bio-
markers that could detect kidney injury earlier, before func-
tional biomarkers (SCr and serum cystatin C) have changed, and

which would be related to the clinical course of AKI, predict the
need of dialysis, or other complications. These biomarkers pro-
vide information on tubular injury, which commonly precedes
functional decline. In Table 2, the most well-studied biomarkers
are summarized. Of these, liver-type fatty acid-binding protein
(L-FABP) is approved for use in Japan, neutrophil gelatinase-
associated lipocalin (NGAL) may be used in some localities in
Europe and the combination of tissue inhibitor of
metalloproteinase-2 (TIMP-2) and insulin-like growth factor-
binding protein 7 (IGFBP-7) is approved for use in the USA.

Early studies that found biomarkers to be useful in detecting
established AKI [10–13, 16] were followed by large prospective
studies [14, 17–23]. NGAL and interleukin 18 (IL-18), both in
plasma and urine, were tested as early markers of injury follow-
ing cardiac surgery [17, 18, 22, 23]. However, the ability of any of
these markers to predict AKI was modest.

Recently, the combination of two biomarkers for tubular cell
cycle arrest, TIMP-2 and IGFBP-7, has shown promising diagnos-
tic performance to predict a doubling of SCr within 12 h in pa-
tients with sepsis [AUC (area under curve) � 0.8] [24, 25]. Both
these biomarkers share the property of inducing G1 cell cycle ar-
rest that is thought to prevent proliferation of damaged cells
and thereby protecting the kidney. The strength of TIMP-
2*IGFBP-7 may lie in the high negative predictive values found
for excluding AKI stages 2 and 3 [14]. The test can be performed
at the bedside (NephroCheckVR ) [26].

Risk factors for AKI

The onset of AKI is multifactorial, and several patient-specific
factors can contribute to the risk of AKI. Patients with chronic
kidney disease (CKD), impaired left ventricular systolic function,
advanced age commonly defined as >75 years of age, diabetes
and dehydration are at particularly high risk of AKI [1, 15]. In
addition, specific surgery-related factors including time spent
on heart–lung machine, the use of an intra-aortic balloon
pump, need for blood transfusions and hemodilution are associ-
ated with AKI [27]. Patients with CKD are not only more likely to
require dialysis in conjunction with AKI, but also to develop
end-stage renal disease with need for renal replacement ther-
apy (RRT) after an episode of AKI [28]. In order to prevent AKI, it
is important to identify patients at high risk before surgery or
exposure to potentially nephrotoxic agents.

Several risk stratification models for AKI have been de-
veloped [29]. Commonly, these prediction models have included
patient characteristics such as age, sex and renal function, and
comorbidities such as diabetes and chronic obstructive pulmon-
ary disease. A limitation of most of these studies has been that
the predicted outcome has been dialysis-requiring AKI, which is
a rare event [30].

Recently, two studies have investigated if a bolus dose of fur-
osemide, the so called ‘furosemide stress test’, may predict pro-
gression of AKI stages 1–3 [31]. Furosemide is given as a single
dose of 1.0 mg/kg in furosemide-naı̈ve patients, or a dose of
1.5 mg/kg in patients with ongoing furosemide treatment. The
AUC for predicting progression to stage 3 AKI was 0.87 when an
output of 200 mL urine for the first 2 h was used as cutoff, which
is a much higher AUC than any kidney injury biomarker has
achieved. In a recent study, eight prediction models for AKI
after cardiac surgery were investigated, and found to have poor
or modest abilities to predict a postoperative SCr elevation of
>50%, with AUCs between 0.65 and 0.75 [32].

Table 1. KDIGO’s criteria for acute kidney injury [1]

Stage Increase in serum creatinine Urine output

1 �0.3 mg/dL (26.5 lmol/L) within 48 h or <0.5 mL/kg/h
for 6–12 h1.5–1.9 times baseline within 7 days

2 2.0–2.9 times baseline within 7 days <0.5 mL/kg/h
for �12 h

3 �3.0 times baseline, or�4.0 mg/dL
(354 lmol/L)

<0.3 mL/kg/h
for �24 h or

increase within 7 days or Anuria �12 h
initiation of RRT or
in patients <18 years of age, decrease

in estimated GFR to<35 mL/min/1.73 m2
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Diagnostics

AKI is rarely symptomatic, and signs and symptoms are related
to the underlying cause rather than AKI itself. Examinations
and treatments are dependent on the clinical setting and under-
lying causes. The medical history should be reviewed, including
exposure to nephrotoxic agents. Urinary outflow obstruction
should be excluded. If the underlying cause of AKI is not obvi-
ous, renal ultrasound should be performed in order to exclude
hydronephrosis, and to assess kidney size, where a kidney
length <8 cm may be indicative of CKD instead of AKI, but does
not exclude acute-on-CKD [33].

Blood and urine samples should be collected in order to ana-
lyze blood cell counts, electrolytes, SCr, serum albumin, stand-
ard bicarbonate and dipstick urine analysis. Analysis of urinary
sediment may also be a guide to determine the etiology of AKI
[34]. Urine output should always be monitored in patients with
AKI because oliguria and anuria is common, and is an earlier
marker of progressive AKI than SCr [1].

Common causes of AKI

The definition of AKI does not include its etiology and it is diag-
nosed as a single entity, regardless of pathogenesis (Figure 1).
However, it is important to determine the cause of AKI to im-
prove patient outcomes. Historically, the etiology of AKI was
divided into three categories: prerenal, renal and postrenal. The
combination of prerenal and renal causes of AKI is common, for
example, in sepsis or cardiac surgery. There is an underdiagno-
sis of AKI, and missed AKI is associated with a worse prognosis
[36]. In many cases, AKI is identified at late stages or remains
unknown, and the underlying causes are not examined.

Contrast-induced AKI (CI-AKI) after coronary angiography is
relatively common with an incidence of 2.6–13% [37]. Drugs
associated with AKI are, among others, nonsteroidal anti-
inflammatory drugs (NSAID), several antimicrobials and several
chemotherapeutic agents [38]. The association between angio-
tensin-converting enzyme (ACE) inhibitors and angiotensin

receptor blockers and AKI in patients who undergo surgery is
controversial. Some studies have found an increased risk [39],
others no increased risk [40], and yet further studies a decreased
risk of AKI among treated patients [41]. Drug-induced AKI can,
in most cases, be alleviated by replacing the nephrotoxic drug
with a similar less-nephrotoxic drug, or changing administra-
tion practices.

Noncardiac surgery is thought to be associated with a lower
risk of AKI than cardiac surgery [42]. However, AKI in noncar-
diac surgery patients is largely understudied. In one study
where AKI was defined as a >50% increase in SCr levels after
noncardiac surgery, 7% developed AKI [43]. In patients undergo-
ing cardiac surgery the incidence of AKI is between 1% and 50%
depending on the type of procedure and the classification of
AKI [2]. AKI is common in patients with sepsis, and patients
with septic shock and AKI have an almost doubled in-hospital
mortality [44].

Prerenal AKI

Prerenal AKI occurs because plasma flow and intraglomerular
pressure are inadequate to maintain filtration capacity. The
most common cause is hypovolemia, followed by a decreased
cardiac output or impaired autoregulation, which may be
induced by NSAIDs. Prerenal AKI is usually reversible in terms
of normalizing baseline SCr, but may still involve an injury. The
autoregulation of the pre- and postglomerular arterioles are
required both for adequate renal blood flow and to maintain
hydrostatic pressure in the glomeruli.

Postrenal AKI

Postrenal AKI is caused by an obstruction of urinary flow. A
number of causes exist as benign prostatic hyperplasia, urethral
stricture, pelvic or abdominal cancers, neurological causes as
multiple sclerosis, ureter obstruction from kidney stones or ur-
eter injury following surgery or trauma [35, 44]. The initial ac-
tion is to exclude urinary outflow obstruction, and thereafter,

Table 2. Biomarkers of acute kidney injury

Type of biomarker Biomarker Description Kinetics

Tubular injury Kidney injury
molecule 1 [10]

Tested in urine. Upregulated after injury to
proximal tubuli. Activates immune cells
leading to clearance and remodeling of
injured cells.

Detected 12–24 h after injury, and will
peak at 48–72 h post-injury

IL-18 [11] Tested in urine and serum. Upregulated after
ischemic injury to proximal tubuli. Has
pro-inflammatory characteristics.

Detected within the first 6 h after injury,
and will peak at 12–18 h post-injury

NGAL [12] Tested in urine and serum. Is released both
from distal and proximal tubuli from dam-
aged cells and actives protective enzymes,
and prevents production of radicals. NGAL
is also released from liver and neutrophils
in sepsis.

Detected within 3 h of injury, and will
peak at 6 h post-injury

L-FABP [13] Tested in urine. Protein that is expressed in
proximal tubuli after ischemic injury.

Detected within 1 h after injury, and will
peak within 6 h post-injury

TIMP-2 and IGFBP-7 [14] Tested in urine. Both these biomarkers in-
duce G1 cell cycle arrest that prevents pro-
liferation of endothelial cells.

Detected within 12 h of injury

Glomerular
filtration

Cystatin C [15] Tested in serum. Protein, which is produced
at a constant rate and filtered freely, re-
absorbed and metabolized in the proximal
tubuli.

Detected 12–24 h after injury, and will
peak within 48 h post-injury
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ultrasound should be performed to rule out hydronephrosis
[26]. In cases where flank pain is present, the preferred imaging
should be computed tomography without contrast in order to
rule out kidney stones.

Renal AKI

Renal AKI may be linked to nephrotoxic drugs, other nephro-
toxins, infection, sepsis, renal ischemia, malignant hyperten-
sion or inflammation (e.g. glomerulonephritis, vasculitis,
allergic reaction). In the absence of a clear cause of AKI, inad-
equate response to treatment, or findings of both hematuria
and proteinuria in patients with AKI, inflammatory diseases of
the renal parenchyma such as glomerulonephritis and vascu-
litis should be suspected [26].

Combination of prerenal and renal AKI

In many cases, prerenal and renal AKI exist concurrently. AKI
may occur in sepsis, despite the absence of hypotension. The
causes are multifactorial including sympathetic activation, and
hormonal and inflammatory mediation [45]. Concomitant
prerenal and renal AKI is also observed in disorders such as
rhabdomyolysis, and hypercalcemia, in which severe hypovol-
emia combined with the toxic effects of myoglobin and calcium
causes AKI [46]. Rhabdomyolysis is commonly associated with
hypovolemia, thus leading to prerenal AKI, and direct nephro-
toxic effects of myoglobin and heme proteins, and may also
lead to intraluminal cast formation and tubular obstruction.
After cardiac surgery the causes of AKI are often a combination
of ischemia, inflammation, hypotension, embolism, and free
hemoglobin from blood transfusions.

Treatment and management of AKI
General principles

The treatment of AKI is aimed at limiting damage and prevent-
ing further loss of GFR. There are several key principles to fol-
low, where the most important are to treat the underlying
cause, and to achieve normovolemia and hemodynamic

stability. In addition, electrolyte disturbances should be treated,
nephrotoxic drugs discontinued or dose-adjusted, and drugs
with renal elimination should be dose-adjusted [47]. Potassium-
sparing diuretics and ACE inhibitors should be discontinued in
order to avoid progression of AKI and hyperkalemia. Acid–base
disturbances, mainly in the form of metabolic acidosis, are fre-
quent in moderate to severe AKI (stages 2 and 3), where treat-
ment of the underlying causes is the primary objective. A
cornerstone of the management of all patients with AKI is to
monitor urine output, and to initially monitor SCr several times
a day.

Hemodynamic optimization

Fluid therapy
For all cases in which hypovolemia is the suspected cause of
AKI, the first priority is to restore fluid balance with the aim to
increase cardiac output, in order to stabilize hemodynamics,
and renal blood flow, without inducing fluid overload.
Evaluation of hydration status is difficult, and several methods
have recently become available in clinical practice such as
measuring bioimpedance and ultrasound assessment of vena
cava and left ventricle dimensions [48]. The rate of rehydration
should be individually assessed [49].

Choice of fluid
Several studies have shown that crystalloid solutions with high
chloride content may be harmful and lead to a deterioration of
renal function [50, 51]. It is thought that high chloride concen-
tration at the macula densa increases tubuloglomerular feed-
back causing preglomerular vasoconstriction and decreased
renal perfusion [51]. A recent meta-analysis found an associ-
ation between resuscitation with fluids containing high chloride
content and increased risk of AKI, metabolic acidosis and time
on mechanical ventilation [52]. However, a recently published
randomized trial in the intensive-care setting found no differ-
ence in the risk of AKI or dialysis in patients treated with saline
compared with a balanced crystalloid solution [53]. In studies
where the synthetic colloid hydroxyethyl starch has been used
in sepsis and critically ill patients, an increased risk of AKI has

Fig. 1. Causes of AKI [35]. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blockers; 5-ASA, 5-aminosalicylic acid.
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been found, leading to cessation of its use [54]. Albumin is con-
sidered to be harmless to the kidney, but its advantage over
crystalloid solutions has not been demonstrated [49]. In conclu-
sion, current knowledge suggests that patients with AKI, in
need of fluid therapy, should be treated with a balanced crystal-
loid solution.

Fluid overload
It has long has been believed that infusion of large volumes of
fluids can treat or prevent AKI by maintaining renal perfusion
and urine output. This was further fueled by a study published
15 years ago where so called ‘early goal-directed therapy’,
including infusion of generous amounts of fluids, was found to
increase survival in patients with severe sepsis [55]. However, in
the last decade this has been challenged in a number of studies
that have demonstrated harm from excess fluids [48, 56, 57].
Recently, in a randomized controlled trial (RCT), it was found
that ‘permissive oliguria’ after major abdominal surgery was
not associated with higher NGAL levels or lower measured GFR
compared with usual care [58]. Fluid overload may lead to an
increased intra-abdominal pressure, and edema in the kidney
that is surrounded by a nonexpandable fibrous capsule, thereby
reducing perfusion pressure in the kidney [59, 60]. Current sep-
sis guidelines [61] recommend that the target central venous
pressure should be 8 mmHg, a level that may lead to decreased
renal perfusion and AKI [62]. In order to prevent fluid overload,
a new strategy of fluid resuscitation has been proposed by the
Acute Dialysis Quality Initiative that consists of four phases: the
rescue, optimization, stabilization and de-escalation phases
[63]. In the rescue phase, boluses of fluid are administered in
life-threatening hemodynamic instability; in the optimization
phase, when the patient is hemodynamically stable, careful ad-
ministration of fluids is done with the aim to maintain hemo-
dynamic stability; in the stabilization phase, when the patient
is in a stable condition, a zero or negative fluid balance is aimed
for; and finally, in the de-escalation phase, excess fluid is
removed.

Vasoactive drugs
Vasoactive drugs lead to systemic vasoconstriction and an
increased blood pressure that increases renal perfusion [64]. A
moderate dose of norepinephrine is thought to reduce the risk
of AKI in patients with vasodilated shock [64, 65]. However, this
has been challenged in a recently published study [66]. In ani-
mal studies, norepinephrine administration has been found to
increase renal blood flow and GFR [64]. Moreover, an increase in
mean arterial blood pressure from 60 to 75 mmHg using nor-
epinephrine resulted in an increase in GFR and renal oxygen de-
livery in patients with vasodilated shock after cardiac surgery
[67]. A higher mean arterial pressure has also been shown to re-
duce the need for dialysis in sepsis patients [66].

Dopamine is a renal vasodilator acting on both the pre- and
postglomerular arterioles and thereby increasing renal blood
flow. The administration of a low dose of dopamine has been
thought to increase renal perfusion. However, studies have not
shown a beneficial effect in treating or preventing AKI and ad-
verse effects such as arrhythmic events have been identified [1,
26]. Therefore, the recommendation currently is to not use
dopamine in patients with AKI [26, 47, 68].

Vasopressin is another drug that increases blood pressure,
and is commonly used as a second-line drug in conjunction
with norepinephrine in order to stabilize hemodynamics. In one
study where norepinephrine was compared with

norepinephrine in combination with vasopressin, the authors
found a trend toward a lower risk of AKI in the combination
group [69].

The inotropic and vasodilating drug levosimendan increases
cardiac output, and may be used when a restricted fluid therapy
is warranted in patients with compromized cardiac function
[70]. Levosimendan is a calcium sensitizer, and unlike several
vasopressor drugs, it improves right ventricular function, which
reduces central venous pressure leading to reduced venous sta-
sis in the kidney. Furthermore, levosimendan dilates preglom-
erular arterioles, improving renal circulation [71]. The renal
effects of levosimendan are under investigation [72].

Drug treatment for AKI

Several drugs have been tested for AKI, but none has been es-
tablished as standard treatment in clinical practice. Many stud-
ies have been underpowered and results have been
inconsistent. The most-studied treatments for AKI are dis-
cussed below.

Diuretics
Furosemide has several renoprotective characteristics like
blocking of oxygen-consuming sodium channels in the tubules,
increased diuresis leading to a reduced oxygen demand in the
kidney and washout of kidney-toxic molecules [73]. However,
clinical studies have failed to demonstrate that furosemide im-
proves the prognosis in AKI, except in patients with fluid over-
load [74]. The use of furosemide as prevention of AKI in
conjunction with cardiac surgery or contrast exposure has been
linked to a higher risk of AKI [75].

Acetylcysteine
The protective effect of acetylcysteine is considered to be
mainly related to its antioxidant properties, but also inducing
vasodilation in the renal medulla by stabilizing nitric oxide and
by inhibiting ACE [76]. Acetylcysteine has not been shown to
prevent AKI associated with cardiac surgery or in patients with
sepsis [77, 78]. In the setting of CI-AKI, results have been contra-
dictory, but several meta-analyses suggest that acetylcysteine
provides some protection against CI-AKI, especially in patients
at high risk [76, 79, 80]. Due to the heterogeneity of study results,
it is difficult to establish a clear consensus, but the KDIGO work
group has proposed that oral acetylcysteine along with intra-
venous isotonic crystalloid solutions should be used in patients
at high risk of CI-AKI [68].

Sodium bicarbonate
Sodium bicarbonate has been used for the treatment and pre-
vention of AKI associated with heme-pigment nephropathies
(myoglobin, hemoglobin and bilirubin), and in tumor lysis syn-
drome. Sodium bicarbonate is thought to increase the solubility
of these products preventing the formation of obstructive meth-
emoglobin cylinders and crystals in the tubules [81]. In addition,
sodium bicarbonate is thought to reduce oxidative stress and
free radicals [81]. This led to the hope that sodium bicarbonate
may prevent AKI. A pilot study that included 100 cardiac surgery
patients randomized either to sodium bicarbonate or crystal-
loids found a reduced risk of AKI in the intervention arm [82].
However, in the full-scale RCT no preventive effect of sodium
bicarbonate was found, but instead in an intention-to-treat ana-
lysis there was a significant association between sodium bicar-
bonate and an increased risk of AKI [83]. Similarly, another trial
reported no preventive effects of sodium bicarbonate [84]. In
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prevention of CI-AKI, sodium bicarbonate solutions have not
shown to be superior compared with sodium chloride solutions
[26]. Thus, sodium bicarbonate is not recommended for the pre-
vention or treatment of AKI currently [81, 85].

Statins
Statins, which are used to prevent cardiovascular events, are
thought to reduce free oxygen radicals in the renal tubules and
to modulate inflammatory responses, which has led to the as-
sumption that statins may prevent AKI. In a paper published in
2012 it was found that a high dose (80 mg) of atorvastatin before
administration of contrast agent was associated with a lower
risk of CI-AKI [86]. Later, an RCT on perioperative atorvastatin
therapy found no preventive effect of AKI after cardiac surgery
[87]. Moreover, recently an RCT on perioperative rosuvastatin
treatment found an increased risk of AKI in the rosuvastatin
group [88]. Similarly, another RCT on patients with sepsis-asso-
ciated acute respiratory distress syndrome concluded that rosu-
vastatin was associated with the secondary outcome of
persistent AKI [89]. Regarding CI-AKI, a recent meta-analysis of
studies on statin-naı̈ve patients undergoing coronary angiog-
raphy showed that statin treatment before contrast exposure
may have a protective effect [90]. Due to these conflicting re-
sults, statin therapy for AKI prevention is not currently
recommended.

Remote ischemic preconditioning

Remote ischemic preconditioning (RIPC) is a procedure of short
episodes of ischemia induced at a remote site, which is thought
to induce ischemic-protective mechanisms to other organs
such as the kidney [91]. The underlying mechanisms are not
fully understood, but a recent study suggested that inducement
of cell cycle arrest in renal tubuli may be a potential mechanism
[91]. In cardiac surgery populations, results of RIPC have been
contradictory. In an early RCT in 120 patients, it was found that
RIPC was associated with a lower risk of AKI [92]. In a later RCT
in 240 patients undergoing cardiac surgery with a high risk of
AKI, a similar finding was reported [93]. However, other studies
have found no preventive effects of RIPC for AKI in patients
undergoing cardiac surgery [94, 95]. Two smaller studies dem-
onstrated a reduction in CI-AKI after the use of RIPC [96, 97].
Since data are inconclusive and contradictory, there is currently
no firm recommendation to use RIPC to prevent AKI.

Dialysis

The current recommendation on when to start RRT involves
life-threatening changes in fluids, electrolytes, the acid–base
balance or uremic complications [1]. However, controversy
exists over the benefit of initiating dialysis at an early stage,
when life-threatening complications have not yet developed,
versus later stage [98]. The accumulated data from clinical trials
with varying quality and observational studies have not con-
cluded an optimal timing for start of RRT. A recent RCT [The
Artificial Kidney Initiation in Kidney Injury (AKIKI) trial] found
that early versus delayed RRT in the intensive care unit offered
no benefit in terms of outcome [99]. While the most recent
randomized trial [the Early vs Late Initiation of Renal
Replacement Therapy in Critically Ill Patients With Acute
Kidney Injury (ELAIN) trial] showed that early initiation of con-
tinuous RRT reduced mortality, hospital length of stay and dur-
ation of RRT compared with those with late initiation [100].
Interestingly, the late initiation group in the ELAIN trial

resembled the early initiation group in the AKIKI trial, and may
explain the contradictory results.

Summary

AKI is common and associated with poor outcomes. Despite a
number of intervention studies, no effective treatment or preven-
tion of AKI has been found. Therefore, efforts should be made to
limit damage in patients with AKI by use of crystalloid solutions
instead of fluids with a high chloride content, avoiding fluid over-
load, and discontinuing or dose-adjusting nephrotoxic drugs. In
addition, if the cause of AKI is not obvious, postrenal outflow ob-
struction and medication-induced AKI have to be excluded in
order to prevent further damage to the kidney.
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