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   Abstract: Background: Genetic interactions involving more than two loci have been thought to affect 
quantitatively inherited traits and diseases more pervasively than previously appreciated. However, the 
detection of such high-order interactions to chart a complete portrait of genetic architecture has not 
been well explored. 
Methods: We present an ultrahigh-dimensional model to systematically characterize genetic main ef-
fects and interaction effects of various orders among all possible markers in a genetic mapping or as-
sociation study. The model was built on the extension of a variable selection procedure, called 
iFORM, derived from forward selection. The model shows its unique power to estimate the magni-
tudes and signs of high-order epistatic effects, in addition to those of main effects and pairwise epistat-
ic effects.  
Results: The statistical properties of the model were tested and validated through simulation studies. 
By analyzing a real data for shoot growth in a mapping population of woody plant, mei (Prunus 
mume), we demonstrated the usefulness and utility of the model in practical genetic studies. The mod-
el has identified important high-order interactions that contribute to shoot growth for mei. 
Conclusion: The model provides a tool to precisely construct genotype-phenotype maps for quantita-
tive traits by identifying any possible high-order epistasis which is often ignored in the current genetic 
literature. 
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1. INTRODUCTION 

 Quantitative traits are very difficult to study because the-
se traits are controlled by many genes that interact in a com-
plicated way [1, 2]. Genome-wide mapping and association 
studies increasingly available due to next-generation high-
throughput genotyping techniques have proven to be useful 
for characterizing gene-gene interactions, coined epistasis, 
that contribute to phenotypic variation [3-5]. Powerful statis-
tical methods have been developed to analyze all possible 
markers simultaneously, from which to search for a complete 
set of epistasis for quantitative traits [6, 7]. The joint analysis 
of all markers is particularly needed to chart an overall pic-
ture of genetic interactions, in comparison with computa-
tionally less expensive marginal analysis.  
 Epistasis reported in the current literature is mostly due 
to interactions between two genes. However, a growing body 
of evidence shows that genetic interactions involving more 
than two loci play a pivotal role in regulating the genetic 
variation of traits [8-11]. For example, in a mapping popula-
tion deriving from crossing two chicken lines, three-locus 
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interactions were detected to determine body weight [12]. A 
mapping study established by two yeast strains identified 
genetic interactions involving five or more loci for colony 
morphology [13]. Other studies have demonstrated that high-
order epistasis is of critical importance in regulating meta-
bolic networks in yeast [14] and Escherichia coli and Sac-
charomyces cerevisiae [15, 16], whereas lower-order (pair-
wise) epistasis may be insufficient to explain metabolic vari-
ation for these organisms. 
 The theoretical models of high-order epistasis have well 
been established by mathematical biologists [17, 18]. These 
models provided a foundation to interpret high-order epista-
sis from a biological standpoint. A few statistical models 
have been derived to estimate and test high-order epistasis in 
case-control designs [6, 19] and population-based mapping 
settings [10], which are suitable for mapping disease traits 
and quantitative traits, respectively [20]. Wang et al. [21] 
developed a Bayesian version of detecting high-order inter-
actions for both continuous and discrete phenotypes. How-
ever, these models were based on a marginal analysis, thus 
less powerful to illustrate a global view of genetic control 
mechanisms due to high-order epistasis.  
 In this article, we deploy a variable selection procedure 
within a genetic mapping or association setting to character-



An Ultrahigh-Dimensional Mapping Model of High-Order Epistatic Networks Current Genomics, 2018, Vol. 19, No. 5    385 

ize the genetic architecture of complex traits composed of 
main effects of individual genes, pairwise epistasis between 
two genes, and three-way epistasis among three genes. The 
model was built on Hao and Zhang’s [22] iFORM, greedy 
interaction screening forward selection developed under the 
marginality principle. This approach pursues forward selec-
tion on the main effects and incorporates interactions into the 
model once the main effects of the corresponding covariates 
are selected. iFORM has theoretically proved to possess sure 
screening property for ultrahigh-dimensional modeling and 
impressive computational efficiency. Haris et al. [23] formu-
lated a general framework for fitting a regression model 
through convex modeling of interactions with strong heredi-
ty. iFORM has been implemented to model the genetic archi-
tecture of main effects and pairwise epistasis due to eQTLs 
for gene transcripts, showing convincing utility to quantita-
tive genetic studies [7]. Here, we extend the implementation 
of iFORM to systematically capture three-way interactions 
that are expressed among all possible markers studied. To 
show the statistical power of the extended model, we per-
formed computer simulation studies. The model was further 
validated through analyzing a real data of genetic mapping 
for shoot growth in a woody plant, mei (Prunus mume). The 
model should be used in any other mapping or association 
studies of quantitative traits. 

2. MODEL 

2.1. Mapping and Association Studies 

 Genetic mapping and association studies are two types of 
designs used to dissect quantitative traits. The former is 
based on a controlled cross derived from distinct parents, 
whereas the latter samples different genotypes from a pool of 
accessions or a natural population. In both types of design, a 
set of individuals are sampled to be phenotyped for quantita-
tive traits of interest and genotyped by molecular markers 
distributed throughout the entire genome. For a particular 
genetic experiment, the number of markers is much larger 
than that of samples, thus, it is impossible to estimate the 
genetic effects of all markers simultaneously using tradition-
al regression models. This issue becomes more intractable 
when we aim to estimate genetic interactions of different 
orders. To tackle the issue of the number of predictors >> the 
number of samples, several variable selection approaches 
have been implemented in association studies. One approach 
is forward selection which was shown to be robust for esti-
mating pairwise interactions of predictors. With sure screen-
ing properties and controlling for false positives, this ap-
proach, named iFORM , performs very well in capturing 
important information in explaining the response variable 
[22, 23]. On top of these nice theoretical properties it is 
computationally efficient by using ordinary least squares 
calculations and only requiring a predetermined set up steps. 
Here, we extended the iFORM procedure to include high-
order genetic interactions to capture more relevant infor-
mation. In the following sections, the notation and model 
set-up will be introduced, followed by the investigation of 
theoretical properties of the model. 

2.2. Epistatic Model 

 Consider a linear model that underlies the true genotype-
phenotype relationship. Assume that the phenotype, as the 

response of the model, is controlled by a set of p SNPs that 
act singly and/or interact with each other. These main and 
interaction effects of markers, i.e., the predictors of the mod-
el, need to be estimated. Let Y = (y1, …, yn)T denote the phe-
notypic values of n samples from a mapping or association 
population. If pairwise and three-way interactions are con-
sidered, the linear model of predicting the phenotypic values 
is expressed as 

! = ! + !!! + !!! +!!! + !                                       (1) 

where ! = !!,… ,!!
!

 is the design matrix that specifies 
the genetic effects of each marker β  = (β1, …, βp); 
! = !!!!

!
  (1 ≤ ! ≤ ! ≤ !) is the design matrix that 

specifies the epistatic effects between two markers, ex-
pressed in !; ! = !!!!!!

!
  (1 ≤ ! ≤ ! ≤ ! ≤ !) is the 

design matrix that specifies the epistatic effects among three 
markers, expressed in !; and !~! 0,!!  is the residual error 
normally distributed with mean zero and variance !!. 
We denote the index sets for the linear, order-2 and order-3 
effects in equation (1), respectively, as 

!! = 1,2,… , ! ,       

!! = !, ! : 1 ≤ ! ≤ ! ≤ ! , 

!! = { !, !, ! : 1 ≤ ! ≤ ! ≤ ! ≤ !}, 
with the significant main, order-2 interaction and order-3 
interaction effect sets being, 

!! = !:!! ≠ 0, ! ∈ !! , 

!! = !, ! :!!" ≠ 0, !, ! ∈ !! , 

!! = !, !, ! :!!"# ≠ 0, !, !, ! ∈ !! . 

 The true sizes of !!, !!  and  !! are !!, !!  and  !!, respec-
tively. There will be a total of 3 sets referred to throughout 
the procedure, the candidate set !, the selection set ! and the 
model set, ℳ. The candidate set is the set of all possible 
predictors at a given step in the selection process. The selec-
tion set contains the predictors that have previously been 
selected from the candidate set from each iteration of the 
procedure. Finally, the model set is the final model that is fit 
from the selection set at the end of the procedure. The BIC is 
used to determine the optimal cutoff for the final model size.  

2.3. iFORM with High-order Epistasis 

 The iFORM procedure is a forward selecting procedure. 
In traditional forward selection the procedure starts with the 
empty set and then iterates through the entire set of possible 
predictors in ! and selects the best predictor and includes it 
in ! at the end of each step. The best predictor can be deter-
mined in many ways but usually is defined by the predictor 
that results in the least amount of error. For our purposes we 
use the residual sum of squares. This continues with select-
ing the best predictor from ! at each step until a designated 
stopping criterion is met or until some information criterion 
is met. Common information criteria used for selecting pre-
dictors to be in ℳ are AIC, BIC, !! and Mallow’s !! statis-
tic. 
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 The iFORM procedure for high-order epistatic detection 
parallels the forward selection procedure, but ! will grow 
dynamically with the creation of order-2 and order-3 interac-
tion effects between main effects that were included from 
previous iterations of the procedure. There are three steps to 
the model selection. The first step is to initialize the 3 sets 
mentioned above. The sets, !  !"#  ℳ are set to the empty set 
while the candidate set, !, is first set to !!, all the main ef-
fects. The next step starts the forward selection procedure 
selecting predictors from  !. The selected predictor will be a 
main effect at the first step. At subsequent steps, after inter-
action effects are included, selected predictors could be ei-
ther be a main genetic effect, pairwise or three-way genetic 
interaction effect. The final step involves repeating the se-
cond step until a designated stopping criterion is met. This 
can be a certain amount of predictors to be considered in the 
final model, or it can be based off of other factors such as the 
sample size. The designated stopping criterion will be denot-
ed as d. For our purposes we use ! as a function of the sam-
ple size, !   =   !/ !"!! ! . The procedure will run up until d 
iterations, and the optimal model will then be constructed 
from the selection set. This is done by an information criteri-
on. Here we used the Bayesian Information Criterion pro-
posed by Chen and Chen (2008) denoted as the !"!!. This 
was derived by them to control the false discovery rate in 
high dimensional model selections. 
!"!! ℳ = log !ℳ

! + !!! ℳ ∗ log ! + 2 ∗ log !∗         (2) 

 Once the selection procedure is done and there are d pre-
dictors in the selection set the BIC is used to determine the 
cutoff value for the optimum number of predictors in the mod-
el set. Then linear regression is performed on the model set. 

 Two guiding principles are used to help dynamically select 
the main effects and epistasis effects throughout the proce-
dure. The first is the marginality principle, which states that an 
effect will not be removed from the model once it has been 
selected. A previous selected effect may become marginal by 
the inclusion of subsequent effects. This especially can be the 
case when an interaction effect is included. One of the parent 
effects may become less significant or even not significant at 
all by considering both in the model. The next principle we 
state as the heredity principle but has also been referred to in 
other work as the hierarchy principle [24, 25]. There are two 
cases of the heredity principle considered. The strong case 
would not allow for an order-2 epistasis effect to be included 
into the candidate set without both the parent main effects that 
make up the interaction are first included in the model. More 
formally this can be written as, !!" ≠ 0  only  if  !! ,!! ≠
0  ∀  1 ≤ !, ! ≤ !. Similarly with order-3 epistasis, you would 
need to have all order-2 epistatic parent effects included in the 
model before including as a candidate predictor. This would 
translate to, !!"# ≠ 0  only  if  !!" , !!" , !!" ≠ 0  ∀  1 ≤ !, !, ! ≤ !. 
The weak case relaxes the need for all parent effects to be 
included in the model before considering the epistatic effects 
as candidates. Only one parent effect would be required to be 
in the model for candidates to be included. In the scenario 
with order-2 epistatic effects we would need, !!" ≠
0  only  if  !!! +,!!! ≠ 0  ∀  1 ≤ !, ! ≤ ! and with order-3 epi-
static effects to be considered as a candidate we would need, 
!!"# ≠ 0  only  if  !!"! +  !!! ≠ 0  ∀  1 ≤ !, !, ! ≤ !. 

 The heredity (hierarchy) principle help reduce the search 
space by making the assumption that previously selected 
main effects would be involved in the interaction effects. By 
considering this principle it substantially reduces the search 
space making this feasible for ultra-high dimensional situa-
tions. The weak version of the heredity principle for three-
way interactions states that at least one of the main effects 
needs to be selected into the model to consider an interaction 
effect that contains that predictor. Considering a moderately 
high set of predictors say p = 5000, if trying to include all 
pairwise interactions upfront, will make the candidate set be 
as high as 12,498,000. This alone could exceed most ram 
requirements of standard computers. This is before even 
stepping up to three-way interactions. The weak heredity 
principle would decrease the candidate set substantially. As-
suming a sample size of n = 200, would give a cut off of 
!/ !"!! !   = 200/ !"!!(200)   = 26 steps in the proce-
dure. The 5000 original predictors plus up to 5000 epistatic 
predictors included in the candidate set at each step in the 
procedure would give a maximum of approximately 135,000 
candidate predictors. This would give a maximum of approx-
imately 135,000 candidate predictors. This gives a 100 fold 
decrease in the candidate set. This could substantially make 
ultra-high dimensional analysis more feasible and also speed 
it up in the process. This is the weak case. If considering the 
strong case the decrease in candidate space is even more 
apparent. Aside from the efficiency by lowering the search 
space of the candidate set, the heredity principle is usually 
taken into account by researchers when selecting models 
involving the consideration for interaction effects. 

3. THEORETICAL PROPERTIES 

 The theoretical properties of the iFORM procedure with 
high-order epistasis follow closely with the forward selection 
procedure. Hao and Zhang [22] summarize forward selection 
nicely as follows. At each step, the response is regressed on 
the most correlated covariate, and the residual is calculated 
and used as the new response in next step. After the most 
correlated covariate (say, X1) is selected, all other covariates 
are regressed on X1, and then the covariates are substituted 
by the corresponding normalized residuals, which are used 
as the new covariates in next step. By viewing forward selec-
tion in this sense the computational complexity of the proce-
dure depends upon the size of the candidate set. The candi-
date set in the iFORM’s case does grow dynamically at each 
step, by at most the number of predictors currently selected 
in ! for each step. If we denote the current size of the candi-
date set as m then each iteration of the procedure grows with 
complexity of O(nm), where n is the sample size. Leaving 
the selection unrestricted we would not be able to fit more 
than n predictors for a linear model and therefore n would be 
the most main effects that would be able to be selected. Con-
sidering the weakest form of the heredity principle at the 
current iteration there would be at most ! + !(!!!)(!!!)

!
 pre-

dictors in the candidate set. This would make the total com-
plexity of the selection procedure to be  !" ! ! + ! ! −

1 ! − 2 = ! !!! + !! . This makes the total complexity 
grow linearly as p grows. 
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 The theoretical properties of the iFORM procedure show 
sure screening properties [26]. By this we mean that all the 
important predictors, whether that is a main effect or epistat-
ic effect will be selected with probability tending to 1. This 
is important to capture as much of the signal as possible 
through all the noise that comes with p >> n or ultra-high 
dimensional situations. It is also important not to ‘over-fit’ 
the model with unnecessary predictors that actually explain 
more noise in the data that the model is being fitted on than 
the actual signal you would like to pick up on.  

 To show the property from above the following condi-
tions would need to be met. Hao and Zhang [22] showed 
how under these conditions sure screening properties for 
interaction models like FS2 and iFORM are satisfied. This 
also applies to three-way interaction models like FS3 and 
iFORM with higher order epistasis, like we do with the high-
order epistasis model. The following assumptions need to be 
met for these conditions. The first is that the 
! = !!,… ,!!

!are jointly and marginally normal with in-
dependent normally distributed error. Next we would need 
the eigenvalues of the covariance matrix to be positive and 
bounded by two constants 0 < !!"# < 1 < !!"# < ∞, such 
that !!"# < !!"# Σ ≤ !!"# Σ < !!"#/4. Also, the 
genetic effects, ! needs a certain level of signal strength. 
This we would assume to be ! ≤ !! for some positive 
constant!!   !"#  !!"# ≥ !"!!!!"# ,!"#ℎ  !!"# = min  (!). 
Lastly, there needs to be a certain level of sparsity to the 
number of important effects. Denoting the total number of 
important effects as !!, and positive constants !, !!  !"#  ! 
we would need log ! ≤ !!! ,!! ≤ !!!!   !"#  ! + 6!! +
12!!"# <

!
!
. The conditions stated are accepted standards in 

the literature when studying ultra-high dimensional situa-
tions [22, 26, 27]. 

4. SIMULATION STUDIES 

 To study the numeric properties of the selection proce-
dure, simulation studies were conducted. Data was generated 
using R 3.1. The !!′! were all independently and identically 
distributed realizations generated from !"#$%"&'(0.5) and 
the true effects for both the main and epistatic effects were 
included following different heredity scenarios. The pheno-
type was generated from the linear model setup described 
previously. To capture relevant data structures, there were 
several different scenarios considered. For each scenario 50 
predictors were generated with a sample size of 300 observa-
tions. The data was split into training and a testing set to 
study both the fitted properties of the model as well as the 
generalizability of the model. There were a variety of metrics 
obtained to assess the suitability of each model utilized in the 
simulations. The first metrics that were taken into account 
were the rates for the true positives, false positives, true neg-
atives and false negatives. Since we have a variety of levels 
to each of the models each of the rates were evaluated for the 
different hierarchical levels. Some of the models only have 
main effects and/or two-way interactions, therefore the rates 
were only given for the area applicable to model and the rest 
were reported as NA. The generalizability of the models was 

also assessed by withholding 100 random observations as a 
test set. All the data was generated from the same scenario 
and then 100 of the observations were randomly selected and 
stored for out of sample measures. The data was generated 
from the given scenario and randomly split before assessing 
the models. The exact same training and testing sets were 
used to fit and assess each of the models in order to make as 
fair of a comparison as possible. Each scenario was replicat-
ed 100 times and measures were averaged over all replicates. 
The two measures assessed were mean square error and the 
coefficient of determination. The analogous in-sample 
measures were also calculated for comparison. The models 
being compared in the simulation studies are Forward Selec-
tion, Forward Selection with all pairwise interactions (FS2), 
Forward Selection with all three-way interactions (FS3), 
iFORM strong heredity two-way, iFORM weak heredity 
two-way, iFORM strong heredity three-way, iFORM weak 
heredity three-way, Glinternet [25], and finally hierNet [24]. 
 Covering a variety of settings the following scenarios 
were evaluated and compared. 
Scenario 1: 
! = !!!! + !!!! + !!!! + !!!! + !!,!!!!! + !!,!!!!! + !!"!!!!

+ !!,!!!!! + !!,!,!!!!!!! 

 The first is where the data were generated from the inter-
actions of the model follow a strong heredity (hierarchy) 
with sigma = 1. Notice we have all parent effects of the or-
der-2 epistatic effects and also all parent effects of the order-
3 epistatic effect are also in the model.  
Scenario 2: 
! = !!!! + !!!! + !!!! + !!!! + !!,!!!!! + !!,!!!!! + !!,!!!!!

+ γ!,!!!!! + !!,!,!!!!!!! 

 The second, the data is generated to have the interactions 
in follow a weak heredity (hierarchy) with sigma = 1. In this 
scenario the main effect of !! is not included in the model 
but you can see it is part of both an order-2 and the order-3 
effect.  
Scenario 3: 
! = !!!! + !!!! + !!!! + !!!! + !!,!!!!! + !!,!!!!!

+ !!,!!!!! + !!,!!!!! + !!,!,!!!!!!!!! 

 The third scenario is anti-heredity (hierarchical) where 
the interaction effects are only among predictors not present 
as main effects in the model. We still have main effects and 
epistatic effects in the model. However, the parent effects of 
the interactions are not the main effects included in the mod-
el. 
Scenario 4: 
! = !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!,!!!!!!! 

 Finally the last scenario only generates data that come 
from pure interactions between predictors with no main ef-
fects present in the model used to generate the data.  
 For the first scenarios where the truth obeys strong hered-
ity where all of the parent main effects need to be selected 
before interactions are selected. The models that appeared to 
do the best in this simulation were forward selection on all 
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three-way interactions included from the beginning (FS3), 
iFORM three-way weak heredity and iFORM three-way 
strong heredity (Table 1). The FS3 took over a 40 fold in-
crease in time to run. The other comparison models, glinter-
net and hierNet seemed to perform well on the training set 
but not as well on the testing set. This would indicate that 
some overfitting was occurring with those types of regulari-
zation models. The next scenario was when the truth obeys 
weak heredity. With the underlying model obeying the weak 
heredity, the iFORM tree-way strong heredity version 
dropped off in performance slightly. However, the FS3 and 
iFORM three-way remained as top performers (Table 2). 
The third scenario assessed was from an underlying model 
with an anti-heredity structure. Both main effects and inter-
action effects were used in the model to generate the data. 
However, the interactions included in the model were of 
combinations of main effects in the candidate set, which 
were not in the model. The iFORM seems to drop in perfor-
mance with this scenario (Table 3). This is to be expected 
because it is in direct violation of the underlying assump-
tions of the model hierarchy. Even with these violations of 
the heredity it still performed reasonably well. Lastly, mak-
ing the scenario a little more extreme, the underlying model 
generating the data was only of interactions. There were no 
main effects included in the model. The results of this sce-
nario are shown in Table 4. Performance appeared to drop 
off for all models explored in the simulation.  
 In the scenarios where the data was assumed to follow 
some form of a hierarchical structure for the epistasis effects 
the iFORM procedure for higher-order epistasis effects ap-
peared to perform the best. Not only did it result in selecting 
the correct model, the false positive rate was also among the 
lowest. The out of sample error was also among the lowest 
between each of the models compared. With the procedure 
using OLS calculations, it also performed the fastest out of 
the models including epistasis effects. All of the combined 
show the promise of the iFORM procedure for GWAS type 
studies. With the other scenarios, the underlying structure of 
the data does not follow a typical intuition about the struc-
ture of data in biology.  

5. WORKED EXAMPLE 

 We validated the biological usefulness of the model by 
analyzing mapping data for a woody plant, mei (Prunus 
mume). Originated in China, mei has been cultivated for its 
ornamental flowers for thousands of years [28, 29]. Its many 
desirable properties, such as cold-hardiness, colors and fla-
vors, are appraised as a symbol of persistence and beauty in 
Chinese culture. Recent sequencing of its genome has made 
it an ideal model system to study the genetics and evolution 
of woody plants [30]. To improve the growth rigor and form 
of mei important to its ornamental value, a cross was made 
between two distinct cultivars, Fenban (female parent) and 
Kouzi Yudie (male parent), aimed to select superior geno-
types from hybrids. To the end, an F1 mapping population of 
190 hybrids was established and further genotyped for 4,934 
SNP markers over eight linkage groups which correspond to 
8 chromosomes across the entire genome. 
 To test genotypic differences in growth performance, 
each of these hybrids was grafted on an established root 

stock using multiple budding scions. Next spring, buds on 
the scions sprouted into shoots. The lengths and diameters of 
10 randomly selected shoots were measured once every two 
weeks during an entire growth season from March to Octo-
ber. It was found that both shoot length and diameter growth 
was well fitted to the three-parameter growth equation ex-
pressed as 

!(!)   =   !/[1 + !exp(−!")],                                              (3) 
where g(t) is the amount of shoot growth at time t, a is the 
asymptotic value of growth when time tends to be infinite, b 
is a parameter that reflects the amount of growth at time 0, 
and r is the relative growth rate. These three parameters de-
termine the overall form of growth curve jointly, although 
they function differently. Thus, by estimating these parame-
ters for individual hybrids using a nonlinear least squares 
approach, we can draw the growth curve of each hybrid. Dif-
ferences in growth curve among hybrids may be controlled 
by specific genes or Quantitative Trait Loci (QTLs). Alt-
hough tremendous efforts have been made to map growth 
QTLs and their epistasis [31-33], none has characterized the 
contribution of high-order epistasis although it has been 
thought to regulate growth processes.  
 By treating the estimates of growth parameters for individ-
ual hybrids as “phenotypic traits,” we used iFORM to map 
growth QTLs and QTL-QTL interactions. Of 4,934 markers, 
2,100 are the testcross markers at which markers are segregat-
ing due to only one heterozygous parent and 2,834 are the 
intercross markers whose segregation results from the hetero-
zygosity of both parents. For a testcross marker, there is only 
one main genetic effect, whereas an intercross marker contains 
additive and dominant main effects. Thus, a pair of testcross 
markers produces only type of epistasis, but a pair of inter-
cross markers forms four types of epistasis, additive × addi-
tive, additive × dominant, dominant × additive and dominant × 
dominant. For two markers with one from the testcross and the 
other from the intercross, there are two types of epistasis, i.e., 
additive × additive and additive × dominant [34]. The number 
and type of epistasis can be characterized for any three mark-
ers accordingly. Here, the iFORM was implemented in a way 
that allows both marker markers to be modeled and analyzed 
simultaneously. 
 To demonstrate the possible importance of high-order 
epistasis, we analyze the data by assuming that growth pa-
rameters are controlled by low-order epistasis only and by 
both low- and high-order epistasis, respectively. The weak 
heredity (hierarchical) was used to screen every SNP and 
possible interaction of the main effects selected and the rest 
of the SNPs left in the candidate set. It was not restricted to 
the strong case where both main effects had to be in the 
model for the interaction to be considered. For the pairwise 
epistatic model, this grew the candidate set to almost 20,000 
predictors to choose from. It turned out that 5 predictors 
were chosen, i.e., four main additive effects of markers, 
AATTC_nn_np_2517, AATTC_nn_np_2815, CATG_nn_np 
_3479 and CATG_nn_np_1284 and one epistatic effect due 
to markers AATTC_nn_np_2815 and AATTC_lm_ll_3034, 
for growth parameter r of shoot length (Table 5). The main 
effect of marker AATTC_lm_ll_3034 was detected to be 
insignificant. These main and epistatic effects together ex-
plained 32.41% of the total variance of parameter r. 
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Table 1. Simulation results when the truth obeys strong heredity. 

! = !!!! + !!!! + !!!! + !!!! + !!,!!!!! + !!,!!!!! + !!"!!!! + !!,!!!!! + !!,!,!!!!!!! 

Model T1 tpr T1 fpr T2 tpr T2 fpr T3 tpr T3 fpr 
Train 
MSE 

Train 
Rsq 

Test 
MSE 

Test  
Rsq 

Model 
Size 

Run 
Time 

Forward 
select 

1.00 0.001 0.000 0.000 0.000 0.000 3.330 0.727 3.490 0.711 4.04 0.757 

Iform 
weak(2) 

1.00 0.000 0.000 0.000 0.000 0.000 1.128 0.907 1.252 0.895 8.08 5.896 

Iform 
strong(2) 

1.00 0.000 0.000 0.000 0.000 0.000 1.102 0.909 1.198 0.900 8 1.557 

Forward 
select(2) 

1.00 0.000 0.000 0.000 0.000 0.000 1.086 0.910 1.198 0.900 8.02 25.481 

Forward 
select(3) 

1.00 0.000 0.000 0.000 0.000 0.000 0.992 0.918 1.121 0.906 8.56 471.88 

Iform 
weak(3) 

1.00 0.000 0.000 0.000 0.000 0.000 1.020 0.916 1.135 0.905 9.13 11.346 

Iform 
strong(3) 

1.00 0.000 0.000 0.000 0.000 0.000 0.968 0.920 1.060 0.911 8.95 1.872 

glinternet 1.00 0.441 1.000 0.018 0.000 0.000 1.246 0.898 1.446 0.880 29.9 208.17 

hierNet 1.00 0.303 1.000 0.024 0.000 0.000 0.906 0.925 1.421 0.882 40.99 27.521 

Oracle NA NA NA NA NA NA 0.953 0.921 1.050 0.912 9 NA 

Table 1: shows simulation results under the first simulation scenario described.  Results for the true positive rate(tpr) and ralse positive rate(fpr) are given for each level of hierarchy 
in the effects (T1 - main effects, T2 - order2 and T3 - order3). The Mean Square Error (MSE) is given for both the training and testing set generated.  The coefficient of determination 
(Rsq) is also give for both training and testing set for comparison across models.  The average final model size and the average run time in seconds of each model are presented as well. 
 
Table 2. Simulation results when the truth obeys weak heredity. 

! = !!!! + !!!! + !!!! + !!!! + !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!,!!!!!!! 

Model T1 
tpr T1 fpr T2 tpr T2 fpr T3 tpr T3 fpr Train 

MSE 
Train 
Rsq 

Test 
MSE 

Test 
Rsq 

Model 
Size 

Run 
Time 

Forward 
select 1.000 0.001 0.000 0.000 0.000 0.000 3.326 0.731 3.480 0.716 4.03 4.355 

Iform 
weak(2) 

1.000 0.000 0.000 0.000 0.000 0.000 1.119 0.910 1.200 0.901 8.07 8.342 

Iform 
strong(2) 1.00 0.008 0.000 0.000 0.000 0.000 1.580 0.872 1.707 0.859 7.54 2.952 

Forward 
select(2) 

1.00 0.000 0.000 0.000 0.000 0.000 1.083 0.912 1.167 0.904 8 38.872 

Forward 
select(3) 1.00 0.000 0.000 0.000 0.000 0.000 0.979 0.921 1.089 0.910 8.58 569.98 

Iform 
weak(3) 1.00 0.000 0.000 0.000 0.000 0.000 1.003 0.919 1.079 0.911 9.03 13.054 

Iform 
strong(3) 

1.00 0.008 0.000 0.000 0.000 0.000 1.578 0.872 1.705 0.859 7.58 2.787 

Glinternet 1.00 0.531 1.000 0.020 0.000 0.000 0.906 0.927 1.425 0.883 33.18 29.975 

hierNet 1.00 0.343 1.000 0.027 0.000 0.000 0.856 0.931 1.412 0.884 43.43 33.302 

Oracle NA NA NA NA NA NA 0.940 0.924 1.034 0.915 9 NA 

Table 2. shows simulation results under the second simulation scenario described. Results for the true positive rate(tpr) and ralse positive rate(fpr) are given for each level of hierarchy 
in the effects (T1 - main effects, T2 - order2 and T3 - order3). The Mean Square Error (MSE) is given for both the training and testing set generated. The coefficient of determination 
(Rsq) is also give for both training and testing set for comparison across models.  The average final model size and the average run time in seconds of each model are presented as well. 
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Table 3. Simulation results when the truth is anti-heredity. 

! = !!!! + !!!! + !!!! + !!!! + !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!,!!!!!!!!! 

Model T1 
tpr T1 fpr T2 tpr T2 fpr T3 tpr T3 fpr Train 

MSE 
Train 
Rsq 

Test 
MSE 

Test 
Rsq 

Model 
Size 

Run 
Time 

Forward 
select 1.00 0.000 0.000 0.000 0.000 0.000 3.284 0.729 3.510 0.714 4.02 1.005 

Iform 
weak(2) 1.00 0.004 0.000 0.000 0.000 0.000 3.140 0.741 3.435 0.719 4.77 7.866 

Iform 
strong(2) 

1.00 0.000 0.000 0.000 0.000 0.000 3.284 0.729 3.510 0.714 4.02 2.386 

Forward 
select(2) 1.00 0.000 0.000 0.000 0.000 0.000 1.081 0.911 1.171 0.904 8.04 29.095 

Forward 
select(3) 

1.00 0.000 0.000 0.000 0.000 0.000 0.989 0.918 1.095 0.910 8.59 548.62 

Iform 
weak(3) 1.00 0.003 0.000 0.000 0.000 0.000 3.155 0.739 3.448 0.719 4.57 13.216 

Iform 
strong(3) 1.00 0.000 0.000 0.000 0.000 0.000 3.284 0.729 3.510 0.714 4.02 2.703 

glinternet 1.00 0.710 1.000 0.029 0.000 0.000 0.844 0.931 1.578 0.871 44.59 26.564 

hierNet 1.00 0.858 1.000 0.085 0.000 0.000 0.307 0.975 2.216 0.819 119.73 3.417 

Oracle NA NA NA NA NA NA 0.952 0.921 1.031 0.915 9 NA 

Table 3. shows simulation results under the third simulation scenario described. Results for the true positive rate(tpr) and ralse positive rate(fpr) are given for each level of hierarchy 
in the effects (T1 - main effects, T2 - order2 and T3 - order3). The Mean Square Error (MSE) is given for both the training and testing set generated. The coefficient of determination 
(Rsq) is also give for both training and testing set for comparison across models. The average final model size and the average run time in seconds of each model are presented as well. 
 
Table 4. Simulation results when the truth is constructed of pure interactions. 

! = !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!!!!! + !!,!,!!!!!!! 

Model T1 
tpr T1 fpr T2 tpr T2 fpr T3 tpr T3 fpr Train 

MSE 
Train 
Rsq 

Test 
MSE 

Test 
Rsq 

Model 
Size 

Run 
Time 

Forward 
select NaN 0.020 0.000 0.000 0.000 0.000 3.316 0.025 3.445 -0.039 1 1.177 

Iform 
weak(2) 

NaN 0.028 0.000 0.000 0.000 0.000 3.007 0.115 3.181 0.040 2.27 5.840 

Iform 
strong(2) NaN 0.021 0.000 0.000 0.000 0.000 3.294 0.031 3.429 -0.034 1.08 2.081 

Forward 
select(2) 

NaN 0.000 0.000 0.000 0.000 0.000 1.117 0.669 1.170 0.644 4.01 26.396 

Forward 
Select(3) NaN 0.000 0.000 0.000 0.000 0.000 1.005 0.703 1.081 0.671 4.62 530.36 

Iform 
weak(3) NaN 0.025 0.000 0.000 0.000 0.000 3.043 0.106 3.209 0.032 1.86 9.461 

Iform 
strong(3) 

NaN 0.021 0.000 0.000 0.000 0.000 3.294 0.031 3.429 -0.034 1.08 2.265 

glinternet NaN 0.571 1.000 0.017 0.000 0.000 1.002 0.699 1.445 0.561 27.53 145.08 

hierNet NaN 0.853 1.000 0.045 0.000 0.000 0.672 0.802 1.758 0.467 92.52 4.491 

Oracle NA NA NA NA NA NA 0.968 0.713 1.022 0.689 5 NA 

Table 4. shows simulation results under the fourth simulation scenario described. Results for the true positive rate(tpr) and ralse positive rate(fpr) are given for each level of hierarchy 
in the effects (T1 - main effects, T2 - order2 and T3 - order3). The Mean Square Error (MSE) is given for both the training and testing set generated. The coefficient of determination 
(Rsq) is also give for both training and testing set for comparison across models. The average final model size and the average run time in seconds of each model are presented as well. 
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Table 5. The detection of epistasis for the relative growth rate (r) of shoot length in the full-sib family of mei tree by a low-order 
epistatic model. 

Coefficient Estimate SE T-value P-value 

(Intercept) 0.18285 0.07613 2.402 0.0174 * 

AATTC_nn_np_2517_a 0.40013 0.06509 6.147 5.13e-09 *** 

AATTC_nn_np_2815_a 0.15792 0.06837 2.310 0.0221 * 

CATG_nn_np_3479_a 0.23433 0.05285 4.434 1.63e-05 *** 

CATG_nn_np_1284_a 0.22200 0.05313 4.179 4.61e-05 *** 

AATTC_nn_np_2815_a×AATTC_lm_ll_3034_a 0.45783 0.09244 4.953 1.71e-06 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.3504 on 176 degrees of freedom 
Multiple R-squared: 0.3428, Adjusted R-squared: 0.3241  
F-statistic: 18.36 on 5 and 176 DF, p-value: 1.189e-14 

 When opening up the iFORM procedure to the possibility 
to creating higher order interactions to be placed into the 
candidate set, a more complete picture of the phenotypical 
variation was revealed. The amount of predictors included in 
the final model grew to 12, with one of them being three-
way interactions among markers AATTC_nn_np_2815, 
AATTC_lm_ll_3034 and AATTC_nn_np_1615. The adjust-
ed R2 jumped up to over 70% (Table 6). This astonishing 
jump in predictive power is an exemplar case as to the im-
portance of higher-order interactions in genetic models. Not 
only did higher-order interactions become one of the most 
significant predictors in the model selected, it also allowed 
for other order-two interactions and main effects to be kept 
in the model that were previously left out. At the next step of 
the iteration the new candidate effect was conditioned on 
everything previously selected. With the conditional effect of 
the higher-order interaction it enabled for other lost effects to 
be modeled as well.  
 The purpose of the mei genetic project is to study the 
genetic control of shoot growth form. Here, we further ana-
lyze how three-way interactions detected by our model affect 
growth form. Assume that there are three testcross markers, 
A (with two alleles A, a), B (with two alleles B, b), and C 
(with two alleles C, c), which interact jointly to affect shoot 
growth. The three markers form eight genotypes AABBCC, 
AABBCc, AABbCC, AABbCc, AaBBCC, AaBBCc, AaBbCC 
and AaBbCc whose genotypic means at time t are partitioned 
into different components, respectively, expressed as 
µ111(t) = µ(t) + α1(t) + α2(t) + α3(t) + i12(t) + i13(t) + i23(t) + i123(t) 

µ112(t) = µ(t) + α1(t) + α2(t) – α3(t) + i12(t) – i13(t) – i23(t) – i123(t) 

µ121(t) = µ(t) + α1(t) – α2(t) + α3(t) – i12(t) + i13(t) – i23(t) – i123(t) 

µ122(t) = µ(t) + α1(t) – α2(t) – α3(t) – i12(t) – i13(t) + i23(t) + i123(t) 

µ211(t) = µ(t) – α1(t) + α2(t) + α3(t) – i12(t) – i13(t) + i23(t) – i123(t) 

µ212(t) = µ(t) – α1(t) + α2(t) – α3(t) – i12(t) + i13(t) – i23(t) + i123(t) 

µ221(t) = µ(t) – α1(t) – α2(t) + α3(t) + i12(t) – i13(t) – i23(t) + i123(t) 

µ222(t) = µ(t) – α1(t) – α2(t) – α3(t) + i12(t) + i13(t) + i23(t) – i123(t) 

                                                                                             (4) 

where µ(t) is the population mean at time t; α1(t), α2(t) and 
α3(t) are the genetic effects of markers A, B and C at time t, 
respectively; i12(t), i13(t) and i23(t) are the pairwise epistatic 
effects between markers A and B, A and C and B and C at 
time t, respectively; and i123(t) is the three-way epistatic ef-
fect among three the markers at time t. From the above equa-
tions, we solve the pairwise and three-way epistatic effects 
as 

i12(t) = 8
1 [(µ111(t) + µ112(t) + µ221(t) + µ222(t)) – (µ121(t) + µ122(t) + µ211(t) + µ212(t))] 

i13(t) = 8
1 [(µ111(t) + µ121(t) + µ212(t) + µ222(t)) – (µ112(t) + µ122(t) + µ211(t) + µ221(t))] 

i23(t) = 8
1 [(µ111(t) + µ122(t) + µ211(t) + µ222(t)) – (µ112(t) + µ121(t) + µ212(t) + µ221(t))] 

 i123(t) = 8
1 [(µ111(t) + µ122(t) + µ212(t) + µ122(t)) – (µ112(t) + µ121(t) + µ211(t) + µ222(t))]   

                                                                                                                                     (5) 
 Each genotype can draw a growth curve using its growth 
parameters (a, b, r) estimated from raw data, from which we 
can chart the curves of pairwise and three-way epistatic ef-
fects using equation (4). Three markers AATTC_nn_ 
np_2815 (AA/Aa), AATTC_lm_ll_3034 (BB/Bb) and 
AATTC_nn_np_1615 (CC/Cc) that produce a significant 
three-way interaction for parameter x of shoot length display 
pronounced differences in growth curve (Fig. 1). The epista-
sis of low- and high-order performs differently to affect 
growth form, with three-way interactions playing a more 
remarkable role than pairwise epistasis (Fig. 2). 
 The figures display the variation between each of the 
growth curves for the eight combinations of the three marker 
genotypes focused on Fig. (1). Differences of each of the 
growth parameters can be observed when studying the fig-
ures. There is clear separation in the shoot length that is ob-
served at the end of the 16 weeks. This difference can be 
visually grouped into four clusters that show the effect a 
genotype combination can have on the asymptotic growth 
parameter, a. Another noticeable different between the 
curves displayed is the rate at which the growth developed. 
At the earlier weeks of development you can see some of the 
genotype combinations grew faster, manifesting in a steeper
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Table 6. The detection of epistasis for the relative growth rate (r) of shoot length in the full-sib family of mei tree by a high-order 
epistatic model. 

Coefficient Estimate SE T-value P-value 

(Intercept) 0.16859 0.05801 2.906 0.00415 ** 

AATTC_nn_np_2517_a 0.27773 0.04396 6.318 2.27e-09 *** 

AATTC_nn_np_2815_a 0.26382 0.05295 4.983 1.54e-06 *** 

CATG_nn_np_3479_a 0.20767 0.03467 5.990 1.23e-08 *** 

CATG_nn_np_1284_a 0.04522 0.04265 1.060 0.29055 

AATTC_nn_np_2815_a×AATTC_lm_ll_3034_a 1.82572 0.17925 10.185 < 2e-16 *** 

AATTC_nn_np_2815_a×AATTC_hk_hk_278_a 0.25935 0.03888 6.671 3.48e-10 *** 

CATG_lm_ll_3153_a 0.14877 0.03491 4.262 3.36e-05 *** 

CATG_nn_np_1284_a×AATTC_nn_np_554_a 0.22994 0.05104 4.505 1.23e-05 *** 

AATTC_nn_np_2815_a.AATTC_lm_ll_3034_a×AATTC_nn_np_1615_a -1.51714 0.19060 -7.960 2.39e-13 *** 

AATTC_nn_np_2815_a×AATTC_nn_np_929_a -0.30805 0.05477 -5.624 7.57e-08 *** 

AATTC_hk_hk_479_d 0.16044 0.03443 4.660 6.37e-06 *** 

AATTC_nn_np_2517_a×CATG_hk_hk_648_a 0.14537 0.02840 5.118 8.33e-07 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.2268 on 169 degrees of freedom 
Multiple R-squared: 0.7356, Adjusted R-squared: 0.7168  
F-statistic: 39.19 on 12 and 169 DF, p-value: < 2.2e-16 
 

 
Fig. (1). Growth curves of shoot length in mei drawn from estimated growth parameters at three loci of significant high-order epistasis. 

slope and other genotypes had shallower slopes. All of these 
visually show what was picked up on when modeling the 
shoot length growth and the impact of the higher-order inter-
actions between the genotypes have on such growth. By 
solving the system of linear equations in (5) we can dissect 
the epistatic effects of the genotype combinations. The ef-
fects over time are displayed (Fig. 2) and in this you can see 
the non-linear influence of the interactions between the 
markers included.  

DISCUSSION AND CONCLUSION 

 Genetic interactions have been thought to contribute to a 
significant portion of genetic variance for quantitative traits 
of critical importance to evolutionary biology, agriculture 
and medicine [1, 2]. While pairwise interactions have been a 
major focus of quantitative genetic studies, there has been 
growing evidence that genetic interactions involving three or 
more loci play an important role in affecting the phenotypic 
differentiation of traits [9-14]. Because of its complexity due 
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to a network of interactions, the detection of high-order epi-
stasis is extremely difficult [2]. More importantly, interpreta-
tion of high-order epistasis and its contribution to overall 
genetic architecture can be better made by jointly analyzing 
all possible low- and high-order interactions among genes. 
This has added an extra challenge to statistical modeling and 
detection of this important phenomenon. Thanks to the re-
cent development of statistical models for high-dimensional 
variable selection, we have reformed a statistical modeling 
framework for detecting high-order epistasis by focusing on 
three-way interactions. 
 Our model extends Hao and Zhang’s [22] forward selec-
tion-based algorithm iFORM that has proven to be robust 
and efficient for computing and detecting two-way interac-
tions between predictors (including continuous predictors). 
A favorable property of iFORM is its capacity to detect in-
teractions even if the dimension of predictors is extremely 
high relative to a sample size used. The fundamental as-
sumption used by iFORM is the heredity principle, i.e., the 
existence of interactions between a pair of variables that each 
has at least weak main effects. After extending it to charac-
terize three-way interactions, this assumption can be relaxed 
for the third variable; i.e., even if there is no detectable main 
effect for the third marker, then extended iFORM can still 
detect the three-way interaction. This property may explain 
the reason why high-order epistatic model outperforms low-
order epistatic model, as demonstrated from the detection of 
significant genetic interactions in a real data of a woody 
plant, mei (Prunus mume). It was found from a recent study 
that loci participating in high-order genetic interactions may 
not individually have measurable effects [35]. As a result, 
our model can be used as a general tool to detect genetic 
interactions of various orders and, therefore, elucidate the 
overall picture of genetic architecture by capturing the so-
called missing heritability. 
 The model was investigated by simulation studies whose 
result help users to determine an optimal design of mapping 

or association studies in terms of sample size, phenotyping 
precision and the number of markers. Its application to P. 
mume genetic mapping leads to the detection of key loci and 
their interactions expressed at the low- and high-order levels 
for the growth form of shoots. The curve of three-way epi-
stasis on mei shoot length growth was observed to increase 
exponentially during the first five weeks of shoot sprouting 
and become stable after five weeks. Such integration of the 
model into growth equation shed light on the developmental 
mechanisms of growth processes through epistasis, a ques-
tion that has evoked a tremendous interest of researchers 
globally in the area of evolutionary developmental biology 
[36-38]. We have created an R package that has implement-
ed the model which adds a function to allow epistasis of any 
orders to be searched. The package can be uploaded at 
http://statgen.psu.edu/software/ and will be made available 
through CRAN (Comprehensive R Archive Network). 
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Fig. (2). Curves of epistatic effects on shoot length growth in mei at three significant loci. 
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