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Abstract: Upon invasion by foreign pathogens, specific antibodies can identify specific foreign
antigens and disable them. As a result of this ability, antibodies can help with vaccine production
and food allergen detection in patients. Many studies have focused on predicting linear B-cell
epitopes, but only two prediction tools are currently available to predict the sub-type of an epitope.
NIgPred was developed as a prediction tool for IgA, IgE, and IgG. NIgPred integrates various
heterologous features with machine-learning approaches. Differently from previous studies, our
study considered peptide-characteristic correlation and autocorrelation features. Sixty kinds of
classifier were applied to construct the best prediction model. Furthermore, the genetic algorithm
and hill-climbing algorithm were used to select the most suitable features for improving the accuracy
and reducing the time complexity of the training model. NIgPred was found to be superior to
the currently available tools for predicting IgE epitopes and IgG epitopes on independent test sets.
Moreover, NIgPred achieved a prediction accuracy of 100% for the IgG epitopes of a coronavirus
data set. NIgPred is publicly available at our website.

Keywords: B-cell epitope; machine learning; feature selection; antigen; antibody

1. Introduction

There are many pathogens, such as bacteria, viruses, and allergens, which are present
in daily life. When foreign objects invade the human body, the immune system attacks
them. The human immune system has natural immunity and acquired immunity against
invading antigens. Innate immunity, supported by dendritic cells and macrophages, is the
first line of defense and is not specific to the invading antigens. Compared with innate
immunity, acquired immunity has specificity and diversity, and involves B-cells and T-cells.
B-cells are responsible for secreting antibodies to fight bacteria, while T-cells are responsible
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for defending against viruses and fungi. Antibodies bind to specific protein sequences on
antigens, and the binding positions of these antigens and antibodies are called epitopes [1].

When foreign antigens enter the human body, they can recognize foreign antigens or
neutralize similar pathogens and, thus, can help with vaccine development [2]. An antibody
is composed of two light chains and two heavy chains; heavy chains can be classified into
five categories, namely, IgG, IgA, IgE, IgM, and IgD. IgG is the most numerous epitope,
which is responsible for fighting foreign viruses and bacteria. IgA, meanwhile, can protect
the digestive tract against viruses. If IgG loses its ability to function, IgM steps in to
eliminate germs. IgA and IgG can also be used as early screening markers for lung
cancer [3]. In a similar vein, over the past couple years, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has affected tens of millions of people worldwide, and precise
and effective identification of asymptomatic infections is needed urgently. Quan-Xin Long
et al. [4] found IgG antibodies in all assessed patients 19 days after being infected with the
virus. As for the remaining two categories of heavy chains, IgD has the fewest epitopes, and
it can help IgE to perform basophil separation [5]. IgE is closely related to food allergies [6].
In the United States, approximately 200 people die from food allergies every year [7];
BCIgEPred [8] is a tool specifically aimed at improving the accuracy of predicting IgE.

B-cell epitopes can be divided into two types; namely, linear epitopes and conforma-
tional epitopes (also called discontinuous epitopes in some studies). In nature, approxi-
mately 90% of epitopes are conformational [9], which are harder to predict and require
more structural information than linear epitopes; for example, the ROC curve of the epi-
tope predictor tool BepiPred [10] only achieved 57% accuracy in a case study. Therefore,
linear epitopes are used by scientists to quickly understand the relationships between
epitopes and diseases. In the past 20 years, many tools, such as BcePred [11], BCPred [12],
SVMTrip [13], APCpred [14], Lbtope [15], iBCE-EL [16], and DLBEpitope [17], have been
developed to identify whether a given sequence is a linear epitope. Yet, these tools only de-
tect whether the epitope is a linear epitope; they cannot predict whether the epitope is IgG,
IgE, or IgA. Only some tools, such as BCIgEPred, AlgPred [18], and IgPred [19], can predict
the sub-type of an epitope. The authors who developed BCIgEPred collected 1273 positive
data sets and 4226 negative data sets to evaluate the model. Unlike in previous studies,
they considered using the exact epitopes as the training set to improve model learning.
As the training data set classes were imbalanced, they used random sampling to divide
the data categories into one-to-one relationships, in order to build a balanced training
data set. In addition, they used a composition of weighted diamino acids for encoding
purposes and applied the random forest and support vector machine (SVM) algorithms as
classifiers. After training, the balance accuracy and the Matthews correlation coefficient
(MCC) reached 76% and 51%, respectively, on the independent IgE test set.

AlgPred [18] is a tool developed by the Bioinformatics Center in India to predict
allergenic proteins. This tool integrates four different methods and uses the SVM classifier
to predict antiallergens, with an accuracy of up to 85% and an MCC of 70%. IgPred was
the first tool developed to predict specific B-cell epitopes; six different feature-encoding
methods and eight different Waikato Environment for Knowledge Analysis (WEKA) [20]
algorithms were used to build the model. As the lengths of epitopes are different, the au-
thors compared the performance of fixed- and variable-length epitopes. The accuracy of
the fixed-length epitope reached 72%, and the MCC was 46% for the independent data set.
For the independent test set of the variable-length epitope, the accuracy and MCC were
74% and 49%, respectively.

At present, existing linear antigen prediction tools all have epitope length constraints.
As the amount of B-cell data continues to increase, it is very important to improve the
prediction length limitation. We designed the NIgPred tool to increase the maximum
length of a predictable epitope and improve the accuracy of predicting IgE, IgG, and IgA.
Most previous studies have only used the compositions and physico-chemical proper-
ties of amino acids and could not fully express the mutual influence of each amino acid.
Therefore, we added two major types of features, namely autocorrelation features and
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peptide-characteristic correlation features, to increase the interactions between the calcu-
lated amino acids. At the same time, to reduce the complexity of the model and improve
its accuracy, we used a genetic algorithm and a hill-climbing algorithm to select features
and execute 60 different WEKA algorithms, respectively. Finally, to verify the accuracy
of the NIgPred model, we collected IgE and SARS-CoV-2 IgG case studies, and reached
accuracies of approximately 0.79 and 1, respectively. Furthermore, the accuracy of our
model for the case study of IgE and IgG (Section 3.6) was superior to that of the existing
tools (i.e., BCIgEPred and IgPred).

2. Materials and Methods
2.1. Overview of Our Study

Figure 1 shows the main flowchart of the process presented in this study. The data col-
lected from the Immune Epitope Database (IEDB [21]; see the “Data set and Pre-processing”
section) were processed and divided into four groups: IgA epitope, IgG epitope, IgE epi-
tope, and non-B-cell epitopes (non-BCE). The four-part data set was run through CD-HIT,
to remove similar sequences, and was then divided based on a cutoff value of 0.7. After
CD-HIT discarded the duplicate data, to verify the model performance, we randomly split
the IgA, IgE, and IgG data sets, with 80% for training and 20% for testing, and these data
sets were further separated into positive and negative data sets containing B-cell epitopes
or non-B-cell epitopes. For instance, the IgA data set was composed of positive IgA data
and negative IgE, IgG, and non-BCE data.

Unbalanced data sets can lead to biases in machine learning algorithms; thus, an
appropriate positive/negative data set ratio (P/N ratio) is necessary before constructing a
prediction model. To resolve these issues, we adopted the NearMiss sampling method for
the negative data sets. Then, the P/N ratio was 1:1 for the IgA, IgE, and IgG models.

Feature encoding is an important factor in determining inferences from the training
model. Therefore, we utilized two major categories of feature encoding: Sequence-based
and physico-chemical-based encoding. Sequence-based encoding can be divided based on
composition features and peptide-characteristic correlation features, and physico-chemical-
based encoding can be separated based on autocorrelation features and physico-chemical
features. Finally, 1132 dimensions were obtained for the feature space.

Feature selection was then conducted, to determine whether the model could be
optimized. Feature selection and optimization were followed by a comparison between the
results of the genetic algorithm, hill-climbing algorithm, and 60 different WEKA algorithms,
in order to select the optimal algorithm.

To prove the rationality of the NIgPred system, we compared the prediction results of
the four separate types of features in the model. Furthermore, to examine the impact of
epitope features on prediction accuracy and determine their importance for the training sys-
tem, we used a feature selection method to determine important features (Supplementary
Table S1).

2.2. Data Set and Pre-Processing

We collected epitope data from the IEDB, screened out the data with linear epitope
information, and designated the positive B-cell data set as BCES (B-cell epitopes). The
negative B-cell data set was denoted as non-BCES. To avoid excessive data redundancy,
we used the CD-HIT [22] tool to remove duplicate proteins. The CD-HIT threshold was
set to 0.7, and epitopes with lengths of less than five were removed. We sorted out a
total of 49,093 IgG, 2435 IgE, 631 IgA, and 127,010 non-BCE samples. As the data were
excessively imbalanced, we used the NearMiss function [23] in the imbalanced-learn [24]
tool to balance the data. In the IgE case study, we collected 19 and 410 IgE samples from the
Allergen Database for Food Safety (ADFS) [25] and the Allerbase database [26], respectively.
In the IgG case study, we collected 40 related SARS-CoV-2 antibody data sets [27].
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2.3. Feature Construction

Physico-chemical properties are commonly used in the study of biological information.
In previous studies using IgPred, it has been found that diamino acid composition was
the most effective feature. In this study, we used four major types of features for encod-
ing, namely composition, physico-chemical, autocorrelation, and peptide-characteristic
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correlation features. We applied the Peptides [28] and Protr [29] packages in the R program-
ming language to encode protein sequences, which were compiled into 1132 feature codes.
In terms of composition characteristics, we adopted the monoamino acid composition,
epitope protein sequence length, diamino acid composition, and composition transition
distribution (CTD). As the composition and transition components of the CTD are similar
to those of other features, we did not use them.

The physico-chemical properties were calculated using the Peptides package (Table 1).
For autocorrelation, we used the Moreau–Broto [30], Moran [31], and Geary [32] approaches,
and the peptide-characteristic correlation features were obtained by applying the Protr
package for the calculations. See Supplementary File S1 for explanations of the specific
package functions.

Table 1. Functions of the peptides and Protr packages for feature extraction.

Feature Type Function

Composition properties

extractAAC
extractDC

extractCTDD
length

Physico-chemical properties

aindex
boman

mw
crucianiProperties

hydrophobicity
aacomp

blosumIndices
PI

mswhimScores
kideraFactors
fasgaiVectors

vhseScales
Zscales

Autocorrelation
extractMoreauBroto

extractMoran
extractGeary

Peptide characteristic correlation

extractSOCN
extractQSO

extractPAAC
extractAPAAC
extractCTriad

2.4. Machine Learning and Feature Selection Algorithms

To select the best algorithm and reduce the complexity of the model, we executed
60 kinds of WEKA algorithms and two kinds of feature selection algorithms (genetic and
hill-climbing algorithms). The genetic algorithm (GA) [33] first randomly generates an
initial population, calculates the fitness function of each chromosome, orders the fitness
values, and then selects the chromosome with the greater fitness to be copied. After
replication, it crosses over the chromosomes and mutates some of them. Using mutations
can enable the algorithm to avoid falling into local optima. The hill-climbing algorithm
(HC) [34] randomly selects an initial point and compares it with the surrounding points.
If the selected point is the largest, it is used as the node until reaching the highest point.
However, the hill-climbing algorithm can easily fall into local optima. Hence, in this study,
we used the hill-climbing and genetic algorithms together to select features. Finally, after
comparing different algorithms and feature selection methods, we adopted a sequential
minimal optimization (SMO) [35] algorithm and the hill-climbing algorithm for the IgA
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model, the FLDA [36] algorithm and genetic algorithm for the IgE model, and the random
forest [37] algorithm and hill-climbing algorithm for the IgG model.

2.5. Validation Measures

The performance of the classifier was evaluated and compared, based on the accuracy
of its prediction. In this study, a five-fold cross-validation model was used to verify the
training model. The data were divided into five parts, of which four were used as training
data, while the remaining part was used as test data. The remaining data were tested
sequentially. For the problem of binary classification, the prediction results may be of four
different types: True positives (TPs), false positives (FPs), false negatives (FNs), and true
negatives (TNs). We aimed to predict protein epitope sequences. Finally, we adopted the
Matthews correlation coefficient (MCC), accuracy (ACC), precision, and recall metrics to
evaluate the model. These metrics are defined in the following formulas:

MCC =
(TP× TN)− (FN× FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
,

Precision =
TP

TP + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

Recall =
TP

TP + FN
.

3. Results and Conclusions
3.1. Amino Acid Composition

To understand the data distribution of the epitopes, we used the monoamino acid
composition feature to analyze the four aforementioned data sets: IgA epitope, IgE epitope,
IgG epitope, and non-BCE (Figure 2). We determined the differences in the average amino
acid propensities of the IgA epitope data set, IgE epitope data set, IgG epitope data set,
and non-BCE data sets. Compared with other epitope isotypes, the IgA epitopes contained
more Pro and Phe residues. The IgE epitopes, meanwhile, contained more Cys, Tyr, and
Ile residues than other epitopes. Finally, the IgG epitopes contained more His, Met, and
Trp residues than other isotypes. These results are similar to those of a previous study on
IgPred [19].

3.2. Performance Comparisons for Various Features

In this study, we used the four major categories of features, namely composition,
physico-chemical, autocorrelation, and peptide-characteristic correlation features. By using
more types of features, instead of only using composition and physico-chemical features
as in previous studies (Table 2), we verified the effectiveness of adding autocorrelation
and peptide-characteristic correlation features. We expected that different types of features
would have different effects on the training of the three isotype models, so we compared
the prediction performances after model training, when the four different features were
used alone and when all features were used simultaneously. As can be seen in Table 3, the
results of the three models using all the features were the best, with the MCC reaching 70.7,
67.9, and 91.1 for IgA epitope, IgE epitope, and IgG epitope, respectively.



Viruses 2021, 13, 1531 7 of 13
Viruses 2021, 13, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. NIgPred data set of amino acid propensities. 

3.2. Performance Comparisons for Various Features 
In this study, we used the four major categories of features, namely composition, 

physico-chemical, autocorrelation, and peptide-characteristic correlation features. By us-
ing more types of features, instead of only using composition and physico-chemical fea-
tures as in previous studies (Table 2), we verified the effectiveness of adding autocorrela-
tion and peptide-characteristic correlation features. We expected that different types of 
features would have different effects on the training of the three isotype models, so we 
compared the prediction performances after model training, when the four different fea-
tures were used alone and when all features were used simultaneously. As can be seen in 
Table 3, the results of the three models using all the features were the best, with the MCC 
reaching 70.7, 67.9, and 91.1 for IgA epitope, IgE epitope, and IgG epitope, respectively. 

In previous studies, training and prediction using a single mixed model may result 
in overfitting [38]. Therefore, we concluded that there would be different characteristic 
distributions of epitopes corresponding to different isotypes, and that models should be 
established for different isotypes. We used the feature selection algorithm to rank the fea-
ture importance of each model. Significant differences in important features were found 
between the three models. For the IgA, IgE, and IgG models, the top 20 important features 
are highly diverse, as can be seen in Supplementary Table S1. In the IgA model, the com-
position properties were the most important features, followed by physico-chemical prop-
erties and peptide-characteristic correlation. In the IgE model, more attention was paid to 

Figure 2. NIgPred data set of amino acid propensities.

In previous studies, training and prediction using a single mixed model may result
in overfitting [38]. Therefore, we concluded that there would be different characteristic
distributions of epitopes corresponding to different isotypes, and that models should be
established for different isotypes. We used the feature selection algorithm to rank the
feature importance of each model. Significant differences in important features were found
between the three models. For the IgA, IgE, and IgG models, the top 20 important features
are highly diverse, as can be seen in Supplementary Table S1. In the IgA model, the
composition properties were the most important features, followed by physico-chemical
properties and peptide-characteristic correlation. In the IgE model, more attention was
paid to composition and physico-chemical properties, and the detailed feature functions of
composition properties were completely different from those of the IgA model. In the IgG
model, the most significant feature was the length of the epitope, which was the same as in
the IgA model, though most others used peptide-characteristic correlation.

Table 2. Comparison of the features of different tools.

Feature Type

Tool Composition Physico-Chemical Autocorrelation Peptide-Characteristic Correlation

IgPred
√ √

BCIgEPred
√

NIgPred
√ √ √ √
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Table 3. Comparison of performances using various features.

Feature Type Features
(bits)

IgA Epitope IgE Epitope IgG Epitope

Precision
(%)

Recall
(%)

ACC
(%)

MCC
(%)

Precision
(%)

Recall
(%)

ACC
(%)

MCC
(%)

Precision
(%)

Recall
(%)

ACC
(%)

MCC
(%)

Composition 526 79.5 79.5 79.5 59.0 79.0 79.0 79.0 58.0 82.9 82.5 82.5 65.4
Physico-chemical 59 80.3 80.3 80.3 60.6 73.4 73.1 73.1 46.5 81.3 81.1 81.0 62.4
Autocorrelation 96 72.9 72.9 72.8 45.7 67.0 67.0 66.9 33.9 69.5 69.5 69.4 38.9

Peptide characteristic
correlation 451 85.2 85.0 85.0 70.2 79.9 79.9 79.9 59.9 84.7 84.6 84.6 69.4

All 1132 85.4 85.3 85.3 70.7 83.9 83.9 83.9 67.9 98.2 98.2 98.1 91.1

3.3. Performance Comparison Based on Epitopes of Different Lengths

In this study, we collected sequences from antigen epitopes that were either long or
short, with different lengths affecting the training process of the system and the predictions
of the model. This study determined the lengths of the training data sets for non-BCE, IgA,
IgE, and IgG. It was found that specific epitopes typically appear at specific lengths; non-
BCE data were mostly of length 13–15 base pairs (Figure 3a), IgA epitope data were mostly
of length 5–12 base pairs (Figure 3b), IgE epitope data were mostly of length 12–20 base
pairs (Figure 3c), and IgG epitope data were mostly of length 5–12 base pairs (Figure 3d).
Therefore, we chose high-frequency intervals for prediction. For the IgA model, we took
epitopes of lengths 7–16 from the test set for prediction. Upon analyzing these points, the
precision of the model reached 0.829, while its recall reached 0.825, ACC reached 0.825,
and MCC reached 0.654. For the IgE model, we took epitopes of length 7 to 15 from the
test set, in order to make predictions. Using this model, the precision reached 0.793, recall
reached 0.793, ACC reached 0.791, and MCC reached 0.584. For the IgG model, epitopes
with lengths from 11 to 15 were taken from the test set for prediction, and the precision,
recall, ACC, and MCC reached 0.877, 0.871, 0.871, and 0.748, respectively.
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3.4. Ability of the Model on an Independent Data Set

To verify the accuracy of the model, we randomly split the data into 80% for training
and 20% for testing. At the same time, we performed five-fold cross-validation on the
training set data (Table 4). The MCC values for the training data set used by the IgA,
IgE, and IgG models reached 0.707, 0.679, and 0.911, respectively, and the MCC values
for the test data set used by the IgA, IgE, and IgG models reached 0.715, 0.640, and 0.745,
respectively. At the same time, the IgE test set was used to compare our models with the
latest tool (BCIgEPred). The MCC of BCIgEPred on the test set was only 0.187.
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Table 4. Test results for the IgE, IgG, and IgA models.

Model Model Precision (%) Recall (%) ACC (%) MCC (%)

IgA Training 85.4 85.3 85.3 70.7
Testing 85.8 85.8 85.7 71.5

IgE
Training 83.9 83.9 83.9 67.9
Testing 82.0 82.0 81.9 64.0

BCIgEPred 68.6 31.6 56.9 18.7

IgG Training 98.2 98.2 98.1 91.1
Testing 87.2 87.2 87.2 74.5

3.5. Performances of the Models Trained on Data from Prior Years with Regard to Predicting
Specific Epitopes Collected in Later Years

Experts in the field of antibody research care mostly about using past data to discuss
recent developments. Therefore, we collected more than 30 years of data from the IEDB
database to verify whether our model could represent the current spread of disease anti-
bodies, and ordered the data by year, with the first 80% of the data set used as the training
data and the remaining 20% of the later years as the test data. However, for the IgA models,
the MCC results were not outstanding (Table 5). We assume that the model performance
was not great due to the different data origins of the species in the IgA data set. After
statistical analyses, the results show that most of the data in the early years were related to
bacteria and, in recent years, the data were mostly related to viruses.

Table 5. Test results of the IgA, IgE, and IgG models using data from previous years.

Model Train (Year) Precision (%) Recall (%) ACC (%) MCC (%) Test (Year) Precision (%) Recall (%) ACC (%) MCC (%)

IgA 1985–2017 89.5 89.5 89.4 79.0 2018–2020 76.9 75.1 75.1 47.4
IgE 1976–2015 81.1 80.8 80.8 61.5 2015–2020 89.7 89.2 89.2 76.8
IgG 1970–2017 89.4 89.0 88.9 76.8 2017–2020 88.1 84.3 84.2 52.2

3.6. Case Studies
3.6.1. IgE Epitope Case Study

Due to the high correlation between IgE epitopes and allergens, the current method
for clinically detecting food allergies is to detect IgE. We collected data from the Allergen
Database for Food Safety (ADFS) and the Allerbase database for independent verification
in this study. We removed the samples from the ADFS and Allerbase databases that
appeared in the IgE model training set, and obtained 19 and 410 IgE epitope samples,
respectively. Then, we compared the samples with the existing tools, BCIgEPred and
Igpred. After the comparison was completed, the results showed that this study achieved
higher accuracy rates for these two databases than the latest BCIgEPred and IgPred tools
(Table 6). The accuracies of our model for the ADFS and Allerbase databases reached 0.84
and 0.74, respectively.

Table 6. Different database accuracies of IgE models when comparing tools.

Database\Tool IgPred BCIgEPred NIgPred

ADFS 0.10 0.52 0.84
Allerbase 0.46 0.25 0.74

3.6.2. IgG Epitope Case Study

SARS-CoV-2 has affected tens of millions of people worldwide, and precise and
effective identification of asymptomatic infections is needed urgently. Quan-Xin Long et al.
tried to study the time between being infected by the virus and obtaining immunity and
found that all patients had IgG antibodies 19 days after infection. We collected 40 IgG
epitopes related to SARS-CoV-2 (Figure 4) from the Antibody Registry database, in order to
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verify whether our IgG model can correctly predict epitopes. These epitopes can be divided
into five groups (spike protein, membrane protein, nucleocapsid protein, nucleoprotein
and envelope protein). Based on the NIgPred test results, the accuracy of the IgG model
reached 100% (Table 7), while the accuracy achieved by the IgPred tool for the SARS-CoV-2
data set was only 0.55.
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Table 7. List of SARS-CoV-2-related epitopes based on the NIgPred prediction results.

Antibody ID a PMID Protein Sequence Sub-Class Type Actual IgG Prediction

AB_2833115 27627203 TDVSTAIHADQLTPAWRIYSTG Spike protein IgG IgG
AB_2833108 2464703 LLGCIGSTC Spike protein IgG IgG
AB_2833113 16731915 GVLTPSSKRFQPFQQFG Spike protein IgG IgG
AB_2833123 1711257 MKRSGYGQPIA Spike protein IgG IgG
AB_2833135 16378996 ISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYI Spike protein IgG IgG
AB_2833139 16378996 FFSPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSF Spike protein IgG IgG
AB_2833187 15184071 PDPLKPTKR Spike protein IgG IgG
AB_2833188 15184071 KLRPFERDI Spike protein IgG IgG
AB_2833192 20168090 FSPDGKPCTPPALNCYW Spike protein IgG IgG
AB_2833197 1281870 TTGYRFTNFEPFTV Spike protein IgG IgG
AB_2833217 16725238 SVYAWERKKISNCVADY Spike protein IgG IgG
AB_2833224 19951177 SNVYADSFVVKGDDVRQIAP Spike protein IgG IgG
AB_2833227 15194798 FQQFGRDVSDFTDSVRDPKT Spike protein IgG IgG
AB_2847999 30355437 TKPLKYSYINKCSRLLSDDRTEVPQ Spike protein IgG IgG
AB_2847979 16132115 SPDVDLGDASGINAS Spike protein IgG IgG
AB_2847997 19951177 VYAWERKKISNCVADYSVLYNSTF Spike protein IgG IgG
AB_2833160 16920216 DMDDFSRQLQ Nucleoprotein IgG IgG
AB_2833161 23123213 DLIARAAKI Nucleoprotein IgG IgG
AB_2833162 16920216 KKKKTDEAQP Nucleoprotein IgG IgG
AB_2833173 23123213 FGPRTK Nucleoprotein IgG IgG
AB_2833179 16920216 GNSRNSTPGS Nucleoprotein IgG IgG
AB_2833222 15528730 KKQPTVTLLPAADMDDF Nucleoprotein IgG IgG
AB_2833126 27973413 YSTEART Membrane protein IgG IgG
AB_2848022 19851732 FATFVYAK Membrane protein IgG IgG
AB_2833158 23025700 WAFYVR Membrane protein IgG IgG
AB_2848062 31518629 DAPVFTPAP Nucleocapsid protein IgG IgG
AB_2848076 7516595 PDMAEEIAALVLAKLGKDA Nucleocapsid protein IgG IgG
AB_2848083 7516595 SHEAIPTRFAPGTVLPQGFYVEGSGR Nucleocapsid protein IgG IgG
AB_2833199 7516595 AGQPKQVTKQSAKEVRQKILNKPRQKRTP Nucleoprotein IgG IgG
AB_2833150 30877355 VAAVKDALKSLGI Nucleoprotein IgG IgG
AB_2847971 1693663 SSFSSYGEI Spike protein IgG IgG
AB_2847978 26292945 HDFVADMYQLAQ Spike protein IgG IgG
AB_2847978 26292945 LMQINPTYYQIM Spike protein IgG IgG
AB_2847978 26292945 MQYVYTPTYYML Spike protein IgG IgG
AB_2847978 26292945 WSFNPSTYTIAG Spike protein IgG IgG
AB_2848046 18400422 YSNIGVCK Spike protein IgG IgG
AB_2848064 18400422 LQDGQVKI Spike protein IgG IgG
AB_2848109 28647506 PVLVYSNIGVCKS Spike protein IgG IgG
AB_2848088 9874660 MADPNRFRG Envelope protein IgG IgG
AB_2848090 9874660 DPEDSALL Envelope protein IgG IgG

a Antibody ID is the research resource identifiers (RRID) of COVID-19 dataset from The Antibody Registry.
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3.7. Developing the NIgPred Tool

To facilitate the ease of operation for users, we developed a standalone version and
web server for the NIgPred tool, in order to provide linear B-cell-specific epitope-prediction
services. Users can upload epitope sequences as a FASTA-format file. Then, a prediction
model (IgA, IgE, IgG) can be chosen to predict linear B-cell-specific epitopes. The website
for the NIgPred tool is now available. The program interface is shown in Figure 5.
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4. Conclusions

Antigen–antibody binding is an important part of the human immune response. This
immune response helps to eliminate these pathogens when they invade our bodies. Com-
pared with linear epitopes, conformational epitopes require much more experimental
verification and, so, the prediction of linear epitopes is important. Although several predic-
tion models for linear epitopes already exist, these linear prediction tools all have epitope
length limitations. Therefore, this study was mainly conducted to improve the prediction of
epitope lengths and to integrate features that were not included in previous studies. Com-
pared with previous research, our study added autocorrelation and peptide characteristic
correlation features, and used a genetic algorithm and a hill-climbing algorithm for feature
selection purposes. Independent data set results confirmed that, after feature addition and
feature selection were performed, the accuracy of the IgE model was improved by 0.32 and
0.49, respectively, rising above the accuracy of the latest BCIgEPred tool on the ADFS and
Allerbase databases. Furthermore, the ACC of the NIgPred IgG model on a SARS-CoV-2
data set reached 1.00, with the NIgPred tool offering better performance than other tools.
Finally, we set up a user-friendly website that allows users to instantly predict whether an
amino acid sequence is an antigenic determinant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13081531/s1, File S1: Explanations of the specific package functions, Table S1: Significant
features by feature selection for IgA, IgE and IgG models.
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