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The prevalence of blinding diseases such as age-
related macular degeneration (AMD), glaucoma 
and diabetic retinopathy have significantly 
increased in the United States over the last 
decade.1 In response to the higher incidence 
of retinal degenerative diseases, the National 
Eye Institute (NEI) of the US National Institutes 
of Health (NIH) has recently proposed the 
audacious goal of regenerating neurons and 
neural connections in the eye and visual system.2

To date, regenerative medicine has to a 
large extent focused on determining how to 
reprogram stem cells into retinal neurons that 
can be used to restore vision. Recent surprising 
findings, however, suggest that mammals may 
possess limited in vivo regenerative potential. 
The challenge now lies in understanding why 
the retina in other vertebrates regenerates, while 
mammals lack this ability. In this review, we 
summarize current knowledge on endogenous 
mechanisms of regeneration in frogs and 
how these findings might provide essential 
information to stimulate regeneration in the 
human retina.

ORGANIZATION OF THE RETINA AND 
CELL TYPES AFFECTED BY DAMAGE AND 
DISEASE

The retina is the light sensing tissue at the back of 
the eye that converts light into electrical signals 
that are interpreted as a visual image by the brain 
(Figure 1A). The vertebrate retina consists of 
seven major cell types: ganglion cells, horizontal 
cells, cone photoreceptors, rod photoreceptors, 
amacrine cells, bipolar cells and Müller glial 
cells. The retinal pigmented epithelium (RPE) 
is the pigmented cell layer outside the neural 
retina that supports photoreceptor function. 
The overall organization and major cell types 

present in the human retina are also present 
in other mammals as well as non-mammalian 
vertebrates.

Retinal diseases that cause blindness, either 
as a result of an inherited condition or age, 
often first affect a single cell type. The common 
denominator in these diseases is the initial 
death of a specific retinal cell type that results 
in subsequent loss of other retinal neurons 
and progressive retinal degeneration.3 Rod 
photoreceptors are the first cell type affected 
in some types of Stargardt’s disease, while both 
rods and cones are initially affected in some 
types of retinitis pigmentosa (RP) and Leber 
congenital amaurosis (LCA).4,5 The RPE is the 
initial cell target in AMD and Best’s disease.6-11 
In glaucoma, ganglion cells are the first cells 
to be compromised in the retina.12 Accidental 
traumatic retinal injury due to head injuries 
or direct damage to the eye often result in 
photoreceptor cell death.9 Since the retina in 
humans and animal models of regeneration have 
the same retinal cell types and organization, 
these models can be used to understand how 
to regenerate the initial cell types lost during 
disease.

REGENERATION IN THE MAMMALIAN 
RETINA

Regeneration is the process by which lost or 
injured body parts are replaced.13 Mammals, 
including humans, cannot regenerate damaged 
neural tissues. The retina in mammals does not 
regenerate spontaneously once injured. Instead, 
injury results in cell death and permanent loss 
of the affected neurons, often causing blindness.

Regeneration in non-mammalian vertebrates 
occurs by transdifferentiation of mature retinal/
RPE cells or from an intrinsic pool of proliferating 
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retinal progenitors.14,15 Transdifferentiation 
occurs when a mature cell dedifferentiates and 
proliferates to generate new cells. Intrinsic 
progenitors are a population of cells that 
proliferate constantly throughout the life of 
the animal to produce new cells in response to 
growth or injury. In the mammalian retina, a 
source of intrinsic progenitors was discovered 
in the pigmented ciliary epithelium (PCE) of 
the ciliary body.16-20 When cultured, PCE cells 
spontaneously formed clonogenic spheres, and 
when differentiated, generated progeny that 
expressed typical markers of retinal neurons.21 
More recently, it was determined that cultured 
PCE spheres lacked the ability to differentiate into 
photoreceptors and maintained characteristics of 
PCE cells.22,23 Due to their therapeutic potential, 
the search for proliferating progenitors in the 
mammalian retina is ongoing.

RPE transdifferentiation in mammals 
has been explored as a possible source of 
new retinal cells. In vitro, rat and mouse RPE 
transdifferentiate into retinal neurons when 
treated with fibroblast growth factor 2 (FGF2) 
and when activin signaling is blocked.21,24 In 

vivo, RPE transdifferentiation was observed only 
during embryogenesis after elimination of the 
RPE specific fate transcription factor Mitf or the 
Wnt signaling effector beta-catenin.25,26 These 
findings suggest that the mammalian RPE loses 
its latent capacity to generate retinal cells early 
in development.

Müller glia can also transdifferentiate and 
produce new cells after injury. Growth factor 
treatment demonstrated the potential of Müller 
glia to proliferate in response to injury.27-29 
Chemical injury of the retina combined with 
growth factor treatment cause Müller glia to 
transdifferentiate and generate a limited number 
of neurons including amacrine, bipolar and 
rod photoreceptor cells.27,30-35 Similar to RPE, 
the ability of Müller glia to transdifferentiate is 
restricted by various signaling systems. In mice, 
transforming growth factor beta (TGFß) signaling 
restricts Müller glia proliferation, an essential 
step required during transdifferentiation.27 
Misexpression of the proneural gene Ascl1 in 
Müller glia results in reduction of Müller cell 
markers, an increase in neural markers and re-
entry into the cell cycle.36 Together, these studies 

Figure 1. (A) Organization of the vertebrate retina. The vertebrate retina consists of seven retinal cell types and the RPE 
cells. Each cell type is labeled. The different retinal layers formed by the different cell types are indicated on the left. 
(B) Retinal regeneration in frogs. The frog retina regenerates by transdifferentiation of the RPE. After injury, RPE cells 
dedifferentiate (1), proliferate (2) to generate new retinal progenitors that differentiate (3) to restore all retinal cell types 
in the damaged retina. The cell progeny of the transdifferentiating RPE cell is indicated with red nuclei. The known 
factors involved in each step are shown. MAPK and Rax are likely to function at the steps indicated, however these 
steps have not yet been explicitly demonstrated.
RPE: retinal pigmented epithelium; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner 
plexiform layer, GCL: ganglion cell layer; FGF2: fibroblast growth factor 2; MAPK: mitogen activated protein kinase, Pax6: paired box 
protein 6; Rax: retinal homeobox
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demonstrate that the mammalian retina has the 
potential to initiate a program of regeneration 
under favorable conditions. Further studies 
will be required to understand the barriers 
that prevent regeneration in the mammalian  
retina.

RETINAL REGENERATION IN FROGS

Frogs are among the non-mammalian vertebrates 
that regenerate the retina. An established 
developmental model currently used for 
regeneration studies is the African clawed 
frog Xenopus laevis. Females of this species 
can be induced to lay thousands of eggs for 
experiments by injection of human chorionic 
gonadotropin. Embryos are fertilized in vitro and 
develop externally, allowing easy experimental 
manipulation and observation. Also, molecular 
tools are available to alter gene expression 
and investigate the function of genes during 
development. Justification for the use of X. laevis 
in regeneration studies stems from the fact that 
this species regenerates the retina at both larval 
and adult stages.

The frog retina regenerates following 
complete or partial surgical removal, 
devascularization, chemical damage or genetic 
ablation.37-43 The time required for regeneration 
is dependent on the injury. Partial or complete 
surgical removal of tadpole or adult retina results 
in a fully regenerated retina by one month post-
injury.40,43,44 Injury by devascularization caused 
severe retinal degeneration, after which a new 
retina was observed two months later.42 Specific 
ablation of rod photoreceptors lead to complete 
regeneration by 30 days, although this injury 
method also causes retinal degeneration.37 Thus, 
in X. laevis complete regeneration is observed 
regardless of the injury paradigm.

Most retinal regeneration in frogs occurs via 
RPE transdifferentiation with relatively minor 
contribution from ciliary marginal zone (CMZ) 
progenitors.14 RPE transdifferentiation was 
observed in tadpoles of Rana catesbienna and X. 
laevis adults.42,44 The source of regenerated retina 
in X. laevis tadpoles has not been conclusively 
determined, but it is likely the cells are derived 
from the same tissues as in the adult. Retinal 

regeneration was still observed when the CMZ 
was removed following retinectomy, suggesting 
that RPE transdifferentiation might be the source 
of regenerating cells in tadpoles.43 The CMZ is 
thought to contribute some new cells during 
regeneration. CMZ-derived cells were detected 
close to the CMZ following chemical injury.45

The regenerated retina in frogs has the same 
architecture of the normal retina and appears 
to contain all retinal cell types. Following 
retinectomy or partial resection, immune labeling 
with antibodies specific for different cell types 
detected the presence of ganglion, amacrine, 
bipolar, horizontal, photoreceptor and Müller 
glial cells.40,43 Furthermore, regenerated ganglion 
cells formed an optic nerve.43 It is unknown if 
the regenerated frog retina is functional.

The molecules and signaling pathways 
involved in X. laevis regeneration are now 
being uncovered (Figure 1B). FGF2 promotes 
RPE transdifferentiation in vitro and in 
vivo.43,46,47 After retinectomy, FGF2 activates 
the mitogen activated protein kinase (MAPK) 
pathway; blocking this pathway decreases the 
amount of regenerated retina.43 FGF2 functions 
to promote differentiation of RPE-derived 
proliferating retinal progenitors into new retinal 
cells.46 Transcription factors involved in the 
specification of retinal progenitors may also be 
necessary during regeneration. For example, pax6 
is up-regulated in dedifferentiated RPE and its 
expression is required during the initial steps of 
RPE transdifferentiation.46 Also, rax expression 
is up-regulated in dedifferentiating RPE cells 
during transdifferentiation and rax knock-down 
impairs retinal regeneration in tadpoles.40,48,49 It 
is not known if rax functions at the same step 
of transdifferentiation as pax6.

REGENERATIVE MEDICINE IN THE RETINA: 
DRIVING STEM CELLS TO RETINAL CELLS

The goal of producing retinal cells from stem 
cells in vitro is to restore visual function by 
transplanting these cells into the damaged 
retina. Accomplishing this goal requires three 
steps: (1) generation of cell types necessary for 
transplantation (2) integration of transplanted 
cells into the retina (3) functionality of new cells 
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integrated into the retina.
Generating the number of retinal cells 

required for successful transplantation requires 
a renewable supply of cells. A great deal of work 
has been done to generate neural and retinal 
precursors in vitro from embryonic stem cells 
(ESCs) of different species including humans.50-62 
Also, adult fibroblasts, RPE or blood T cells 
have been reprogrammed into pluripotent stem 
cells (induced pluripotent stem cells or iPSCs) 
and differentiated into photoreceptors, RPE, 
ganglion cells, or optic cup-like structures.63-68

Successful integration of ESC- or iPSC-
derived cells into the retina has been observed. 
Transplanted ESC- or iPSC-derived cells 
partially integrate into the retina, express the 
appropriate markers but in most cases do 
not exhibit the morphology of differentiated 
neurons.51,52,57-60,64,66,69,70 In other cases 
transplanted cells failed to differentiate, or worse, 
formed tumors.64,71,72 Successful transplantation 
strategies were observed in experiments where 
isolated mouse rod precursors were transplanted 
into the diseased mouse retina.73,74 The donor 
rod precursors matured into rod photoreceptors 
when transplanted into models lacking 
functional rods.73-76

More recently, evidence of functional retinal 
cells derived from ESC- or iPSC-derived retinal 
progenitors has been observed. Human ESC-
derived retinal progenitor cells were shown to 
integrate into the retina of Crx-/- mice (a model 
of LCA), express cone and rod photoreceptor 
markers, and restore some visual function.69 
Using a protocol first developed by Sasai and 
colleagues to generate in vitro three-dimensional 
retinas, some visual function was restored 
using mouse ESC-derived rod photoreceptors 
transplanted into the retina of adult Gnat1-/- 
mice (a model of stationary night blindness).77,78 
Importantly, these cells were shown to integrate 
in multiple mouse retinal disease models.75 
Vision recovery has been incomplete in all 
reports thus far, and two major barriers to 
success have been the number of exogenous 
cells that integrated, and the extent of gliosis.75 
Further work is needed to determine how to 
generate multipotent retinal progenitors that 
generate other retinal cell types and address 

the problem of gliosis in order to allow more 
efficient integration and survival of functional 
retinal cells.

FUTURE PERSPECTIVES AND 
CONCLUDING REMARKS

Frogs and, to a very limited extent, mammals 
regenerate retina. Regeneration is achieved 
from either intrinsic stem cells or by 
transdifferentiation. The molecules and signaling 
pathways required to stimulate regeneration 
are only beginning to be elucidated. It is, 
however, becoming increasingly clear that loss 
of regenerative potential is tightly linked to 
inactivation of certain genes as the organism 
ages. Much remains to be learned about these 
molecular mechanisms to overcome barriers 
facing retinal regeneration in mammals.

Many questions pertaining to regeneration 
have not been sufficiently addressed such as 
similarities between regeneration and embryonic 
development. As a mature cell dedifferentiates 
and proliferates to produce retinal progenitors 
that generate new cells during regeneration, it 
returns to an embryonic-like (but not necessarily 
identical) progenitor state. Yet, injury-induced 
retinal progenitors in the postnatal retina of 
some species, like mammals, clearly lack the 
multipotency of true embryonic progenitors. 
What restricts the multipotency of progenitors 
generated during regeneration? If regenerating 
progenitors truly express the same genes as 
embryonic progenitors, why are they not capable 
of producing all retinal cell types?

Additional unanswered questions are 
linked to the relationship between degeneration 
and regeneration. Some regenerative species 
undergo a process of retinal degeneration before 
the retina can regenerate. How is it that these 
species can overcome the degenerative phase 
and still regenerate the retina? Conversely, 
some regenerative species appear only capable 
of regeneration; however, the retina does not 
progress beyond a certain critical point. What 
are the cellular and molecular events that define 
this critical point beyond which regeneration is 
no longer possible?

Basic developmental processes have been 
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proven repeatedly to be conserved throughout 
evolution. Regeneration is a blatant exception to 
this general rule. This is precisely why studying 
regeneration in model systems is important. 
By determining how “lower” vertebrates can 
regenerate retina, we will likely identify why 
mammals cannot. These discoveries may provide 
new approaches to delay or reverse degeneration 
of damaged or diseased mammalian retina, 
which currently always leads to blindness.
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