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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-
converting enzyme 2 (ACE2) receptor and invade the human cells to cause COVID-19-
related pneumonia. Despite an emphasis on respiratory complications, the evidence of
neurological manifestations of SARS-CoV-2 infection is rapidly growing, which is
substantially contributing to morbidity and mortality. The neurological disorders
associated with COVID-19 may have several pathophysiological underpinnings, which
are yet to be explored. Hypothetically, SARS-CoV-2 may affect the central nervous system
(CNS) either by direct mechanisms like neuronal retrograde dissemination and
hematogenous dissemination, or via indirect pathways. CNS complications associated
with COVID-19 include encephalitis, acute necrotizing encephalopathy, diffuse
leukoencephalopathy, stroke (both ischemic and hemorrhagic), venous sinus
thrombosis, meningitis, and neuroleptic malignant syndrome. These may result from
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different mechanisms, including direct virus infection of the CNS, virus-induced hyper-
inflammatory states, and post-infection immune responses. On the other hand, the
Guillain-Barre syndrome, hyposmia, hypogeusia, and myopathy are the outcomes of
peripheral nervous system injury. Although the therapeutic potential of certain repurposed
drugs has led to their off-label use against COVID-19, such as anti-retroviral drugs
(remdesivir, favipiravir, and lopinavir-ritonavir combination), biologics (tocilizumab),
antibiotics (azithromycin), antiparasitics (chloroquine and hydroxychloroquine), and
corticosteroids (dexamethasone), unfortunately, the associated clinical neuropsychiatric
adverse events remains a critical issue. Therefore, COVID-19 represents a major threat to
the field of neuropsychiatry, as both the virus and the potential therapies may induce
neurologic as well as psychiatric disorders. Notably, potential COVID-19 medications may
also interact with the medications of pre-existing neuropsychiatric diseases, thereby
further complicating the condition. From this perspective, this review will discuss the
possible neurological manifestations and sequelae of SARS-CoV-2 infection with
emphasis on the probable underlying neurotropic mechanisms. Additionally, we will
highlight the concurrence of COVID-19 treatment-associated neuropsychiatric events
and possible clinically relevant drug interactions, to provide a useful framework and help
researchers, especially the neurologists in understanding the neurologic facets of the
ongoing pandemic to control the morbidity and mortality.

Keywords: COVID - 19, SARS – CoV – 2, neurotropism, nervous system, neurologic manifestations, psychological
impact, neuropsychiatric adverse effects, drug-drug interaction

INTRODUCTION

On January 30, 2020, the WHO declared the Coronavirus
Disease-2019 (COVID-19) outbreak a Public Health
Emergency of International Concern (WHO, 2020b). The
genome sequencing analysis has confirmed that the causative
novel coronavirus (CoV) belongs to the lineage B of beta-
coronavirus, and is named as Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) by the International
Committee on Taxonomy of Viruses. It exhibited 96.2, 79.5, and
50% similarity in gene sequence with the earlier known bat CoV
RaTG13, SARS-CoV, and Middle East Respiratory Syndrome
Coronavirus (MERS-CoV), respectively (Jin Y. et al., 2020). Thus,
the probable natural host of the virus is suspected to be the bats,
possibly transmitted to humans through an unknown
intermediate (Guo et al., 2020). The general clinical
manifestations of SARS-CoV-2 infection may range from the
onset of self-limiting signs and symptoms related to upper
respiratory tract infection like rhinorrhea and sore throat to
nonspecific clinical conditions such as non-productive cough,
fever, dyspnoea, and difficulty in breathing (Kang and Xu, 2020).
Although SARS-CoV-2 predominantly affects the respiratory
system, recent evidences suggest the neurological involvement
with COVID-19 (Asadi-Pooya and Simani, 2020; Helms et al.,
2020a; Mao et al., 2020). However, neurotropism and
neuroinvasive mechanism of SARS-CoV-2 is still under
debate. The expression of angiotensin-converting enzyme 2
(ACE2) receptor, required for cell tropism, has recently been
demonstrated to be present on neurons and glial cells of different
brain regions (Palasca et al., 2018; Muus et al., 2020), including

the striatum, cerebral cortex, posterior hypothalamic area,
substantia nigra, and the brain stem (Chen R. et al., 2021).
Several hypotheses suggest the possibility of SARS-CoV-2
transmission into the central nervous system (CNS) via the
hematogenous pathway, olfactory bulb invasion, and
retrograde axonal transport (Desforges et al., 2020). Notably,
not all neurological manifestations involve direct neuroinvasive
mechanisms. For instance, indirect neurologic symptoms may
result from the exacerbated systemic pro-inflammatory responses
(Zhou et al., 2020). In addition to that, post-infection neurological
complications and psychological issues associated with COVID-
19 are also of great concern.

The therapeutic potential of certain repurposed drugs has led
to their off-label use against COVID-19, such as anti-retroviral
drugs (remdesivir, favipiravir, and lopinavir-ritonavir
combination), biologics (tocilizumab), antibiotics
(azithromycin), antiparasitics (chloroquine and
hydroxychloroquine), and corticosteroids (dexamethasone)
(Borah et al., 2020). On top of the neurological complications
associated with SARS-CoV-2 infection, many of these drugs
potentially exhibit certain clinical neuropsychiatric adverse
events. For example, previous studies have reported the
chloroquine-/hydroxychloroquine-associated neuropsychiatric
adverse effects such as seizures, ataxia, retinopathy, and limbic
encephalitis (Maxwell et al., 2015). Similarly, corticosteroids can
provoke agitation, anxiety, depression, delusion, and
hallucinations (Ou et al., 2018). Both corticosteroids and anti-
viral drugs may also trigger convulsions and seizures (van
Campen et al., 2018; Jarrahi et al., 2020). Apart from these,
the potential COVID-19 therapies may also interact with the
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prescribed medications for pre- and/or co-existing
neuropsychiatric diseases demonstrating serious drug-drug
interactions, thereby, further complicating the clinical
outcomes. From this perspective, this review will discuss the
possible neurological manifestations and sequelae of SARS-CoV-
2 infection with emphasis on the probable underlying
neurotrophic as well as neuroinvasive mechanisms.
Additionally, we will highlight the concurrence of COVID-19
treatment-associated neuropsychiatric events and possible
clinically relevant drug interactions, to provide a useful
framework and help researchers, especially the neurologists in
understanding the neurologic facets of the ongoing pandemic to
control the morbidity and mortality.

SARS-CoV-2 PATHOPHYSIOLOGY

SARS-CoV-2 are non-segmented positive single-stranded RNA
containing spherical shaped viruses with crown-like lipid
envelope (Hasöksüz et al., 2020; Lundstrom, 2020). The basic
genome of the virus comprises of orderly arranged 5’ methylated
(UTR) caps, open reading frames (ORFs), spike (S), envelope (E),
membrane (M), nucleocapsid (N), and other accessory proteins
(Malik, 2020). The S proteins are membrane fusion proteins (type
I) associated with receptor-binding function mediated through
the receptor binding-domains (RBD) and assist in the virus

fusion to the host cell membrane. On the other hand, E
proteins contribute to the virion assembly and their release,
and M proteins characterize the viral envelope shape, while N
proteins package the viral genome to form the complete virion
(Alanagreh et al., 2020; Malik, 2020). Several other accessory
proteins present in the genome are known to possess overlapping
compensatory roles.

The replication cycle of the SARS-CoV-2 begins once the virus
transmits into the host body via interaction of S proteins with the
ACE2 receptor of the target cells such as type II alveolar cells,
tracheobronchial epithelial, vascular endothelial, and the
macrophages (Hamming et al., 2004; Kotta et al., 2020). The S
protein is further cleaved by the acid-dependent proteolysis with
various proteases including transmembrane protease serine 2
(TMPRSS2) and cathepsin, which leads to membrane fusion
and viral genome released into the host cell cytoplasm
(Belouzard et al., 2009). The released SARS-CoV-2
polyproteins are processed by the major proteases such as
papain-like protease (PLpro) and 3-chymotrypsin-like
protease (3CLpro) to synthesize several non-structural
proteins (NSPs) like RNA-dependent RNA polymerase
(RdRP). Eventually, it leads to the formation of a double-
layered vesicle with a replication-transcription complex (RTC)
that produces sub-genomic RNAs, acting as templates for the
translation of structural as well as other accessory proteins
(Ahn et al., 2020). Later, the S, E, and M proteins (formed via

FIGURE 1 | Pathogenesis of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection; (A) Replication cycle of SARS-CoV-2 virus, and (B)
Induction of cytokine storm in the host following viral infection.
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translation) enter into the endoplasmic reticulum-Golgi
intermediate compartment (ERGIC) and undergo viral
assembly along with N protein and genomic RNA.
Ultimately, it produces mature virions inside the vesicles,
which are released from the cell by the process of exocytosis
(Figure 1) (Malik, 2020).

These newly released viruses can provoke cellular injury as
well as pyroptotic death in the infected host cells during the
invasion and replication process, which ultimately leads to
vascular leakage of the viral components (Tay et al., 2020;
Yang, 2020). The recognition of the released viral components
by macrophages and alveolar epithelial cells via pattern
recognition receptors triggers the production of excess pro-
inflammatory cytokines, including interleukin-6 (IL-6),
monocyte chemo-attractant protein 1 (MCP1), interferon γ
(IFNγ), and IFNγ-induced protein 10 (IP-10), which causes a
local wave of inflammation (Huang et al., 2020). This cytokine-
mediated inflammatory signaling leads to pulmonary
infiltration by the T-lymphocytes and monocytes (Tian
et al., 2020). Usually, these immune cell recruitment aims to
eradicate the pulmonary infection, but in some cases, there
may be an impaired immunological response that initiates an
anomalous inflammatory phenomenon referred to as
“cytokine storm” (Figure 1) (Mehta et al., 2020; Ye et al.,
2020). This may further lead to cytokine release syndrome
(CRS). Furthermore, unrestricted infiltration also facilitates
inflammatory injury to the pulmonary tissues due to the excess
discharge of proteases and reactive oxygen species (ROS).
Overall, it prompts diffuse alveolar damage as well as
exudative pulmonary edema that results in acute respiratory
distress syndrome (ARDS) characterized by inefficient
pulmonary gas exchange, severe breathing complications,
and a drop in blood oxygen saturation (Tian et al., 2020).
Notably, cytokine storm is not only restricted to local damage,
instead it has a rippling effect throughout the organ systems,
and leads to septic shock and multi-organ failure (Ruan et al.,
2020).

Usually, the incubation period of the SARS-CoV-2 ranges
from 5 to 6 days (maximum 14 days) (WHO, 2020a), and the
clinical manifestations include the onset of sign and symptom
associated with upper respiratory tract infection like
rhinorrhea and sore throat, followed by non-productive
cough, headache, dizziness, hyposmia, hypogeusia fever,
myalgia, dyspnoea, fatigability, confusion, and confirmed
pulmonary lesions as observed on chest radiography (Deb
et al., 2020; Kang and Xu, 2020). Moreover, pre-existing
conditions like diabetes, hypertension, chronic respiratory
disease, chronic liver diseases, obesity, chronic kidney
diseases, cancers, and other cerebrovascular diseases have
shown a significant correlation with disease progression and
severity (Guan et al., 2020; NIH, 2020). The next section will
emphasize the neuropsychiatric manifestations that have been
reported till now. As surveillance data is still evolving, various
reports and case series available in the literature do not
necessarily indicate causation of the neurologic disorders
but may underline the neuropsychiatric impact associated
with COVID-19.

PLAUSIBLE NEUROTROPIC AND
NEUROINVASIVE MECHANISMS

The understanding of previously known coronaviruses and the
SARS-CoV-2 offers clues regarding the neurotropic and
neuroinvasive potential of these viruses in humans. Upon
host-infection, coronavirus may target the nervous system by
causing inflammation followed by demyelination. Interestingly,
a previous study also suggested the existence of hypothetical
‘brain-lung-brain axis’ as lung injury has been demonstrated to
be associated with brain damage and neurocognitive
dysfunction, and vice versa (Stevens and Puybasset, 2011).
Evidence suggest that SARS-CoV-2 may invade the brain,
particularly of immune-compromised population, through
either direct or indirect routes. Other human coronaviruses
(HCoVs) have previously been observed in the brain tissues by
autopsy studies. HCoV strains OC43 and 229E were determined
in 44 brain donors (out of 90) by the RT-PCR (Edwards et al.,
2000). Particularly, the OC43 strain was found in a higher
amounts in patients with multiple sclerosis as compared to
the controls. A similar study also demonstrated an over-
expression of MCP-1 chemokine mRNA in the astrocytes
following OC43 infection (Stamatovic et al., 2005).
Interestingly, elevated MCP-1 expression has been implicated
in the enhanced blood–brain barrier (BBB) permeability (Glass
et al., 2004). Thus, it is evident that there is a higher association
of multiple sclerosis with HCoV infection. Moreover, it also
implies that coronavirus infection may contribute to the pre- or
co-existing neuropathology to cause chronic neurologic
complications.

As described in the previous section, spike proteins of SARS-
CoV-2 bind with the ACE2 receptors on the host cells, and enter
inside the cell either by membrane fusion or endocytosis. The
ACE2 receptors are also expressed in neurons of different brain
regions, which can bind to the integrins and regulate integrin
signaling (Doobay et al., 2007; Clarke et al., 2012). Recently, an
integrin-binding motif in the S protein of SARS-CoV-2 was
recognized, suggesting that an ACE2-independent cell invasion
might be possible in integrin-expressing cells (Sigrist et al., 2020).
The neurotropic nature of SARS-CoV-2 was confirmed by the
presence of the virus in the CSF of a COVID-19 patient with viral
encephalitis (Moriguchi et al., 2020) as well as in the brain of a
deceased COVID-19 subject with resting tremors and gait
impairment due to Parkinson’s disease (Paniz-Mondolfi et al.,
2020). The presence of SARS-CoV-2 was also reported in the
olfactory epithelium, olfactory bulbs, trigeminal ganglia,
brainstem, uvula, cornea, and conjunctiva of some corpses
(Meinhardt et al., 2021). A hypothesis suggests the nerve
endings in the conjunctiva and oral/nasal mucosa including
the olfactory nerves might act as potential entry sites for the
SARS-CoV-2 infection (Cheema et al., 2020; Colavita et al., 2020).
Post-mortem MRI findings of four COVID-19 positive cadavers
showed asymmetric olfactory bulbs, that point towards olfactory
neuroepithelium as a probable site for the virus entry (Coolen
et al., 2020). The ACE2 and TMPRSS2 are also expressed in the
neuroepithelium of the olfactory bulb (Fodoulian et al., 2020),
which are probably associated with hyposmia and dysgeusia in
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COVID-19 patients during the infection. Additionally, the SARS-
CoV-2 is also assumed to spread to the brainstem via olfactory
bulb (direct route) or orofacial sensory fibers (alternate route) via
cranial ganglia. The direct olfactory route involves the
dissemination of SARS-CoV-2 to the amygdala and piriform
cortex through the medial forebrain bundle that projects caudally
to the dorsal vagal nuclei and solitary tract (Fenrich et al., 2020).
Importantly, the COVID-19 associated dysgeusia may be
explained by the viral replication in the solitary tract neurons.
It is also suggested that SARS-CoV-2 can disrupt the
chemoreceptors by invading the olfactory mucosa to trigger an
inflammatory response (Fiani et al., 2020). The COVID-19
associated early anosmia may be a result of the early
neuroinvasion, probably through the olfactory bulb as HCoV
utilizes retrograde transport to reach the olfactory nerve.
Experimental data suggest the presence of viral-specific
antigens in the olfactory bulbs of transgenic mice following
3 days of intranasal HCoV-OC43 inoculation. Moreover, after
7 days of inoculation, viral dissemination was observed
throughout the brain coinciding with clinical encephalitis.
Experimental nasal inoculation demonstrated about an 8-fold
increase in the SARS-CoV-positive cell density in the CNS,
particularly in the hippocampus, 1–2 weeks after the infection
(Chan et al., 2020). On the other hand, the alternate route of
propagation through orofacial nerves also represents a plausible
site for the persistent infection as well as replication, since
pseudounipolar somata mainly reside in the cranial ganglia.
Furthermore, it facilitates brainstem invasion either by axonal
transport or exocytosis-endocytosis mediated transfection of

other fibers passing through the ganglia. Nevertheless,
vesicular transport may also prevail and contribute to such
transmission. Cross human tissue surveys revealed co-
expression of ACE2 and TMPRSS2 cells in the nasal goblet
cells, ciliated cells, and oligodendrocytes (Sardu et al., 2020).
Therefore, co-expression of ACE2/TMPRSS2 proteins in the
oligodendrocytes might be one route of CNS infiltration or
proliferation. Although it is being hypothesized that viremia
can allow the virus to reach the cerebral circulation to
promote neurotropic effects, the observed discrepancy between
the neurological manifestations (Mao et al., 2020) and absence of
virus in the blood samples (Wölfel et al., 2020) indicates that
viremia is unlikely to be a significant contributor of viral invasion
to the brain, contradicting the hypothesis of hematogenous
transmission of the virus in the host. Usually, the
hematogenous route leads to the infection of the BBB
endothelial cells and blood–cerebrospinal cells in the choroid
plexus as shown in Figure 2 (Bohmwald et al., 2018). Apart from
these, the induction of respiratory stress caused by lung damage
can subsequently induce multi-organ failure through cascade
effect and neuronal insults (Fiani et al., 2020).

The compromised BBB due to endothelial injury,
inflammatory mediators, infected macrophages, or direct
infection of the endothelial cells, also represent an alternate
way for virus neuroinvasion (Sardu et al., 2020). Cytokine
storms play an important role in both acute lung damage and
neurotoxicity (Wang et al., 2010). The BBB integrity can be
disrupted by cytokine- and/or immune-mediated injuries in
the absence of direct viral invasion (Figure 2). A previous

FIGURE 2 | The plausible neurotropic and neuroinvasive mechanisms of severe acute respiratory syndrome coronavirus 2.
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study suggests that acute necrotizing encephalopathy may occur
due to the cytokine-mediated inflammations (Ouattara et al.,
2011). Furthermore, neuroinflammatory insults leading to
functional brain damage may partly explain the cognitive
deficits associated with viral pneumonia. The systemic
inflammation in specific cortical regions may also cause
altered consciousness as well as other behavioral changes
(Sasannejad et al., 2019). Although the hyper-active cytokine
response observed in SARS-CoV-2 infection may impact the
neurologic complications by manipulating the neuro-
inflammatory pathways, the exact mechanisms involved are
yet to be determined. Apart from neuro-inflammation,
prolonged hypoxia may also promote cognitive impairments
and neuropsychiatric sequelae (Steardo et al., 2020).
Particularly, neuro-inflammation has been implicated in other
neurodegenerative and psychiatric disorders such as
schizophrenia and acute psychosis (Pape et al., 2019). On the
other hand, stress can also activate hypothalamic-pituitary-
adrenal (HPA) axis, which leads to the high production of
steroids that may contribute to the impairment of the
immunological functioning and exacerbation of psychological
conditions (Steenblock et al., 2020).

The CNS infiltration by SARS-CoV-2 via peripheral nerves is a
multi-stage process. The virus requires the exploitation of the
retrograde axonal transport machinery to access the neuronal
soma from the peripheral neurons (Figure 2). As evident, SARS-
CoV-2 usually utilizes the ACE2-mediated endocytotic pathway
for virus internalization followed by intracellular transport. The
intrinsic clathrin-independent intracellular ACE2-mediated
endocytosis is also implicated. Moreover, for a successful
invasion, the virus must be capable of crossing the synaptic
membranes. Notably, an earlier-known beta-coronavirus
exhibited trans-synaptic transmission through presynaptic
endocytosis as well as postsynaptic exocytosis (Li et al., 2013),
which implies that SARS-CoV-2 might use a similar mechanism.
In addition, viral dissemination via neurons from the ENS to the
CNS is also possible by anterograde pathways, as this route
usually reach the same brain sites like that of retrograde
transport (Parker et al., 2020). Generally, kinesin-mediated
anterograde axonal transport allows the trafficking of vesicles
from the soma to the axon or axonal ends (Berth et al., 2009). As
SARS-CoV-2 also forms ERGIC, it could manipulate the kinesin-
mediated anterograde route to disseminate along the axons
(Fenrich et al., 2020). Also, lateral transfections, either cell to-
cell or axo-axonal spreading could be possible. Moreover, it was
revealed that ACE2 trafficking could be involved in the exosome-
dependent cell-to-cell transfer, probably assisting the infection in
cerebrovascular endothelial cells (Wang J. et al., 2020).

Besides, SARS-CoV-2 may utilize peripheral nerves like the
trigeminal nerve that has sensory innervation of the vagus nerve
or the nociceptive cells that originate from the brain stem and
supplies to several regions of the respiratory tract like the trachea,
larynx, and lungs (Koyuncu et al., 2013; Meshkat et al., 2020).
Previous evidence suggests the possibility of direct brainstem
invasion by the viruses (particularly with pseudorabies virus)
through chemoreceptors and mechanoreceptors found in the
lungs as well as in the lower respiratory tract (Hadziefendic

and Haxhiu, 1999), a possible way that can be adopted by
SARS-CoV-2 to invade the CNS. However, it is yet to be
established. Notably, the SARS-CoV-2 invasion of the spinal
cord and brainstem practically allows the virus to target every
organ system of the body (Alam et al., 2020). For instance,
infection of vagal nuclei alone may allow viral dissemination
to the heart, lungs, intestines, liver, and kidneys. As the lungs
represent the initial reservoir for the virus, it is conceivable that
SARS-CoV-2 could use the vagus nerve to invade the CNS via the
lung–gut–brain axis (Shinu et al., 2020). This also allows the virus
to potentially interfere with all the systems of axis at various time-
points during the SARS-CoV-2 infection, which may justify the
occurrence of a combination of respiratory, gastrointestinal, and
neurological (neuropathic) symptoms in certain patients
throughout the course of infection (Alam et al., 2020). This
independently may lead to multiple organ failure in the
absence of respiratory pathology. Therefore, vagal
dysfunction might be considered a significant contributor to
the amplified immune responses and thromboembolic events
in some COVID-19 subjects (Niimi and Chung, 2015).
Interestingly, vagal neuropathies associated with viral
upper-respiratory-tract infections are already recognized
clinically leading to para- and post-infectious sequelae
(Niimi and Chung, 2015). Although the exact time required
for viral invasion is not determined well, it is certainly
dependent on the route of virus entry and viral load. Based
on the axonal transport dynamics via active and passive
processes, the CNS infection may develop within a week
after the virus exposure (Fenrich et al., 2020).

NEUROLOGIC MANIFESTATIONS AND
SEQUELAE: THE GROWING EVIDENCES

Despite an emphasis on respiratory complications, the evidence
of neurological manifestations of SARS-CoV-2 infection is
rapidly growing, which is substantially contributing to
morbidity and mortality. During the initial wave of COVID-19
in China, a single-centre, retrospective study (n � 99)
demonstrated the occurrence of confusion and headache in
about 9 and 8% subjects, respectively (Chen N. et al., 2020).
Following this, another retrospective, observational case series,
analyzing 214 patients revealed that about 36.4% (n � 78) had
neurologic manifestations, which were categorized as CNS
manifestations (headache, dizziness, impaired consciousness,
ataxia, acute cerebrovascular disease, and seizure), PNS
manifestations (hyposmia, hypogeusia, vision impairment, and
neuralgia), and skeletal muscle injury manifestations (Mao et al.,
2020). Various evidence are available in the existing literature
regarding the higher association of headache and dizziness
following SARS-CoV-2 infection (Chen N. et al., 2020; Guan
et al., 2020; Huang et al., 2020; Mao et al., 2020). Similarly, clinical
reports have also demonstrated the frequent incidence of
olfactory and gustatory dysfunctions in COVID-19 patients,
causing hyposmia and hypogeusia, respectively (Giacomelli
et al., 2020; Lechien et al., 2020a; Vaira et al., 2020). An
observational study from France showed a higher percentage

Frontiers in Molecular Biosciences | www.frontiersin.org February 2021 | Volume 8 | Article 6277236

Borah et al. Neurological Consequences of SARS-CoV-2

https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


(84%) of neurologic complications, with agitation being the most
common (69%), followed by corticospinal tract signs (67%) and
dysexecutive syndrome (36%) at the discharge time (Helms et al.,
2020a). Remarkably, there are growing evidence on
neurological manifestations and sequelae that will be
discussed in the later sub-sections, considering the available
incidences of direct, indirect, or post-infective complications.
Although it is quite hard to distinguish the complex
neurological manifestations, we tried to categorize and
discuss them briefly in the following subsections, based on
their occurrence in the COVID-19 patients.

Myalgia and Other Muscle Injuries (Occurs
Commonly)
An initial retrospective study from China reported the overall
occurrence of myalgia in 40% cases including both moderate
(30%) and severe (50%) cases (Chen G. et al., 2020). Similar data
were also reported by other studies with the prevalence of 34.8%
(Wang D. et al., 2020), 35.8% (Li et al., 2020), and 44% (Huang
et al., 2020), respectively. As reported by the European prospective
study conducted on mild-to-moderate cases of COVID-19, about
62.5% patients had myalgia in the setting (Lechien et al., 2020b).
Another prospective cohort study from New York reported a
prevalence of 26% of myalgia in critically ill patients (Cummings
et al., 2020). On the contrary to all the above observations, a recent
pooled analysis claimed that the presence of myalgia is not
statistically associated with COVID-19, thus it should not be
considered as a prognostic factor in severe COVID-19 cases (Lippi
et al., 2020). An observational case series suggested that muscle
injury (i.e., myalgia with elevated serum creatine kinase above
200 U/L) is more common in severe cases as compared to non-
severe cases (19.3 vs. 4.8%), and patients with muscle injury are
comparatively at the high-risk of developing multi-organ failure,
including serious kidney and liver abnormalities (Mao et al.,
2020). Evidence also suggest the development of
rhabdomyolysis in rare cases, as a potential late complication
of SARS-CoV-2 infection (Jin and Tong, 2020). Although
electromyography and muscle imaging or histopathology is not
available to date, the available data suggests that SARS-CoV-2
infection may also likely cause viral myositis. Likewise, infected
patients may probably develop muscle weakness due to muscular
atrophy from critical illness myopathy and polyneuropathy, but
specifically constructed analyses are yet to be planned (Guidon
and Amato, 2020). Nevertheless, it is also plausible that various
skeletal muscle types may exhibit susceptibility to SARS-CoV-2
via ACE2 receptors expressed on the muscles (Fernandes et al.,
2010; Ferrandi et al., 2020), independent of the nervous system
involvement. Additionally, SARS-CoV-2 infection elicits the
release of cascade of cytokines, like IL-6, which can also
disrupt the muscle metabolic homeostasis and exacerbate
muscle loss (VanderVeen et al., 2019; Ferrandi et al., 2020).
Thus, muscle injuries may directly result from viral interaction
with ACE2 receptors on muscles and/or indirectly through
systemic cytokine mediated disruption and subsequent
homeostatic perturbation (Ferrandi et al., 2020), irrespective of
neuroinvasion.

Olfactory and Gustatory Dysfunctions
(Occurs Commonly in Mild Cases)
In light of expanding anecdotal evidence, the Centers for
Disease Control and Prevention (CDC) have revised the list
of symptoms of COVID-19 with the addition of sudden loss of
smell and taste to the triad of typical cough, fever, and difficulty
in breathing (CDC, 2020). An initial cross-sectional study (n �
59) reported that about 33.9% (n � 20) patients complained at
least one olfactory and gustatory disorders, while 18.6% (n � 11)
were found with both (Giacomelli et al., 2020). Taste alterations
were common (91%) in pre-hospitalized patients, whereas equal
frequency was observed in hospitalized cases (Giacomelli et al.,
2020). A multicenter study (n � 417) conducted in Europe
showed higher prevalence of olfactory (n � 357, 85.6%) and
gustatory (n � 342, 88.8%) dysfunctions (Lechien et al., 2020a).
This finding was consistent with the previous multicentre case-
control study (n � 79) revealing 80.6% (n � 25) cases of smell
disorders (of which 45.2% were anosmic) and 90.3% (n � 28)
cases of taste impairment (with 45.2% ageusia) (Beltrán-
Corbellini et al., 2020). Among the olfactory disorders, 20.4
(n � 73) and 79.6% (n � 284) cases were hyposmic and anosmic
respectively. Notably, of the 76 patients (18.2%) without
rhinorrhea or nasal obstruction, 79.7% were either hyposmic
or anosmic, which implies that inflammation and obstruction of
the nasal mucosa are not the only underlying cause of smell
dysfunction. On the other hand, the gustatory dysfunctions
represented either a reduction/discontinuation of taste (78.9%)
or distorted taste ability (21.1%) towards different flavours.
Following this, another study reported a prevalence of 64.4%
among 202 enrolled patients (Spinato et al., 2020). Boscolo-
Rizzo et al. have also provided the first insight into the anosmia
and hypogeusia associated with mild cases of COVID-19 in Italy
(Boscolo-Rizzo et al., 2020). A similar survey with 204 COVID-
19 patients using Italian Sino-Nasal Outcome Test 22 (I-SNOT-
22) demonstrated taste reduction in 55.4% and smell
impairment in 41.7% of the subjects with only 7.8% cases of
nasal obstruction (Mercante et al., 2020). Although follow-up of
these aforementioned studies provides promising evidence of
self-recovery subjective to smell and taste impairment without
the aid of any medical intervention, certain populations may be
likely presented for further treatment of unresolved symptoms.
Interestingly, the olfactory and gustatory dysfunctions
associated with SARS-CoV-2 infection are often the first
apparent symptom and mostly atypical to the other viral
infections i.e., without rhinorrhoea or nasal obstruction
(Spinato et al., 2020).

Headache (Occurs Commonly in Mild
Cases)
Headache is one of the common symptoms associated with viral
infections alongside fever. A meta-analysis of 59,254 cases
reported headache as the fifth most common symptoms (n �
3,598, 12%) in COVID-19 patients, after fever, cough, myalgia,
and dyspnea (Borges do Nascimento et al., 2020). Another
retrospective, observational studies from China reported a
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similar incidence (n � 28 out of 214, 13.1%) of headache (Mao
et al., 2020). On the other hand, a higher prevalence (70.3%) was
observed in a European epidemiological study conducted in 1,420
mild to moderate patients (Lechien et al., 2020b). Therefore, this
large variation in the data among the Asians and Europeans
require more careful surveillance of the epidemiological impact.
Notably, a report from a Spanish neurologist who himself
suffered from COVID-19, described three different forms of
headache as experienced in his clinical case (Belvis, 2020).
Being a headache expert, he concluded that even though
several types of headache appear (may be associated with
cytokine storm) during the SARS-CoV-2 infection, but it
seems to be underestimated due to the overemphasis on severe
respiratory problems. Interestingly, correspondence from Japan
has raised the concern on the headache as a probable
manifestation of encephalitis or other viral meningitis, which
subsequently express itself in the form of seizures and drowsiness
(Moriguchi et al., 2020). Particularly, a 24-year-old young patient
with no travel history presented progressive headache, fatigue,
and seizures as general symptoms of paranasal sinusitis,
encephalitis, post-convulsive encephalitis, and hippocampal
sclerosis as determined by brain MRI. Although his RT-PCR
test was negative for a nasopharyngeal swab, a CSF sample tested
positive for SARS-CoV-2 RNA indicating the possible viral
neuroinvasion (Moriguchi et al., 2020). Therefore, attention is
required to determine the pathogenesis underpinning the
headache-like symptoms, though they may appear to be
simple symptoms in the COVID-19. Moreover, careful pain
management should be practiced as there is no recommended
specific treatment for such cases.

Delirium and Impaired Consciousness
(Occurs Commonly in Severe Cases)
COVID-19-related delirium and impairment of consciousness
are probably due to septic-associated encephalopathy, probably
caused by systemic inflammatory response syndrome. A study
reported agitation (likely a hyperkinetic delirium) in 69% patients
(n � 40/58) on the withdrawal of neuromuscular blockers.
Subsequently, about 36% patients exhibited dysexecutive
syndrome- exhibiting disorientation, attention deficit, and
impaired movement at the time of discharge (Helms et al.,
2020a). The COVID-19 and Frailty (CO-FRAIL) study
described delirium to be associated more likely with the
duration of hospital stay, ICU admission, and the use of
ventilators. As per the study, 234 patients (33%) showed
delirium, of which 12% subjects were having the pre-
hospitalized conditions. Subsequently, about 55% subjects with
delirium (compared to 30% patients without delirium) have died
after hospitalization (Garcez et al., 2020). Another study from
Italy reported delirium-onset COVID-19 in 36.8% patients,
mostly with multiple comorbidities and advanced age (Poloni
et al., 2020). A bicentric cohort analysis also revealed a very high
prevalence (84.3%) of delirium in ICU subjects (Helms et al.,
2020b). An epidemiological study showed the development of
delirium in 11% patients, who also showed a higher prevalence of
epilepsy and dementia (Ticinesi et al., 2020). The COVID-19-

associated delirium should not be considered differently than the
delirium due to other causes, and the implementation of
appropriate delirium prevention and management measures at
the bedside must be a deliberate priority during the pandemic.
Mao et al. reported the presence of impaired consciousness in
14.8% subjects with severe COVID-19 as compared to the non-
severe cases (2.4%) (Mao et al., 2020). Interesting findings by
Chen et al. revealed that altered consciousness was comparatively
more frequent in the deceased patients (22%) than those who
eventually recovered (1%) from COVID-19. However, a distinct
definition of the term altered consciousness in the setting was not
stipulated (Chen T. et al., 2020).

Ischemic Stroke (Occurs Rarely)
The patients with severe COVID-19 demonstrated a higher
D-dimer level that suggests an altered state of the coagulation
system (Mao et al., 2020). A retrospective study with ICU
admitted COVID-19 patients (n � 184) revealed about 31%
incidence of thrombotic complications including acute
pulmonary embolism, ischemic stroke, deep-vein thrombosis,
and systemic arterial embolism (Klok et al., 2020). An Italian
study reported the occurrence of ischemic stroke in 2.5% cases,
which was the primary reason for requiring hospitalization
(Lodigiani et al., 2020). A similar study from the US reported
only 1.1% cases of acute ischemic stroke in hospitalized COVID-
19 patients (Jain et al., 2020). During the past months, several case
studies of ischemic stroke in COVID-19 subjects have been
reported (Barrios-López et al., 2020; Gunasekaran et al., 2020;
Moshayedi et al., 2020; Tunç et al., 2020; Viguier et al., 2020).
Notably, some of these cases may represent a causal link, and
therefore, specifically designed studies will be highly appreciated
in such cases.

Inflammatory Neuropathies (Occurs Rarely)
Evidence are emerging for typical acute inflammatory
polyneuropathies associated with the COVID-19 pandemic.
For instance, a case of fulminant polyradiculoneuritis
representing the Guillain-Barré-Syndrome (GBS) with locked-
in syndrome in a COVID-19 patient was recently reported
(Pfefferkorn et al., 2020). Previously, the first report (self-
claimed) of GBS was described in a COVID-19 patient
exhibiting acute progressive ascending symmetric quadriparesis
as a symptom (Sedaghat and Karimi, 2020). Another report
described two rare cases of polyneuritis cranialis and Miller
Fisher syndrome associated with SARS-CoV-2 infection
(Gutiérrez-Ortiz et al., 2020). The treatment of the subjects
included acetaminophen and IV immunoglobulin (IVIg), and
complete recovery of both the patients was observed within
2 weeks of the treatment. Similarly, the cranial neuropathies
i.e., diplopia and ophthalmoparesis in two COVID-19 patients
having abnormal perineural and cranial nerve palsy were also
reported (Dinkin et al., 2020). A case series also described GBS in
five patients following the onset of COVID-19 (Toscano et al.,
2020). Very recently, clinicoradiologic evaluation, diagnosis,
clinical progression, and multidisciplinary management of a
COVID-19 patient with a recognized GBS subtype, bifacial
weakness with paresthesia is also reported (Hutchins et al.,
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2020). Notably, a recent case study highlighted the association of
GBS in an 11-year child with severe COVID-19 condition
(Khalifa et al., 2020). Future studies are expected to determine
the clinical as well as electrophysiological characteristics of
COVID-19-associated GBS and its variant along with the
establishment of their causal relationship. However, the
treatment of para- or post-COVID-19 GBS is similar to that
of other inflammatory neuropathies.

Other Rarer Neurologic Manifestations
Apart from the above discussed neurologic complications, some
of the rare cases of neurologic manifestations were also reported,
including cerebral venous thrombosis (Hemasian and Ansari,
2020; Hughes et al., 2020; Poillon et al., 2020), intracerebral
hemorrhage (Al-olama et al., 2020; Carroll and Lewis, 2020;
Sharifi-Razavi et al., 2020), status epilepticus (Balloy et al.,
2020; Somani et al., 2020; Vollono et al., 2020), generalized
myoclonus (Rábano-Suárez et al., 2020), seizures (Anand et al.,
2020; García-Howard et al., 2020), acute epileptic encephalopathy
(Mahammedi et al., 2020), hemorrhagic posterior reversible
encephalopathy syndrome (Franceschi et al., 2020), acute
necrotizing encephalopathy (Dixon et al., 2020), steroid-
responsive encephalitis (Pilotto et al., 2020), diffuse
leukoencephalopathy (Radmanesh et al., 2020; Sachs et al.,
2020), neuroleptic malignant syndrome (Kajani et al., 2020),
and post-infectious transverse myelitis (Munz et al., 2020).
Similar evidence are growing on the association of
meningoencephalitis with COVID-19 (Chaumont et al., 2020;
Dogan et al., 2020; Duong et al., 2020; Mardani et al., 2020).
Concerns have been raised on the development of multiple
sclerosis in COVID-19 patients as well (Bowen et al., 2020;
Louapre et al., 2020). However, the full scope of COVID-19
complications in multiple sclerosis patients remains to be defined.
Among all these complications, seizures are observed quite
commonly in the elder patients; but it may not be directly
related to the SARS-CoV-2 infection. It has been suggested
that patients with critical COVID-19 exhibiting mental
complications must be subjected to continuous EEG
monitoring for the possible occurrence of nonconvulsive status
epilepticus (Asadi-Pooya and Simani, 2020). Although numerous
cases have been reported on COVID-19 associated seizures/
epilepsy in the past months, it is of utmost importance to
validate the possible drug-drug interactions between
antiseizure drugs (particularly phenytoin, phenobarbital,
carbamazepine, and primidone) and the drugs used for the
treatment of COVID-19 (Orsucci et al., 2020). However, more
epidemiological data are required to establish a direct causal
relationship between COVID-19 and the above-mentioned rarer
neurological characteristics.

Psychological Impact
The advent of the pandemic surged distress around illness,
mortality, and uncertainty about the future amidst the general
public and COVID-19 patients along with a consequential
alteration in psychosocial behavior. Additionally, lockdown
implementation, loss of organized educational framework, high
unemployment rate, and social distancing further contribute

towards the increase in the detrimental mental issues (Kola,
2020; Moreno et al., 2020; Pfefferbaum and North, 2020).
Mental illness itself possesses the greatest threat to the daily
habits, lifestyle, socioeconomic status as well as mortality and
morbidity associated with COVID-19 (Walker et al., 2015), which
also affects the clinical outcomes. Furthermore, altered
psychology can cause abnormal perception and thinking,
impaired social behavior, delusions, hallucinations, cognitive
dysfunction, and social isolation that may result in poor
treatment adherence, and non-seeking of health care facilities.
Patients with a serious mental illness ultimately live a
compromised quality of life (Evans et al., 2007). Patients with
a pre-existing severe mental illness shown to have 2-3 folds higher
risk for severe clinical outcomes as compared to patients with no
history of mental disabilities (Lee et al., 2020). A cross-sectional
study reported the psychological impact of SARS-CoV-2
infection in Spain. It revealed that about 21.6, 18.7, and 15.8%
patients were diagnosed with anxiety, depression, and post-
traumatic stress disorder (PTSD), respectively. In addition to
that personal economic condition, retirement, and age factor also
contributed to the progression of anxiety, depression, and PTSD
(González-Sanguino et al., 2020). A meta-analysis showed the
prevalence of anxiety (23.2%) and depression (22.8%) with
variability among males and females (Pappa et al., 2020).
Another study disclosed a higher psychological impact on
younger people and comorbid patients (Ozamiz-Etxebarria
et al., 2020). Moreover, unjustified fear of COVID-19 leads to
elevated anxiety among the general population and in comorbid
patients leading to stigmatization and discrimination (Mowbray,
2020). Bao et al. suggested the development of mental health
screening programs as well as the implementation of such
interventions for both the healthcare workers and the public
(Bao et al., 2020). Notably, the COVID-19 outbreak has brought
new ventures in psychological treatment as the interface of
COVID-19 and psychiatry is relevant to infected and non-
infected patients. Even though lockdown instigation led to the
teleconsultation, there is a necessity for proper close-up
monitoring and management of the medication-related
adverse events.

NEUROLOGIC IMPLICATIONS
ASSOCIATED WITH OFF-LABEL USE OF
DRUGS AGAINST COVID-19
To date, no effective therapeutic interventions have been
approved for the SARS-CoV-2 infection. As per the Infectious
Diseases Society of America (IDSA) Guidelines on the Treatment
and Management of Patients with COVID-19, interventions
containing chloroquine (CQ), hydroxychloroquine (HCQ),
teicoplanin, ivermectin, tocilizumab, lopinavir/ritonavir (LPV-
r) combination, and convalescent plasma therapy are to be
considered only in the clinical trial settings. Similarly, drugs
like remdesivir, favipiravir, and corticosteroids are undergoing
investigations for COVID-19 management, particularly in
hospitalized or critically ill patients. Some Chinese guidelines
also recommended the use of umifenovir (Arbidol), intravenous
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immune globulin (IVIG), and nebulized interferon-α in the
COVID-19 treatment (Dong et al., 2020; Jin Y.-H. et al.,
2020). Importantly, some of these experimental drugs have
been reported to possess certain neurologic adverse drug
reactions (ADRs), which are discussed below (Table 1).

Chloroquine and Hydroxychloroquine were both originally
developed as antimalarial agents that act by averting the
acidification of endosomes to interfere with the cellular
functions and/or interfere with the binding of the virus to the
ACE2 receptor (Borah et al., 2020). Although in vitro studies
suggest the potential of HCQ against SARS-CoV-2, but in vivo
data are still lacking. Apart from the cardiovascular side effects,
several other reports also suggest the possible adverse neurologic
reactions associated with the CQ/HCQ usage. For instance, the
CQ-induced psychosis was first observed in 1958 (Burrell and
Martinez, 1958). CQ administration also exhibited the induction
of seizures in some patients. These CQ-induced seizures are
suggested to be a possible idiosyncratic reaction (Luijckx et al.,
1992; Krzeminski et al., 2018). Similarly, HCQ can also lower the
seizure threshold, and thus interact with certain antiepileptic
drugs like lacosamide and lamotrigine (Fish and Espir, 1988).
Extrapyramidal disorders like Parkinsonism, dystonias, and
oculogyric crisis were also demonstrated to be associated with
CQ/HCQ administration (Parmar et al., 2000; Busari et al., 2013).
Previous studies also reported the CQ-induced (dose-
independent) psychotic features like anxiety, agitation, irritable
or blunted mood, and bipolar mood disorder, accompanied by
hallucination, derealization, and positive symptoms (Biswas et al.,
2014). Reversible vacuolar myopathy is the common type of
myopathy associated with the use of CQ/HCQ. Moreover, the
CQ/HCQ-induced myopathy is further contributed by factors
like Caucasian ethnicity, renal failure, connective tissue disorders,
long-term corticosteroid therapy, and co-administration of
proton pump inhibitors, statins, and myotoxic agents (Khosa
et al., 2018). Additionally, dose-dependent retinopathy and
maculopathy are also related to CQ administration,
particularly in elder patients. A daily dose comprising more

than 4 mg/kg/day may precipitate such conditions (Elman
et al., 1976). HCQ is well known to aggravate the myasthenia
gravis and therefore, contraindicated in those patients.
Interestingly, CQ/HCQ-induced ototoxicity like loss of
hearing, vertigo, tinnitus, and disequilibrium, may mimic
stroke-like condition in COVID-19 patients (Hadi et al., 1996;
Khalili et al., 2014). Due to the prompted systemic adverse events,
a novel non-systemic low-dose aerosol formulation with 2–4 mg/
inhalation dose has been suggested to minimize the ADRs related
to CQ/HCQ usage (Klimke et al., 2020). Several mechanisms have
been proposed for the pathogenesis of HCQ-induced
neuropsychiatric events, such as inhibition of serotonin
transporter, N-methyl-D-aspartate (NMDA) antagonism,
acetylcholinesterase inhibition, and gamma aminobutyric acid
(GABA) antagonism (Good and Shader, 1977). The metabolism
of both CQ and HCQ is mainly done by the CYP3A4 enzyme,
therefore, CYP3A4 inhibitors like fluvoxamine could raise the
plasma levels and further potentiate the adverse effects. On the
other hand, CYP3A4 inducers like oxcarbazepine,
carbamazepine, and modafinil, could reduce the plasma levels
of CQ and HCQ and render them less effective. As the half-life of
HCQ is comparatively longer (40 h), the potential adverse effects
may last for days after the discontinuation of the drug (Browning,
2014). Azithromycin, an antibacterial drug has been investigated
in conjunction with CQ or HCQ in several clinical trial settings.
This drug is also known to precipitate certain neuropsychiatric
events like headache, dizziness, vertigo, catatonia, psychotic
depression, delirium, anxiety, and somnolence (Ginsberg,
2006). Interestingly, CQ, HCQ and azithromycin, all can
interfere with the heart conduction system and may lead to
prolonged QT interval, blockade of bundle conduction,
atrioventricular blockade, and torsades de pointes (Leitner
et al., 2010; McGhie et al., 2018). Therefore, caution should be
practiced while combining these drugs with psychotropic agents
that affect the QT interval.

LPV-r co-formulation is used in the treatment of HIV-1
infection. The co-administration of ritonavir enhances the

TABLE 1 | The potential mechanism(s) and neurologic adverse effects of the COVID-19 therapies.

Drug Mechanism(s) Neurologic adverse effects

CQ Alteration of acidification of endosomes to interfere with the cellular
functions, interfere with the binding of virus to the ACE2 receptor,
inhibition of cytokine effect

Psychosis, anxiety, agitation, irritable or blunted mood, seizure, bipolar
mood disorder, delirium, reversible vacuolar myopathy, extrapyramidal
disorders (Parkinsonism, dystonias and oculogyric crisis), ototoxicity

HCQ Ataxia, loss of hearing, vertigo, dizziness, tinnitus, psychosis, reversible
vacuolar myopathy, seizure

Azithromycin No direct mechanisms. Given as adjunct to CQ/HCQ against
community-acquired pneumonia (CAP)

Headache, dizziness, vertigo, catatonia, psychotic depression, delirium,
anxiety, somnolence

Lopinavir/Ritonavir
(LPV-r)

Inhibition of protease agitation, abnormal dreams, confusion, anxiety, emotional disturbances,
neurotoxicity, paresthesias, taste alterations

Tocilizumab IL-6 inhibition Headache, dizziness, peripheral neuropathy, leukoencephalopathy,
cognitive impairment, demyelinating disorders, depression

Corticosteroids Modulation of hyper-inflammatory state and regulation of immune
responses

Agitation, anxiety, depression, delusion, hallucinations, seizure, acute
steroid myopathy, myalgia

Interferon α Modulation of immune responses Anxiety disorders, fatigue, apathy, irritability, mood disorders, cognitive
deficits, suicidal tendency, sleep disturbances

Umifenovir Interfere with the clathrin-mediated endocytosis Dizziness, acute psychiatric symptoms
Favipiravir Selective inhibition of RNA-dependent RNA polymerase (RdRP) Psychiatric reactions

CQ, Chloroquine; HCQ, Hydroxychloroquine. The possible drug-drug interactions can be checked at https://www.covid19-druginteractions.org.
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half-life of lopinavir (mainly a protease inhibitor) by inhibiting
CYP450 metabolism (Borah et al., 2020). A Korean study showed
viral load reduction in a COVID-19 patient with LPV-r therapy
(Lim et al., 2020), but another randomized, open-label trial
demonstrated no significant therapeutic benefit of it (Cao
et al., 2020). Although there is limited data on
neuropsychiatric adverse events, the manufacturer suggests the
possible effects like agitation, abnormal dreams, confusion,
anxiety, and emotional disturbances associated with the drug
(FDA, 2016). Moreover, protease inhibitors are well known to
cause neurological adverse effects, such as neurotoxicity,
paresthesias, and taste alterations (Abers et al., 2014). Notably,
protease inhibitors are highly metabolized by the cytochrome
P450 enzymes, and therefore, demonstrate drug-drug interaction
with many drugs, including the psychotropic agents, which are
major substrates for the CYP isoenzymes (Goodlet et al., 2019).
The use of LPV-r is contraindicated with drugs like midazolam,
triazolam, and pimozide, because it may potentiate the adverse
effects by enhancing the concentrations of co-administered
drugs. Thus, the use of benzodiazepines like lorazepam,
temazepam, or oxazepam, which are independent of CYP
metabolism, is recommended in such cases. On the contrary,
ritonavir-co-formulated protease inhibitors also lower the drug
concentration of few psychotropic agents including bupropion,
lamotrigine, methadone, and olanzapine, due to glucuronidation
effects or CYP metabolism (Goodlet et al., 2019). Therefore, the
clinicians should carefully assess the potential drug-drug
interactions to prevent unintentional adverse effects.

Tocilizumab is a monoclonal antibody approved for the
treatment of rheumatoid disorders and chimeric antigen
receptor-T cell (CAR-T)-mediated CRS (NIH, 2020). Based on
the preliminary evidence, China recommended the use of
tocilizumab in severe or critical COVID-19 cases (National
Health Commission and State Administration of and
Traditional Chinese Medicine, 2020). However, the National
Institutes of Health (NIH) Panel recommended against the
tocilizumab usage stating that there is no adequate data
regarding its efficacy (NIH, 2020). Tocilizumab demonstrated
very poor CNS penetrating ability (Nellan et al., 2018). Although
no severe neurologic ADRs have been reported with tocilizumab
usage, but headache, dizziness, peripheral neuropathy,
hypertension, leukoencephalopathy, cognitive impairment,
gastrointestinal perforations, hypersensitivity reactions,
including anaphylaxis and demyelinating disorders may occur
in certain patients (Tanaka et al., 2010; Sheppard et al., 2017;
Farooqi et al., 2020). Study conducted on patients with
rheumatoid arthritis exhibited the tocilizumab-associated
depressive symptoms (Singh et al., 2011; Harrold et al., 2017).
Moreover, cases of multifocal cerebral thrombotic
microangiopathy are also rarely observed (Jewell et al., 2016).

Corticosteroids are also known to modulate hyper-
inflammatory state and regulate immune responses that are
necessary for the host defense mechanisms. The corticosteroid
administration in COVID-19 patients is recommended on a case-
by-case basis based on drug indications, illness severity, and
comorbid conditions (Borah et al., 2020). Although strong
recommendation on the routine use of systemic corticosteroids

in mechanically ventilated COVID-19 patients without ARDS is
provided, the use of systemic corticosteroids in the treatment of
hospitalized COVID-19 patients is not advised (WHO, 2020a).
On the other hand, low-dose corticosteroid therapy is prescribed
in adult COVID-19 patients with refractory shock (NIH, 2020).
However, several corticosteroid-associated neurologic ADRs
have been previously reported. Corticosteroid administration
could induce mood disorders including agitation, anxiety, and
depression (Ou et al., 2018). Therefore, clinical pharmacists and
neurologists should be aware of such ADRs in COVID-19
patients with ARDS, particularly those with a history of stroke
treated with corticosteroids. Similarly, corticosteroids may also
induce dose-dependent psychiatric illness like delusion and
hallucinations in older patients with a stroke experience
(Patten and Neutel, 2000; Wada et al., 2001; Hodgins et al.,
2018). In addition to these, corticosteroid therapy may rarely
trigger the convulsions by acting on mineralocorticoid receptors
(Jaenisch et al., 2016). Prolonged high-dose steroid therapy could
also present acute steroid myopathy and myalgia (Sun and Chu,
2017). Since these adverse reactions may occur in SARS-CoV-2
infection, close monitoring of the patients during corticosteroid
therapy is an important pre-requisite.

Interferons (IFNs) are glycoproteins having potential
immunomodulatory and hormone-like functions (Jacobs and
Johnson, 1994). Both IFNα and IFNβ have been considered as
a potential therapy against COVID-19, particularly in
combination with ribavirin (Lu et al., 2020). Notably, IFNα
comes with a boxed warning stating “life-threatening or fatal
neuropsychiatric disorders” (FDA, 2017). This represents
particular events such as anxiety disorders, fatigue, apathy,
irritability, mood disorders, cognitive deficits, suicidal
tendency, and sleep disturbances (Davoodi et al., 2018). On
the other hand, neuropsychiatric adverse effects of IFNβ
include fatigue and myalgia (Reder and Feng, 2014).
Considering the significant neuropsychiatric adverse effects of
IFNα, the clinicians should scrutinize the psychiatric history
of the patient followed by close monitoring for the emergence
of such symptoms. It is suggested that the concurrent use of
psychotropic agents such as carbamazepine, clozapine, and
valproate should be carefully evaluated for bone marrow
suppression. Apart from this, the use of bupropion in
conjunction has been implicated in the initiation of seizures
(Ahmed et al., 2011).

Few other drugs such as remdesivir, umifenovir, and
favipiravir are also undergoing clinical investigations.
However, very little is known about the potential neurologic
side effects associated with these drugs. Remdesivir is a
comparatively well-tolerated drug with less serious adverse
reactions. Umifenovir (Arbidol) is known to induce dizziness
and acute psychiatric symptoms but is generally considered as a
safe and well-tolerated agent. Similarly, favipiravir might also
rarely provoke drug-associated neuropsychological
complications (Ghasemiyeh et al., 2020). Most importantly,
the potential drug-drug interactions must be considered
during the concomitant use of other agents used for the
management of the coexisting neuropsychiatric conditions. For
detailed information, the guidance on potential drug-drug

Frontiers in Molecular Biosciences | www.frontiersin.org February 2021 | Volume 8 | Article 62772311

Borah et al. Neurological Consequences of SARS-CoV-2

https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


interactions can be found on the website of the University of
Liverpool (https://www.covid19-druginteractions.org.)

CONCLUSION

Although considerable surveillance data have been gathered
regarding the direct respiratory damage caused by SARS-CoV-
2, the emerging evidence revealed the involvement of the nervous
system in the pathogenesis of the COVID-19. The COVID-19-
associated neurological manifestations may range from mild
symptoms, such as dizziness and headache to severe
complications like stroke and encephalitis. Hypothetically,
SARS-CoV-2 may affect CNS either by direct mechanisms like
neuronal retrograde and hematogenous dissemination or via
indirect pathways. However, the patients with neuroinvasion
in the early stages of infection may remain unidentified and
misdiagnosed, which may further contribute to the inadvertent
spread of the virus. Though the precise neuropsychiatric burden
of SARS-CoV-2 infection is yet to be deciphered, it is expected to
have a substantial impact for several years to come. Taking the
present scenario of SARS-CoV-2 infection and casualties into
consideration, it is imperative to elucidate the neurologic
involvement in the disease progression. The brain autopsy may
be considered as a valuable facet in identifying the potential
neuroinvasive mechanisms of the virus. The limited data
available in the literature on the COVID-19-associated
neuropsychiatric manifestations and sequelae also indicates the
under-reporting of such cases in the setting of co-existing
predominant cardiopulmonary complications, which make it
quite difficult to accomplish comprehensive neurological
investigations, especially in severe COVID-19 cases where the
concurrence of such complications may be more common.
Furthermore, severe or critically ill COVID-19 patients are kept
under strict isolation, where obtaining neuroimaging data is
limited or restricted. Thus, a close follow-up of the subjects
remains constrained. Nevertheless, continuous efforts should be
made to tackle these hurdles to better illustrate the pathogenesis of
SARS-CoV-2, and its neurotropic as well as neuroinvasive
potential. Optimistically, these findings will help the clinicians
to identify plausible neurobiological targets and detect the early
signs of neuropsychiatric complications to prompt therapeutic
interventions before the irreversible neurologic injury.
Moreover, a systematic neurological follow-up of the recovered
patients may warrant a better understanding of the neurological
sequelae of the viral infection. Most importantly, emphasis should
be given to creating awareness among the general public to reduce
the negative social attitude and extreme fear associated with the

COVID-19 pandemic, which will undoubtedly improve the social
and mental well-being of the people.

While the entire world eagerly awaits a potent and effective
prophylactic intervention, the current management approaches
are mainly focused on drug-based treatments. The therapeutic
potential of certain repurposed drugs has led to their off-label use
against COVID-19. Unfortunately, the associated clinical
neuropsychiatric adverse events of some of these drugs remain
a critical issue. Moreover, patients prescribed with these
treatments are often hospitalized or seriously ill, and also
receiving concomitant medications. Thus, these potential
COVID-19 drugs may also interact with the concomitant
medications prescribed for pre-existing or concurrent
neuropsychiatric diseases, thereby, further complicating the
condition. Therefore, COVID-19 represents a major threat to
the field of neuropsychiatry, as both the virus and the potential
therapies may induce neurologic as well as psychiatric disorders.
Keeping this in mind, the neuropsychologists must be
accustomed to the neuropsychiatric consequences of SARS-
CoV-2 as well as the prescribed drugs, and potential drug-
drug interactions of the concomitant medications. Particularly,
the neuropsychologist treating COVID-19 patients should review
all the medications and monitor the possible neuropsychiatric
adverse events related to the medications such as HCQ or
corticosteroids, to differentiate the primary and secondary
(drug-induced) psychiatric complications.
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