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abstract

PURPOSE The prognosis of patients with non–small-cell lung cancer (NSCLC), traditionally determined by
anatomic histology and TNM staging, neglects the biological features of the tumor that may be important in
determining patient outcome and guiding therapeutic interventions. Identifying patients with NSCLC at in-
creased risk of recurrence after curative-intent surgery remains an important unmet need so that known effective
adjuvant treatments can be offered to those at highest risk of recurrence.

METHODS Relative gene expression level in the primary tumor and normal bronchial tissues was used to
retrospectively assess their association with disease-free survival (DFS) in a cohort of 120 patients with NSCLC
who underwent curative-intent surgery.

RESULTS Low versus high Digital Display Precision Predictor (DDPP) score (a measure of relative gene ex-
pression) was significantly associated with shorter DFS (highest recurrence risk; P = .006) in all patients and in
patients with TNM stages 1-2 (P = .00051; n = 83). For patients with stages 1-2 and low DDPP score (n = 29),
adjuvant chemotherapy was associated with improved DFS (P = .0041). High co-overexpression of CTLA-4, PD-
L1, and ICOS in normal lung (28 of 120 patients) was also significantly associated with decreased DFS
(P = .0013), suggesting an immune tolerance to tumor neoantigens in some patients. Patients with DDPP low
and immunotolerant normal tissue had the shortest DFS (P = 2.12E–11).

CONCLUSION TNM stage, DDPP score, and immune competence status of normal lung are independent
prognostic factors in multivariate analysis. Our findings open new avenues for prospective prognostic as-
sessment and treatment assignment on the basis of transcriptomic profiling of tumor and normal lung tissue in
patients with NSCLC.
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INTRODUCTION

Lung cancers are classified into two major subtypes,
small-cell lung cancer and non–small-cell lung cancer
(NSCLC), with the latter accounting for approximately
80% of all primary lung cancers.1 NSCLC, a leading
cause of cancer deaths, represents a heterogeneous
group of neoplasms, mostly comprising squamous cell
carcinoma (SCC), adenocarcinoma (AC), and large-
cell carcinoma (LCC).2

The histology and TNM staging system on the basis of
tumor size, nodal involvement, and the presence of

distant metastases are the current standard for
prognostication.3-6 At diagnosis, there is a strong
correlation between the tumor stage and survival.
Patients with stage 1 tumors at diagnosis are usually
cured by surgery alone, with a 5-year survival rate of
90%. The 5-year survival rate of patients with stage 2
tumors drops to 44%.4,5 Adjuvant chemotherapy is
recommended for patients considered at high risk of
recurrence (commonly stage 2 and 3A), even if only
5%-7% of such patients actually benefit.7-9 It is thus
critical to identify those patients with early-stage dis-
ease at high risk of recurrence after surgery who might
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have the greatest potential to benefit from postoperative
adjuvant therapy.

Despite the considerable number of studies reporting bi-
ological characteristics correlating with outcomes, such as
TP53, EGFR, and RAS mutations10 as well as gene
expression-based markers for lung cancer,11 there is still no
consensus on prognostic and predictive molecular signa-
tures that are useful in the clinic12 related in part to high
interpatient basal gene expression variability that con-
founds interpretation of tumor gene expression
profiling.13,14 Meanwhile, immune checkpoint inhibitors are
now demonstrating efficacy in the perioperative setting,
stressing the need for a better stratification of patients.15-17

Our hypothesis is that the risk of recurrence after surgery
can be identified by differences in gene expression be-
tween tumor and normal lung tissue and expression of
immune genes in the normal lung tissue. We, therefore,
performed a novel transcriptomic analysis of matched tu-
mor and normal lung tissues from patients with resected
NSCLC18 that enables control of interpatient variability of
the basal level of gene expression.

METHODS

Study Rationale Design

Wehypothesized that two key biological factors could explain
the risk of recurrence of patients with early-stage NSCLC
after curative-intent surgery: (1) differential gene expression
between tumor and normal lung tissues from the same
patient that indicate activatedmolecular pathways, using the
Digital Display Precision Predictor (DDPP) method19 and (2)
immune-competent versus immune-tolerant status of the
host assessed by the level of activation of the immune
regulatory genes programmed death-ligand 1 (PD-L1) and
cytotoxic T-cell lymphocyte (CTLA)-4 in normal lung thatmay
limit the immune response to tumor cells.20 An immune-
competent profile would enable elimination of circulating
tumor cells released during surgery and of established
micrometastases by activated immune cells.21,22 Conversely,

activated immune checkpoints PD-L1 and CTLA-4 may
dampen the antitumor responses triggered by the T cells that
recognize tumor neoantigens.

Patients and tissue samples. This in-silico study used data
generated and published by the European Union-funded
(FP6) Integrated Project CHEMORES.18 CHEMORES was an
observational study that followed 123 early-stage patients
with NSCLC who underwent surgery at the Institut Mutualiste
Montsouris between January 2002 and June 2006. Patients
were treated with surgery alone (n = 62) or surgery followed
by adjuvant chemotherapy (n = 61) and were followed for up
to 92 months after surgery, when the last patient relapsed.
Tumor and normal lung tissues obtained from surgical re-
section were handled according to the Tumor Analysis Best
Practices Working Group.23 DNA sequencing, differential
gene expression between tumor and normal fresh frozen
tissues, and outcomes were available. A full description of
the genomic investigation is available in Ref. 18.

Ethics. The biobanking study was approved by the Institut
Mutualiste Montsouris’s Ethics Committee.

Computational and statistical analyses. The statistical
analysis was conducted using Knime (Konstanz Informa-
tion Miner), a graphical environment for data analysis
pipeline development using R code snippets as required.24

The complete Knime workflow is available upon request.
Multiple comparison correction was performed on the
P values using false discovery rate25, and genes with a false
discovery rate, 0.05 were considered significant. Patients
were classified on the basis of the DDPP score19 or ex-
pression levels (high v low) of particular immune check-
point genes using k-mean clustering (k = 2). Survival
analysis was carried out in R on the 120 patients with
NSCLC who had full clinical data available using univariate
and multivariate Cox regression models (packages survival
and survminer).26,27

DDPP algorithm. DDPP is a novel tool that relates the dif-
ferential expression of genes in tumor versus normal tissue
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to clinical outcome of patients with cancer of any
histology.19 The full transcriptome (approximately 19,500
genes) was analyzed for tumor and normal bronchial tissue
of each patient and correlated (Pearson correlation) with
the disease-free survival (DFS). The most significant set of
genes (on the basis of P value and correlation coefficient)
were selected as the correlator for each histology and
chemotherapy group: AC_no-chemotherapy (NC), AC_
chemotherapy, SCC_NC, SCC_chemotherapy, LCC_NC,
and LCC_chemotherapy resulting in six different linear
regression correlators, one for each group. Detailed
methodology is presented in the Data Supplement.19

Expression of Immune Checkpoint Genes in Normal

Lung Tissues

To investigate the contribution of host immune status to risk
of recurrence, we examined expression of various immune
checkpoint genes in normal lung tissue from these patients.
For each gene, we classified each patient as high or low on
the basis of the expression level in the normal tissue. PD-
L1, CTLA-4, and ICOS showed the most significant vari-
ability (by Student’s t test): P = 5.61E–27, P = 2.1E–26, and
P = 2.78E–18, respectively, and were retained for corre-
lations with clinical outcome.

RESULTS

Transcriptomic data on 123 patients with NSCLC were
available, and full clinical data were available for 120 pa-
tients. The median age of patients in the CHEMORES study
was 63 years (range, 41-85 years); 89 patients (72%) were
men. The histologic subtypes of tumor were AC (n = 57),
SCC (n = 50), and LCC (n = 16), as shown in Table 1. TNM
distribution was stage 1—56 patients (46%); stage 2—27
(22%); stage 3—32 (26%); stage 4—5 (4%), and
undetermined—3 (2%). The patients with stage 4 were
clinical stage 3 before surgery but were upstaged on the
basis of surgical findings (Table 1).

At the discretion of the treating oncologist, adjuvant
platinum-based chemotherapy was administered to 61
patients, of whom 33 had AC (54%), 18 SCC (30%), and 10
LCC (16%). The remaining 62 patients were treated with
surgery only, of whom 24 had AC (39%), 32 SCC (51%),
and six LCC (10%). DFS after surgery ranged from 3 to
92 months.

Identification of Tumor Biomarkers Associated With

Outcome Using DDPP

We analyzed the whole transcriptome by correlating for
each gene the differential expression in tumor versus
normal lung with the DFS observed in each patient treated
by surgery only or by surgery followed by adjuvant che-
motherapy and identified six specific gene expression
signatures, one per histology and treatment group. The
detailed methodology on the basis of DDPP is presented in
the Data Supplement. Figure 1 shows the optimal predictor
identified for each histology and treatment group, the

composition of genes of each specific predictor, and the
correlations with DFS (P value and correlation coefficients
as well as the linear equations linking gene expression to
outcome).

The cutoff for low versus high DDPP was determined by k-
means clustering (k = 2), as described in the Data Sup-
plement; 75 patients were classified as DDPP high and 45
patients as DDPP low while the DDPP threshold was
identified as approximately –5.7 months (the DDPP-high
group was ranged from –5.61 to 94.36 while the DDPP-low
group was ranged from –47.44 to –5.86).

TABLE 1. Demographic, Clinical-Pathological, and Mutation Profile
Characteristics of the CHEMORESNon–Small-Cell Lung Cancer Cohort
(n = 123, 3 patients of 123 had no available TNM staging data)

NSCLC, No. (%) 123 (100)

Age, median (range) 63 (40.9-84.6)

Male, No. (%) 89 (72)

Smoking, No. (%)

Current 64 (52)

Former 51 (42)

Never 7 (6)

EGFRmut KRASmut TP53mut

Histology, No. (%)

AC 57 (46) 4 (7) 18 (32) 17 (30)

SCC 50 (41) 0 0 17 (34)

LCC 16 (13) 0 2 (12) 3 (19)

TNM stage, No. (%)

1 56 (46) 3 (5) 7 (13) 16 (29)

2 27 (22) 0 3 (11) 8 (30)

3 32 (26) 1 (3) 6 (19) 10 (31)

4 5 (4) 0 2 (40) 3 (60)

Undetermined 3 (2) 0 2 (67)

Adjuvant chemotherapy all, No. (%) 61 (50)

AC 33 (54)

SCC 18 (30)

LCC 10 (16)

No adjuvant chemotherapy all, No. (%) 62 (50)

AC 24 (39)

SCC 32 (51)

LCC 6 (10)

NOTE. Stage 4*: the patients were clinical stage 3 before surgery but
were upstaged on the basis of surgical findings. They remained
included in the study.
Abbreviations: AC, adenocarcinoma; EGFR, epidermal growth factor

receptor; LCC, large-cell carcinoma; NSCLC, non–small-cell lung
carcinomas; RAS, (Kirsten rat sarcoma viral oncogene homolog) proto-
oncogene, GTPase; SCC, squamous cell carcinoma; TP53, tumor
protein P53.
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FIG 1. Identification of DDPP predic-
tors of the DFS for patients with
non–small-cell lung cancer. Pearson
correlation plots of the DDPP predic-
tors with the DFS (in months) pre-
sented on x-axis. (A) 10-gene
predictor of DFS for 24 patients with
AC treated with curative surgery only;
y-axis: median value of log2-based
fold-changes tumor versus normal
multiplied by log1.1 on the basis of the
intensities in tumor values for each of
the genes selected; (B) 15-gene pre-
dictor of DFS for 32 patients with SCC
treated with surgery only; y-axis: mean
value of log2-based fold-changes tu-
mor versus normal multiplied by
log1.1 on the basis of the intensities in
tumor values for each of the genes
selected; (C) 5-gene predictor of DFS
for six patients with LCC treated with
curative surgery only; y-axis: mean
value of log2-based fold-changes tu-
mor versus normal multiplied by
log1.1 on the basis of the intensities in
normal values for each of the genes
selected; (D) 10-gene predictor of DFS
for 33 patients with AC treated with
curative surgery and adjuvant che-
motherapy; y-axis: mean value of log2-
based fold-changes tumor versus
normal multiplied by log1.1 on the
basis of the intensities in tumor values
for each of the genes selected; (E) 7-
gene predictor for 18 patients with
SCC treated with curative surgery and
adjuvant chemotherapy; y-axis: mean
value of log2-based fold-changes tu-
mor versus normal multiplied by
log1.1 on the basis of the intensities in
tumor values for each of the genes
selected; (F) 10-gene predictor of DFS
for 10 patients with LCC treated with
curative surgery and adjuvant che-
motherapy; y-axis: sum value of log2-
based fold-changes tumor versus
normal multiplied by log1.1 on the
basis of the intensities in tumor values
for each of the genes selected. AC,
adenocarcinoma; Cor, correlation;
DDPP, Digital Display Precision Pre-
dictor; DFS, disease-free survival;
LCC, large-cell carcinoma; N, normal;
PFS, progression-free survival; SCC,
squamous-cell carcinoma; T, tumor.

4 © 2022 by American Society of Clinical Oncology

Lazar et al



P = .0021

0.25

0.50

0.75

1.00

0 25 75 10050

Time (months)

DF
S 

(p
ro

ba
bi

lit
y)

Stage 1 Stage > 1

56 41 29 9 0

64 36 20 3 0

No. at risk:

P = .0280

0.25

0.50

0.75

1.00

0 25 75 100

Stage 1 + 2 Stage 3 + 4

83 57 9 0

37 20

Time (months)

40

9 3 0

No. at risk:

50

DF
S 

(p
ro

ba
bi

lit
y)

A B

P = .00098

0.25

0.50

0.75

1.00

0 25 75 100

Time (months)

DF
S 

(p
ro

ba
bi

lit
y)

DDPP high DDPP low

75 58 40 10 0

45 19 9 2 0

No. at risk:

50

P = .00051

0.25

0.50

0.75

1.00

0 25 75 100

Time (months)

DF
S 

(p
ro

ba
bi

lit
y)

Stage 1 + 2, DDPP high Stage 1 + 2, DDPP low

54 44 34 8 0

29 13 6 1 0

No. at risk:

50

C D

P = .0041

0.25

0.50

0.75

1.00

0 20 40 60

Time (months)

DF
S 

(p
ro

ba
bi

lit
y)

Stage 1 + 2, DDPP low, NC
Stage 1 + 2, DDPP low, 
chemotherapy

9 6 3 2 1 0 0 0

13 13 11 9 7 5 2 0

No. at risk:

P  = .1500

0.25

0.50

0.75

1.00

0 25 75 100

Time (months)

DF
S 

(p
ro

ba
bi

lit
y)

Stage 1 + 2, DDPP high, NC
Stage 1 + 2, DDPP high, 
chemotherapy

33 27 22 7 0

16 15 11 1 0

No. at risk:

50

E F

FIG 2. Stage and DDPP score Kaplan-Meier DFS probability plots. The DFS probability of patients: (A) diagnosed at stages 1 + 2 (blue line, median
48 months) and stages 3 + 4 (red line, median 27 months; P = .028 with a 95% CI); (B) diagnosed at stage 1 (continued on following page)
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The Kaplan-Meier (KM) analysis was used to visualize the
impact of TNM staging and the DDPP level (high and low)
on DFS. Figures 2A and 2B show that patients with low
TNM stages have significantly better DFS versus patients
with high TNM stages. Figure 2C demonstrates that DDPP-
low patients have a shorter DFS probability than DDPP-high
patients (P = .00098). We further investigated the com-
bination of TNM stage and DDPP score. When the analysis
is restricted to TNM stages 1 + 2 only, DDPP-low patients
have shorter DFS when compared with DDPP-high patients
(P = .00051, log-rank test; Fig 2D). Importantly, stage 1 + 2,
DDPP-low patients who received postoperative adjuvant
chemotherapy had a longer DFS than those who did not
(P = .0041, log-rank test; Fig 2E). In contrast, stage 1 + 2
DDPP-high patients did not benefit from postoperative
adjuvant chemotherapy (P = .15, log-rank test; Fig 2F).

Analytical validation of the findings. Specificity. To assess
the robustness and specificity of the DDPP predictors, we
performed random selections of 10 genes across the whole
transcriptome and correlated their relative expression with
DFS of the 24 patients with AC treated with curative surgery
only, repeating this analysis 100,000 times. None of the
random combinations of genes correlated significantly with
DFS.

Replicates. We performed bootstrap analyses on patients
with AC treated with curative surgery only (n = 24) to assess
the stability of the biomarker signature, reiterating 100,000
resampling combinatorial analyses. At each reiteration, 18
patients were selected randomly to constitute a training set
and were used to establish the correlator following the
DDPP algorithm methodology. The correlator was then
used to predict the DFS of the six patients left out. Reit-
erative experiments showed a high stability of the predictor:
In 75% of the reiterations, the correlator was stable and
identical with the correlator obtained on the entire AC
cohort. In the remaining 25%, there were slight variations in
the number of genes (seven to nine genes) retained in the
predictor. Furthermore, a significant correlation was ob-
served between the predicted and observed progression-
free survival (R = 0.75, P = 2E–26; Data Supplement).

Applying the methodology for each histology group without
separating into treatment groups (chemotherapy versus
nonchemotherapy) resulted in a poor predictor of DFS.

Expression of Immune Checkpoint Genes in Normal

Lung Tissues

Figure 3 shows the KM analysis incorporating the ex-
pression levels of PD-L1, CTLA-4, and ICOS alone or in
combination. None of the three genes alone was signifi-
cantly associated with DFS (Figs 3A and 3C).

DFS outcomes associated with CTLA-4 low versus CTLA-4
high status were not changed by the addition of high PD-L1
expression (Fig 3D) but became statistically significant in
the presence of high ICOS expression (Fig 3E). Indeed, the
median survival was 53 months (for CTLA-4 low, ICOS high
in normal lung tissue compared with only 25 months for
CTLA-4 high, ICOS high; P = .026; Fig 3E).

Patients with CTLA-4 high, PD-L1 high, and ICOS high in
normal lung tissue had the shortest median survival
(22.5 months) that was significantly different from patients
with CTLA-4 low, PD-L1 high, and ICOS high expression
(53 months; P = .0013; Fig 3F).

Combining DDPP Score and Normal Tissue

Immune Status

The KM DFS probability plots demonstrate that the highest
correlation with the DFS is provided by the combined as-
sessment of the three immune checkpoint genes in normal
lung tissue and the DDPP score (P = 2.12E–11; Fig 4A).

A key determinant of outcome was the status of CTLA-4.
Patients with low CTLA-4 expression in the presence of high
PD-L1 and high ICOS (in normal tissue) and high DDPP
score had the longest DFS compared with all others. The
Forest plot of multivariate hazard Cox regression analyses
(Fig 4B) shows that TNM, DDPP score, and immune status
of normal lung tissues are independent prognostic markers.

DISCUSSION

Lung cancer care is associated with poor outcome primarily
because of the advanced stage of disease at the time of
diagnosis and to limited effectiveness of currently available
anticancer drugs. The TNM staging and the tumor histology
constitute the current standard criteria for prognostication.3-5

Adjuvant chemotherapy after surgical resection has been
shown to improve survival in patients with stage 2 or 3A
disease, but its benefit in stage 1 patients has not been
demonstrated, and its effectiveness is modest even in those
with high risk of recurrence.5,7 New biomarkers are needed

FIG 2. (Continued). (blue line, median 50.5 months) versus stages. 1 (stages 2 + 3 + 4; red line, median 28 months; P = .0021); (C) indicated with
high DDPP values (blue line, median 51months) or with low DDPP values (red line, median 20months; P = .00098); (D) diagnosedwith stages 1 + 2
and indicatedwith high DDPP values (blue line, median 54months) and diagnosedwith stage 1 + 2 and indicated with DDPP low values (red line, 29
months; P = .00051); (E) diagnosed with stages 1 + 2 and indicated with low DDPP values who were not treated with adjuvant chemotherapy (NC,
blue line, median 11 months) and treated with adjuvant chemotherapy (chemotherapy, red line, median 41 months; P = .0041); and (F) diagnosed
with stages 1 + 2 and indicated with high DDPP values who were not treated with adjuvant chemotherapy (NC, blue line, median 59 months) and
treated with adjuvant chemotherapy (chemotherapy, red line, median 54 months; P = .15 with a 95% CI). The table shown below the curves
indicates the number of patients from each group who survived up to a given time (according to the values displayed in the x-axis in each figure)
during the follow-up period (until 92 months when the recurrence of the last patient occured). Dotted lines point the median DFS in each caption.
DDPP, Digital Display Precision Predictor; DFS, disease-free survival; NC, no-chemotherapy.
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FIG 3. Immune checkpoints Kaplan-Meier DFS probability plots. DFS probability of patients classified on the basis of expression levels in normal
tissue of (A) CTLA-4 alone (median survival of 58 and 62 months for the low and high groups, respectively); (B) PD-L1 alone (median survival of
34.5 and 40.5 months for the low and high groups, respectively); (C) ICOS alone (median survival of 39.5 and (continued on following page)
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to identify those patients who are at high risk of tumor re-
currence after surgery and might benefit from adjuvant
treatment.

Our analysis of 120 patients with NSCLC is consistent with
previous reports demonstrating the importance of TNM stage
as a prognostic marker. However, the stage and histology
alone could not predict the individual DFS variations ob-
served or to predict the benefit of adjuvant therapy.

Using the DDPP methodology,19 we identified a tran-
scriptomic biomarker signature and defined a DDPP low
versus high score that significantly correlates with DFS. The
cornerstone of the methodology was the exploration of
transcription profiles of paired tumor and normal lung
tissues from the same patient. This comparison allows
distinguishing interpatient variability in gene expression in
normal lung tissue from variability related to tumor trans-
formation, thereby using each patient as his/her own
control. Moreover, exploration of normal lung tissue en-
abled us to assess the status of the immune system in the
host normal lung tissue in addition to tumor characteristics.

We found that for patients with NSCLC with stage 1 + 2 with
DDPP low score, adjuvant chemotherapy was associated
with improved DFS. However, the association between the
use of adjuvant chemotherapy and DFS was not significant
in the group of patients with DDPP high score, a more
favorable risk group. These observations suggest that the
DDPP score may be useful to identify patients with early-
stage NSCLC who are at high risk of recurrence and could
potentially benefit from adjuvant chemotherapy and also
identify those with such a favorable prognosis that adjuvant
chemotherapy is not likely to be beneficial.

The genes included in each of the six DDPP predictors are
presented in detail in the Data Supplement and illustrate a
significant enrichment in cancer-related biological pathways
(control of transcription factors, control of cell cycle and
proliferations, ubiquitin degradation of proteasome, and
mitogen-activated protein kinase) indicating that ACC, SCC,
and LCC are distinct diseases at the biological level. Pathway
enrichment analysis using the MsigDB Hallmark 2020 da-
tabase showed that the key pathway included in the DDPP
predictor of the AC patients treated with surgery only was the
G2-Mcheckpoint control (P= .0042 and adjustedP value for
multiple comparisons = .012) while the key pathway for
genes in the SCC predictor was IL6/JAK/STAT3 signaling
(P = .0018, adjusted P = .015), and the key pathway in the
LCC predictor was KRAS signaling pathway (adjusted

P = .04). For patients treated with adjuvant chemotherapy,
we found a significant enrichment of pathways involved in
ion channel transporters andmetabolism of nucleotides. The
DDPP modeling, therefore, appears to yield results that are
biologically coherent and relevant.

Our results also indicate that a higher coexpression of
CTLA-4, PD-L1, and ICOS in normal lung tissues, pre-
sumed to induce an immune tolerance to tumor neo-
antigens, was associated with a shorter DFS after curative-
intent surgery. Indeed, increased negative blockade of
immune activation may limit the immune response to
disseminated micrometastases.20 In contrast, an immune-
competent profile would enable an efficient interception
and elimination of circulating cells released during surgery
and established micrometastases by activated immune
cells.21,22 Finally, we explored the impact of combining
DDPP and immune-tolerant profiling on the DFS and
demonstrated that we could identify the patients with the
highest risk of recurrence postsurgery, revealing a patient
population with a clear need for further therapeutic inter-
vention. In multivariate analysis, TNM stage, DDPP score,
and immune-tolerant status of normal lung were found to
be independent prognostic variables.

We recognize that our study has important limitations. First,
the CHEMORES study, the source of biospecimens and
clinical outcomes for our analysis, was not a prospective
interventional trial and the decision of whether to administer
postoperative adjuvant chemotherapy and the chemother-
apy regimen administered was left to the treating physician.
In the absence of random assignment, it is possible that
there were important imbalances in prognostic factors be-
tween patients who did or did not receive adjuvant che-
motherapy that are not accounted for in our analysis and
could affect the validity of our findings. Second, we ac-
knowledge that the numbers of patients with NSCLC with
stage 1 + 2 are small and that the estimate of the effect size of
adjuvant chemotherapy in the low-stage but high-risk (by
DDPP score) patients is likely imprecise. Thus, our findings
can be considered hypothesis-generating only and must be
validated in a larger, prospective study.

Third, information about the tumor histological grade was
not available for this cohort and is an established prognostic
factor not included in our analyses.

The DDPP strategy to predict DFS for patients with re-
sectable NSCLC requires further validation in a prospective
study. A potential validation strategy would be to enroll

FIG 3. (Continued). 36 months for the low and high groups, respectively); (D) coexpression of CTLA-4 and PD-L1 (median of 44 months for CTLA-4
low, PD-L1 high and 28 months for CTLA-4 high, PD-L1 high); (E) coexpression of CTLA-4 and ICOS (median of 53 months for CTLA-4 low, ICOS
high and 25 months for CTLA-4 high, ICOS high); and (F) coexpression of CTLA-4, PD-L1, and ICOS (median of 53 months for CTLA-4 low, PD-L1
high, ICOS high and 22.5 months for CTLA-4 high, PD-L1 high, ICOS high). The table shown below the curves indicates the number of patients
from each group who survived up to a given time (according to the values displayed in the x-axis in each figure) during the follow-up period (until 92
months when the recurrence of the last patient occured). Dotted lines point the median DFS in each caption. CTLA, cytotoxic T-cell lymphocyte;
DFS, disease-free survival; PD-L1, programmed death-ligand 1.
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patients with NSCLC undergoing surgery and collect tumor
and normal tissues to analyze differential gene expression.
For each patient, risk of recurrence will be determined but

not provided to the treating physician. Patients will be
followed until recurrence, and predicted versus observed
recurrence rates will be analyzed.

P = 2.12E-11
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FIG 4. KM DFS probability plots and
Forest plot analysis of combined IO
and DDPP biomarkers. (A) KM plots of
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DDPP and immune-tolerant status (red
line, median of 10.5 months) versus
high DDPP and immune-competent
status (blue line, median of 60
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If the prognostic utility of these analyses are validated,
future prospective studies could examine the utility of
adjuvant chemotherapy or chemoimmunotherapy in

patients predicted to be at intermediate or high risk of
recurrence, much as the TAILORx trial was used to validate
the OncotypeDx recurrence score.28
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