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Abstract

Background: In symbiotic legume nodules, endosymbiotic rhizobia (bacteroids) fix atmospheric N2, an ATP-dependent
catalytic process yielding stoichiometric ammonium and hydrogen gas (H2). While in most legume nodules this H2 is
quantitatively evolved, which loss drains metabolic energy, certain bacteroid strains employ uptake hydrogenase activity
and thus evolve little or no H2. Rather, endogenous H2 is efficiently respired at the expense of O2, driving oxidative
phosphorylation, recouping ATP used for H2 production, and increasing the efficiency of symbiotic nodule N2 fixation. In
many ensuing investigations since its discovery as a physiological process, bacteroid uptake hydrogenase activity has been
presumed a single entity.

Methodology/Principal Findings: Azorhizobium caulinodans, the nodule endosymbiont of Sesbania rostrata stems and
roots, possesses both orthodox respiratory (exo-)hydrogenase and novel (endo-)hydrogenase activities. These two
respiratory hydrogenases are structurally quite distinct and encoded by disparate, unlinked gene-sets. As shown here, in S.
rostrata symbiotic nodules, haploid A. caulinodans bacteroids carrying single knockout alleles in either exo- or-endo-
hydrogenase structural genes, like the wild-type parent, evolve no detectable H2 and thus are fully competent for
endogenous H2 recycling. Whereas, nodules formed with A. caulinodans exo-, endo-hydrogenase double-mutants evolve
endogenous H2 quantitatively and thus suffer complete loss of H2 recycling capability. More generally, from bioinformatic
analyses, diazotrophic microaerophiles, including rhizobia, which respire H2 may carry both exo- and endo-hydrogenase
gene-sets.

Conclusions/Significance: In symbiotic S. rostrata nodules, A. caulinodans bacteroids can use either respiratory hydrogenase
to recycle endogenous H2 produced by N2 fixation. Thus, H2 recycling by symbiotic legume nodules may involve multiple
respiratory hydrogenases.
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Introduction

Legume root and stem nodules fix atmospheric dinitrogen (N2)

yielding anabolic-N, which augments growth and reproduction of

host plants. In these nodules, the biochemical conversion of N2 to

ammonium is owed to endosymbiotic rhizobia (bacteroids) who

carry the N2 fixation genes encoding the dinitrogenase complex.

Whether N2 fixation occurs in legume nodules [1] or in pure

cultures of diazotrophic (able to use N2 as sole N-source) bacteria

[2], hydrogen gas (H2) is then co-produced. From subsequent

mechanistic studies of dinitrogenase activity, H2 co-production is

both stoichiometric and requires 2 ATP per H2 formed [3–4]. Yet

in agronomic surveys, many legume nodules typically evolve H2 at

high levels, and such H2 evolution rates correlate with N2 fixation

rates [5]. However, in certain symbiotic legume nodules,

bacteroids avidly fix N2 yet reproducibly evolve little or no H2

[1]. As this endogenous H2 production consumes metabolic

energy, H2 recycling, which recoups that energy, allows increased

efficiency of N2 fixation and, in principle, increased plant biomass

yields [6–7]. This symbiotic nodule H2 recycling capability

correlates with specific bacteroid strains, although host legume

cultivars also contribute to H2 recycling and yield [8,9]. Indeed, in

biochemical assays, bacteroids isolated from H2 recycling (non-

evolving) nodules show high levels of respiratory uptake hydrog-

enase activity [10,11].

H2 recycling during N2 fixation was first observed with the

aerobe Azotobacter vinelandii, a diazotroph but not a legume

symbiont. In pure culture, A. vinelandii induces a particulate

(respiratory) hydrogenase activity which oxidizes H2 at the expense

of and tolerant of O2 [2]. In following studies with legume nodule

bacteroids, such uptake hydrogenase activity was also affirmed

[10]. In the ensuing forty years, hydrogenases, extensively studied,

have proven both biochemically diverse and broadly distributed

across bacteria and archaea [12]. Among aerobes and microaero-

philes able to use H2 as energy source, uptake hydrogenase

activities are typically classified as group I: heterodimeric,
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globular, hydrophilic proteins carrying a heteronuclear Ni,Fe-

catalytic center; group I hydrogenases are generally O2 tolerant

[12]. In cellular terms, the group I, Ni,Fe uptake hydrogenases are

tightly associated with respiratory membranes via integral diheme

b-type cytochromes, required for physiological activity [13,14]

[Bernhard]. As the group I cell membrane-peripheral complexes

face the periplasm, or cell exterior [15], they may be termed exo-

hydrogenases.

Azorhizobium caulinodans, a microaerophilic a-proteobacterium

originally isolated as nodule endosymbiont of the host legume

Sesbania rostrata, is capable of N2 fixation both in planta and in pure

diazotrophic culture [16]. Recently, we discovered in A. caulinodans

a second, novel respiratory hydrogenase encoded by the seven-

gene hyq operon [17]. The inferred Hyq hydrogenase includes six

different structural proteins, including a heterodimeric Ni,Fe-

catalytic center hydrogenase conserved with group I enzymes.

From bioinformatic analyses, the remaining four Hyq proteins are

all membrane-integral [17]. Because all six Hyq hydrogenase

subunits are NADH:quinone oxidoreductase (respiratory complex

I) homologs [18], the Hyq complex is classified with the reversible

group IV hydrogenases [12]. Given structural and functional

homology to respiratory complex I [18], the Ni,Fe-catalytic center

heterodimers of group IV complexes associated with respiratory

membranes presumably face the cell-interior and thus may be

termed endo-hydrogenases.

Results

In symbiotic legume nodules both exo- and endo-
hydrogenases recycle H2 produced by N2 fixation

To assess physiological roles for both bacteroid Hup exo- and

Hyq endo-hydrogenases in symbiotic legume nodules fixing N2 and

recycling H2, A. caulinodans haploid derivatives carrying precise (to

the nucleotide pair) in-frame deletions of hup and hyq structural

genes encoding the conserved catalytic subunits of, respectively,

exo- and endo-hydrogenases were constructed and verified by

nucleotide sequencing of mutant loci [17]. Specifically, A.

caulinodans exo-hydrogenase null mutants carried in-frame, precise,

complete hupSL deletions; endo-hydrogenase null mutants com-

prised precise, complete hyqRBCEFGI operon deletions. As well,

haploid recombinant double-mutants carrying both exo- and endo-

hydrogenase null alleles were also constructed (Methods). Pure A.

caulinodans cultures were used to inoculate both stems and roots

of S. rostrata seedlings aseptically germinated and individually

cultivated under N-limitation (Methods). In S. rostrata, symbiotic

nodules are developmentally determinate, not meristematic. While

both stem- and root-nodules subsequently developed on inoculated

plants only, as they are invariably absent on uninoculated plants,

stem nodules were chosen for further study. Three week-old

and five week-old determinate stem nodules were excised from

inoculated plants and individually tested for N2 fixation activity,

assaying acetylene-dependent ethylene production by gas chro-

matography with flame ionization detection (Methods). Excised

stem nodules all showed similar (615%) high levels of acetylene

reduction activity when normalized per fresh nodule biomass

(Table 1). Accordingly, all A. caulinodans strains tested were

assigned both nodulation-competent (Nod+) and N2 fixation-

competent (Fix+) phenotypes.

Additional excised nodules from these S. rostrata plants were

simultaneously tested under air for H2 evolution activity using gas

chromatography coupled to a reducing-compound photometric

detector (Methods). In kinetic studies with excised nodules elicited

by A. caulinodans strains 61305R (parental), 66081 (exo-hydrogenase

mutant) and 66132 (endo-hydrogenase mutant), H2 evolution was

nonexistent (Figs. 1a,b). Whereas, nodules elicited by double (exo-

and endo-hydrogenase) mutant 66204 evolved H2 at very high rates

(Fig. 1a) comparable to those measured for acetylene reduction

(Table 1). Thus, H2 evolution by double-mutant 66204-elicited

nodules was quantitatively owed to N2 fixation (dinitrogenase)

activity. Results with five week-old determinate nodules from

additional S. rostrata plants entirely corroborated results with three

week-old nodules (data not presented). Pure bacterial cultures were

reestablished from aseptically crushed nodules and strain identities

verified by nucleotide sequencing of hup and hyq loci (Methods). In

conclusion, A. caulinodans bacteroids in S. rostrata nodules employ

both exo- and endo-hydrogenases to recycle endogenous H2 pro-

duced by N2 fixation. Moreover, H2 recycling is quantitative,

entirely accounting for N2 fixation activities. Yet as measured

by H2 evolution rates, bacteroid exo- and endo-hydrogenase are

interchangeable and individually are fully competent to handle

endogenous H2 recycling in symbiotic S. rostrata nodules.

N2 fixing, microaerophilic a-proteobacteria able to
recycle H2 carry exo- and endo-hydrogenase gene-sets

From bioinformatic analyses (Table 2), orthologous hyq+

operons encoding endo-hydrogenase are generally present in N2

fixing microaerophiles able to recycle endogenous H2. These

strains include both free-living diazotrophs as well as certain

rhizobia, such as B. japonicum, the endosymbiont of Glycine max

(soy). In Rhizobium leguminosarum, a metastable species with several

descendant biovars each with genomes comprised of variable

multipartite replicons, H2 recycling capability in symbiotic legume

nodules varies among strains. As well, both the hup+/hyp+ (exo-

hydrogenase) and the hyq+ (endo-hydrogenase) gene-sets are also

variables [9,19,20]. Yet other diverse rhizobia (e.g. Sinorhizobium

meliloti 1021; Mesorhizobium loti MAFF303099; Rhizobium etli

CFN42; Rhizobium sp. NGR234) all incapable of H2 recycling in

symbiotic legume nodules, completely lack both hup+/hyp+ and

Table 1. N2 fixation and H2 recycling in S. rostrata–A. caulinodans stem nodules.

A. caulinodans
endosymbiont Genotype Phenotype N2 fixation{ H2 evolved{

61305R 57100 nic5R (virtual) wild-type 31.060.4 0.3060.05

66081 61305R nhupSL2 exo-hydrogenase negative 33.060.4 0.3260.05

66132 61305R nhyqRI7 endo-hydrogenase negative 25.060.3 0.3660.05

66204 61305R nhupSL2 ÄhyqRI7 exo- and endo-hydrogenase neg. 25.060.3 27.060.3

{mmol (C2H2-dependent)C2H4 g21 hr21

{mmol H2 g21 hr21

doi:10.1371/journal.pone.0012094.t001

Legume Nodule H2 Recycling

PLoS ONE | www.plosone.org 2 August 2010 | Volume 5 | Issue 8 | e12094



hyq+ gene-sets (Table 2). As the hyq+ operon is also absent from

anaerobic (fermentative) diazotrophs, fully aerobic diazotrophs (e.g.

Azotobacter spp.), and non-diazotrophs generally, Hyq endo-hydrog-

enase seems co-selected with N2 fixation in microaerophilic (non-

fermentative) a-proteobacteria. Nevertheless, in every N2 fixing

microaerophile with both exo- and endo-hydrogenases, these gene-

sets, as well the nif genes encoding N2 fixation activities are all

unlinked (Table 2). Moreover, A. caulinodans haploid strains

carrying complete (20-gene) hup+/hyp+ (including hupSL+) operon

deletions entirely lacking exo-hydrogenase and ancillary activities,

nevertheless retain full H2 recycling activity both in pure cultures

and in S. rostrata stem nodules. As well, Rhodocista centenaria (aka

Rhodospirillum centenum) SW, which possesses the hyq+ operon but

not the hup+/hyp+ operon (Table 2), completely recycles H2 in

Figure 1. Hydrogen (H2) evolution by excised S. rostrata stem nodules elicited by indicated A. caulinodans strains as endosymbiont.
(A) 70 mmol scale; (B) expanded ordinate, 1 mmol scale; evolved H2 measured as mmol g21 (fresh biomass).
doi:10.1371/journal.pone.0012094.g001

Table 2. N2-fixing microaerophilic a-proteobacteria carrying orthologous hup+/hyp+ (exo-hydrogenase) and hyq+ (endo-
hydrogenase) genes.

H2 recycling proficient: legume host diazotrophy hupSL+genes hyq+ operon

Azorhizobium caulinodans ORS571 Sesbania rostrata + AZC0598-0599 AZC4361-4355

Beijerinckia indica ATCC 9039 – + BIND1150-1151 BIND2473-2479

Bradyrhizobium japonicum USDA110 Glycine max – BLR1720-1721 BLR6338-6344

Rhodocista centenaria SW – + – RC11420-1415

Rhodopseudomonas palustris BisB5 – + RPD1162-1163 RPD3855-3850

Xanthobacter autotrophicus PY2 – + XAUT2173-2174 XAUT0165-0171

H2 recycling deficient:

Sinorhizobium meliloti 1021 Medicago sativa – – –

Mesorhizobium loti MAFF303099 Lotus japonicus – – –

Rhizobium etli CFN42 Phaseolus vulgaris – – –

Rhizobium sp. NGR234 Vigna unguiculata – – –

doi:10.1371/journal.pone.0012094.t002

Legume Nodule H2 Recycling
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diazotrophic culture (data not presented). Accordingly, these exo-

and endo-hydrogenase gene-sets seem fully autonomous.

Discussion

Among legume-Rhizobium symbioses, H2 recycling was first

reported in Pisum sativum (garden pea) nodules elicited by specific

Rhizobium leguminosarum bv. viciae strains [2]. Genetic studies were

subsequently undertaken with [Brady]Rhizobium japonicum strains

able to recycle H2 in Glycine max (soy) nodules [21,22]. Many

subsequent studies with H2 recycling legume nodules all presumed

uptake hydrogenase activity a single entity. These studies include

combined genetic and physiological analyses which might have

challenged this assertion. For the case of A. caulinodans, single

mutants W58, U58 as well as hupSL impaired strain ORS571.2 all

were reported to suffer substantial to complete loss of uptake

hydrogenase activity [23,24,25]. Such conclusions are incompat-

ible with the present finding: A. caulinodans employs two structurally

and functionally distinct, genetically-independent, respiratory

hydrogenases to recycle endogenous H2 produced by N2 fixation.

Whereas, early on the investigative timeline, B. japonicum single

mutants unable to be cultured autotrophically on exogenous H2

yet still able to recycle endogenous H2 in soy nodules were

identified [26]. As these strains showed induction of uptake

hydrogenase activity in cultures shifted to O2 limitation (#11 mM

DOT), they were perhaps understandably considered transcrip-

tional control mutants hypersensitive to O2. With the benefit of

hindsight, this phenotype is precisely that expected of true loss-of-

function point mutants affecting hup operon structural genes

encoding Hup exo-hydrogenase activity, were the observed

limiting-DOT uptake hydrogenase activity in fact owed to Hyq

endo-hydrogenase. In A. caulinodans, hyq operon expression requires

NifA as transactivator [17], and the pnifA+ promoter is in turn

strongly transactivated by Fnr, which process requires physiolog-

ical O2 limitation in diazotrophic culture [27]. In principle, both

exo- and endo-hydrogenase gene-sets, despite being encoded at

disparate loci in all organisms identified, might nevertheless share

a common genetic predisposition, allowing strategic single muta-

tions to convey dual loss-of-function. However, as strains carrying

complete hyq operon deletions still possess wild-type Hup exo-

hydrogenase activity, and vice versa, evidence for any genetic, post-

transcriptional interaction or interdependence between the two

gene-sets is entirely lacking.

As shown previously, in pure diazotrophic (N2 as sole N-source)

cultures, A. caulinodans exo-hydrogenase knockout mutants grow as

wild-type, whereas endo-hydrogenase knockout mutants exhibit slow

growth [17]. Are exo- and endo-hydrogenase H2 recycling efficiencies

in pure culture and in legume nodules then demonstrably different?

Or, do diazotrophic phenotypes imply additional endo-hydrogenase

function(s), e.g. chemiosmotic work associated with membrane ion

translocation [28] not undertaken by exo-hydrogenase? Obviously,

effective exo- and endo-hydrogenase cellular concentrations and/or

distributions might be dissimilar in legume nodules and in pure

diazotrophic cultures, even though both hup+/hyp+ (exo-hydroge-

nase) and hyq+ (endo-hydrogenase) gene-sets are then strongly

transcribed [17,25,29]. Because hup mutants suffer loss of

chemoautotrophy with exogenous H2 as energy substrate [17,26],

exo-hydrogenase kinetic behavior may constitute simple diffusion

control. Because hyq mutants do not adversely impact chemoau-

totrophy with exogenous H2, endo-hydrogenase kinetic behavior

might not constitute simple diffusion control. A critical test of this

hypothesis is still lacking. Diazotrophic liquid batch cultures

typically employ constant sparging with relatively high gas-phase

exhaust rates (0.5 min21), complicating kinetic behavior and

analysis of cellular processes with gaseous substrate(s) subject to

simple diffusion control. In such pure liquid diazotrophic batch

cultures bacterial densities typically reach 108 cc21, whereas in

determinate S. rostrata nodules, bacteroid densities approach 1011

cc21, the latter obviously more conducive to endogenous H2

recycling under simple diffusion control. Notwithstanding, given

their apparent co-selection in N2 fixing micoaerophilic a-proteo-

bacteria capable of H2 recycling, exo- and endo-hydrogenases likely

possess additional, distinctive functionalities yet to be elucidated.

Methods

Bacterial strains and culture conditions
Azorhizobium caulinodans ORS571 wild-type (strain 57100),

originally isolated from Sesbania rostrata stem-nodules [16], was

cultured as previously described [30]. As 57100 wild-type is a

pyridine nucleotide auxotroph, to serve as ‘virtual’ wild-type, all

experiments reported here employ A. caulinodans 61305R, a 57100

derivative carrying an IS50R insertion in the (catabolic) nicotinate

hydroxylase structural gene. Precise, in-frame deletion mutants

were constructed by a ‘crossover PCR’ method [31]. Haploid exo-

hydrogenase knockout mutants each carry a hupDSL2 allele in

which the (upstream) hupS translation initiation codon is fused in-

frame to a synthetic 21np linker sequence fused in-frame to the

(downstream) hupL termination codon. Similarly, haploid endo-

hydrogenase mutants each carry a hyqDRI7 allele, in which the

hyqRBCEFGI operon has been replaced by a deletion allele

comprising the hyqR initiation codon fused in-frame to the 21np

linker sequence fused in-frame to the hyqI termination codon. After

gene replacement, haploid strains carrying deletion alleles were

verified by PCR and DNA sequencing analyses [17].

Sesbania rostrata nodulation tests
S. rostrata plants were germinated, cultivated aseptically, and

stem inoculated with pure A. caulinodans strain cultures as described

[16]. Either three or five weeks post-inoculation, stem nodules

were detached, weighed, individually placed in septated vials.

Dinitrogenase activity was assayed kinetically by acetylene

reduction [32] and product ethylene was measured by gas

chromatography with flame-ionization detection. H2 evolution

was assayed kinetically and measured by gas chromatography with

reducing compound photometer detection (RCP1; Peak Labora-

tories LLC, Mountain View, CA.), both at atmospheric pressure

and 29uC [33]. Enzymatic activities are expressed per gram

nodule fresh-biomass at 29uC.
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