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Abstract

Motivation: The relative rates of amino acid interchanges over evolutionary time are likely to vary

among proteins. Variation in those rates has the potential to reveal information about constraints

on proteins. However, the most straightforward model that could be used to estimate relative rates

of amino acid substitution is parameter-rich and it is therefore impractical to use for this purpose.

Results: A six-parameter model of amino acid substitution that incorporates information about the

physicochemical properties of amino acids was developed. It showed that amino acid side chain vol-

ume, polarity and aromaticity have major impacts on protein evolution. It also revealed variation

among proteins in the relative importance of those properties. The same general approach can be

used to improve the fit of empirical models such as the commonly used PAM and LG models.

Availability and implementation: Perl code and test data are available from https://github.com/

ebraun68/sixparam.

Contact: ebraun68@ufl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many studies have examined the role of models in phylogenetic esti-

mation using maximum likelihood (ML). Most studies have focused

on tree topology (e.g. Hoff et al., 2016), but the estimates of model

parameters also have the potential to provide biological insights. For

example, early studies revealed a bias toward transition (rather than

transversion) substitutions (Yang, 1994) and later studies examined

neighboring-nucleotide effects (Hwang and Green, 2004) and strand

asymmetries (Polak and Arndt, 2008). The ratio of non-synonymous

to synonymous substitutions in coding regions (called KA/KS or dN/dS)

is the most common use of a model parameter for inference in mo-

lecular evolution; the KA/KS ratio can be estimated using models of

codon evolution (Yang, 1998; Yang and Nielsen, 2002). Codon mod-

els are used in many studies, sometimes at the whole-genome scale

(e.g. Weber et al., 2014; Zhang et al., 2014). In contrast to models

that use nucleotide multiple sequence alignments (MSAs), either cod-

ing or non-coding, there is a relative paucity of methods to conduct

similar analyses of protein MSAs. In principle, the ratio of ‘radical’ to

‘conservative’ amino acid substitutions (KR/KC) could be used in a

manner similar to the KA/KS ratio (Hanada et al., 2007; Hanada

et al., 2009; Smith, 2003; Zhang, 2000), although the KR/KC ratio is

harder to interpret than the KA/KS ratio.

There are two challenges associated with using ML methods to

understand patterns of protein evolution. First, there are many ways

to define radical versus conservative amino acid substitutions

(Hanada et al., 2007), unlike non-synonymous versus synonymous

substitutions, which can be defined unambiguously. Second, esti-

mates of the KR/KC ratio will ultimately reflect the estimates of

parameters in the instantaneous rate matrix (IRM), or Q matrix,

which describes amino acid evolution for specific proteins.

However, amino acid models have an IRM with a much larger num-

ber of free parameters than models of nucleotide sequence evolution.

If we assume time reversibility the IRM, which is used to calculate

the likelihood, can be is the product of a symmetric rate matrix (R)

reflecting the ‘exchangeability’ for specific pairs of character states

(i.e. nucleotides, codons or amino acids) and a diagonal matrix (P)

with the equilibrium frequencies of each state (Swofford et al.,

1996). The general time reversible model of nucleotide evolution

(GTR4) has eight free parameters (five for R and three for P), so the

variance of the parameter estimates will be acceptable if they are

estimated using typical nucleotide MSAs. The analogous amino acid

model (GTR20) has 208 free parameters (189 for R and 19 for P).

Individual proteins are often fairly short (e.g. 280–600 amino acids;

Tiessen et al., 2012) so typical protein MSAs are unlikely to provide

enough information to generate accurate estimates of that many free

parameters.

This raises the question of how a codon model can be imple-

mented in a practical manner. After all, GTR61 is the analogous
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codon model (assuming the universal code); that model has a very

large number of free parameters (1829 for R and 60 for P).

However, the dimension of codon models can be reduced using an

IRM where all elements that require multiple simultaneous substitu-

tions are set to zero and the remaining elements are assigned values

based on a single transition–transversion ratio and KA/KS ratio (the

j and x parameters, respectively, in the study by Yang, 1998). This

dimension reduction actually reveals valuable biological information

because estimates of KA/KS are easier to interpret than the collection

of values in the IRM. An analogous approach for models of amino

acid evolution would be useful.

Most phylogenetic studies that use proteins eschew estimation of

the R matrix parameters using a fixed R matrix generated using a

training set of protein MSAs. This approach was pioneered by

Kishino et al. (1990), who used Dayhoff et al. (1978) PAM matrix

as the R matrix, and it solves the problem of parameter estimation

as long as the training set is large enough. Subsequent studies have

used other R matrices (Table 1). Although these ‘empirical models’

with fixed R matrices may be useful for phylogenetics they cannot

provide insights into the process of protein evolution. For example,

Keane et al. (2006) reported that rtREV is the best-fitting model for

33% of archaeal, 21% of proteobacterial and 4% of vertebrate pro-

teins MSAs. However, rtREV was trained using retroviral pol pro-

teins (Dimmic et al., 2002) so it is unclear why diverse archaeal

proteins would fit rtREV better than the more general models

trained on a diverse set of proteins. This observation raises a funda-

mental question: does identifying the best-fitting model provide any

useful information about specific proteins? That question can only

be answered in the negative if we focus on empirical models.

A lower dimensional model of protein evolution with parameters

that have a clear biological interpretation would allow us to exam-

ine the ways that patterns of evolution differ among proteins.

Simply using the KR/KC ratio described above is unlikely to solve

this problem, since there are many ways to divide amino acid substi-

tutions into radical versus conservative subsets (Fig. 1). This reflects

the fact that there are likely to be many axes in ‘selection space’ (e.g.

one for selection against radical changes in amino acid side chain

size, a second related to radical changes in side chain polarity and so

forth). The complexity of amino acid properties (Fig. 1) suggests

that it would be better to eschew simply classifying amino acids

interchanges as radical or conservative and devise a parameter that

can capture different degrees of ‘radicalness’ (e.g. the selection

against a large-to-tiny interchange is likely to be stronger than

selection against a large-to-small substitution). Finally, information

about the relative rates at which different non-synonymous muta-

tions enter populations is also likely to be important (Yampolsky

and Stoltzfus, 2005). I propose a six-parameter model, with two

parameters related to mutational input and four parameters that

capture the physicochemical properties of amino acids (to address

the impact of selection against radical substitutions). Thus, the

model only has one more R matrix parameter than the GTR4 model

(although it does have 19 equilibrium frequency parameters). It is

likely to be possible to estimate these parameters from typical pro-

tein MSAs. The biological interpretability of these parameters

should allow us to ask about general patterns across all proteins and

to assess the degree to which different proteins exhibit distinct pat-

terns of evolution. The proposed model is used to examine several

datasets to explore those general patterns and the variation among

proteins in their patterns of sequence evolution.

2 Materials and methods

This section focuses on generating the R matrix; readers are referred

to various reviews (Felsenstein, 2004; Swofford et al., 1996;

Warnow, 2018; Yang, 2006) for general information about likeli-

hood calculations in phylogenetics. The models proposed here popu-

late an R matrix using the general approach shown as follows:

rij ¼ Kijexp �u1D
1
ij

� �
exp �u2D

2
ij

� �
exp �u3D

3
ij

� �
. . . (1)

where rij are R matrix elements, u are weighting parameters and Kij is

a constant. The weighting parameters are estimated by ML (see

below). Dij are the absolute value of the difference between amino

acids i and j in some property (e.g. polarity) divided by the maximum

absolute value for all possible differences between pairs of amino

acids. Thus, Dij are fixed numbers between zero and one for any spe-

cific property and pair of amino acids (see Supplementary File S1).

Table 1. Empirical models of protein sequence evolution

Model Training data References

General models:

JTT — Jones et al. (1992)

LG — Le and Gascuel (2008)

PAM (Dayhoff) — Dayhoff et al. (1978)

PMB — Veerassamy et al. (2003)

VT — Müller and Vingron (2000)

WAG — Whelan and Goldman (2001)

Specialized models:

HIVb HIV (eight proteins) Nickle et al. (2007)

rtREV retroelement pol Dimmic et al. (2002)

Note: ‘—’ indicates that many protein MSAs were used for training. Many

different methods were used to estimate R matrix parameters. Only a selected

subset of specialized models is shown; many specialized models were trained

using viral data (e.g. FLU) or organelle-encoded proteins (e.g. mtREV24 and

cpREV).
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Fig. 1. Dividing amino acid interchanges into radical and conservative is

difficult. Amino acids can be divided into many different groups; radical

changes are those between groups whereas conservative changes are within

groups. Dayhoff et al. (1978) groups reflect patterns in their PAM matrix and

their physicochemical properties. Hanada et al. (2007) groups maximized the

correlation between KR/KC and KA/KS for mammalian proteins. Many studies

(e.g. Weber et al., 2014) calculate KR/KC using a simple polar-nonpolar and/or

large-small categorization. However, changes in many amino acid properties

(i.e. any interchanges that cross lines in the diagram) can be radical, at least

in some contexts. In fact, certain amino acids (C and P, shaded) have unique

properties and any substitution involving them might be radical. Thus, radical

versus conservative changes should be viewed as a matter of degrees rather

than absolutes
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Equation (1) has the property that setting any u value to zero yields

a sub-model in which the amino acid property related to that u par-

ameter has no impact on the model. The amino acid properties

examined here were side chain volume (V), polarity (P), composition

(C) and aromaticity (A). The first three are from the work by

Grantham (1974) and the fourth is from work by Xia and Li (1998).

The general approach shown in Equation (1) can be rewritten in a

more specific manner as

rij ¼ exp �VDV
ij

� �
exp �PDP

ij

� �
exp �CDC

ij

� �
exp �ADA

ij

� �
(2)

where the letters are the u parameters for the properties studied hare

and all Kij are set to one. There are 16 models based on Equation

(2), ranging from the simplest model, where V¼P¼C¼A¼0, to

the most complex where all parameters are free to vary. The sim-

plest model is actually an F81-like (Felsenstein, 1981) model for

proteins.

Equation (2) models [hereafter, eq2 models] only capture the im-

pact of selection (hereafter, V, P, C and A are called selective param-

eters). Mutational input was modeled by incorporating the structure

of the genetic code, using ‘gencode’ (G) and transversion (T) param-

eters. The full model is shown as

rij ¼ exp �VDV
ij

� �
exp �PDP

ij

� �
. . . N�G

ij exp �TDT
ij

� �
(3)

Nij is the minimum number of nucleotide substitutions necessary for

an interchange of amino acids i and j and DT
ij is one if at least one of

those substitutions is a transversion and zero otherwise. Gencode is

dealt with in a different way than the other parameters, but it has

the same behavior as the other parameters (i.e. G¼0 means the

number of substitutions necessary for the interchange does not have

an impact on the model). There are 64 potential eq3 sub-models.

However, the 16 sub-models where T is free to vary but G¼0 will

penalize a single transversion more than simultaneous changes to

multiple nucleotide so they were not considered. Thus, 48 eq3 mod-

els (16 of which are eq2 models) were examined. The models are

named based on the free parameters.

Although the eq2 and eq3 models can reveal the amino acid

properties that contribute the most to the patterns of evolution for a

specific protein they cannot be used to examine the ways that avail-

able empirical models fail to capture those processes. However, it is

possible to modify Equation (2) to include information from an em-

pirical model:

rij ¼ KEMP
ij exp �VDV

ij

� �
exp �PDP

ij

� �
. . . N�G

ij exp �TDT
ij

� �
(4)

where KEMP
ij is the relevant R matrix element from an empirical

model (e.g. those listed in Table 1). The eq4 models can be used to

establish which properties an empirical model fails to capture for

specific protein.

These parameters were optimized using a perl program that calls

IQ-TREE v. 1.5.5 (Nguyen et al., 2015) to perform the likelihood

calculations. Briefly, IQ-TREE was called and used to optimize the

amino acid frequency parameters and C-distribution shape param-

eter (a); this study only consideredþFþC models. Then a and

the amino acid frequencies were fixed and the eq3 or eq4 model

parameters (V, P, C, A, G and T) were optimized. A simple one-

dimensional optimization was performed for each parameter in suc-

cession. The optimization began by determining whether adding or

subtracting a fixed value (d) to the focal parameter improves the

likelihood. If uþd or u�d had a higher likelihood than the starting

u value, then d was added (or subtracted) until the likelihood was

maximized. After optimizing all free parameters d was reduced and

another round of optimization was conducted. After d value reached

a minimum (0.00001), the a and amino acid frequencies were re-

optimized using the R matrix generated using the estimated param-

eter values. This procedure was repeated until the likelihood failed

to change any further.

The best-fitting model was identified using the corrected Akaike

information criterion (AICc; Hurvich and Tsai, 1989), using the

number of aligned sites in the protein MSA as the sample size.

Empirical models were identified in IQ-TREE using the settings

‘-m TESTONLY -mfreq FO -mrate G -merit AICc’; this finds the

best fitting model from a set of 18 candidate models (all models in

Table 1 and eight additional specialized models). The eq4 models

used KEMP
ij from the best-fitting empirical model identified using

IQ-TREE.

3 Results and discussion

This study had the following four major goals: (i) to establish which

parameters are necessary to fit eq3 models to protein MSAs; (ii) to

determine whether the eq3 parameter estimates differ among pro-

teins; (iii) to compare the fit of eq3 models to empirical models; and

(iv) to examine whether the fit of empirical models can be improved

using the eq4 models. To accomplish these goals, we examined pro-

teins from yeasts (Rokas and Carroll, 2005), vertebrates (Chen

et al., 2015) and birds (Jarvis et al., 2014). The specific proteins

were chosen arbitrarily and only the MSAs judged free of homology

errors by Springer and Gatesy (2018) were chosen from birds.

Individual gene trees can differ from the species tree (Maddison,

1997) and the true species tree is unknown (it is especially uncertain

for birds; Reddy, et al., 2017), so we optimized the model parame-

ters on the ML tree generated using the best-fitting empirical model.

To complement the analyses of individual genes I used eight con-

catenated datasets from Wolf et al. (2004). Each Wolf et al. (2004)

dataset was limited to proteins with a specific function, so the poten-

tial of the eq3 and eq4 models to highlight differences among classes

of proteins could be assessed. All datasets and trees are available in

Supplementary File S2.

3.1 The most important parameters vary among

proteins
All single-parameter eq3 models resulted in substantial likelihood

increases relative to the F81-like model. Polarity (P) was the select-

ive parameter that increased per site DlnL the most; the median

DlnL/site for eq3 models with P as the only free parameter increased

by 0.8359 for vertebrates, 0.5845 for yeasts and 0.2788 for birds.

The estimate of the P parameter was also larger on average than

the other selective parameters (Table 2). The least important

selective parameters based on those criteria were composition (C)

for the vertebrates and yeasts and aromaticity (A) for birds.

Gencode (G), the primary mutational input parameter, was very im-

portant; the median DlnL/site increased by 1.054 for vertebrates,

0.5102 for yeasts and 0.3352 for birds. Estimates of G were

especially high in birds (Table 2). Indeed, adding the G parameter

resulted in a larger likelihood increase than any other parameter

for birds and vertebrates and the second largest (after P) for the

yeasts.

Single-parameter eq3 models provide information analogous the

commonly used KR/KC and KA/KS ratios. Unlike the KA/KS ratio (x),

there is no obvious expected value of the KR/KC ratio. Assuming

synonymous sites evolve at the neutral rate (which may not be true;

Chamary et al., 2006; Lawrie et al., 2013) KA/KS¼1 provides
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evidence of neutral evolution. In contrast, KR/KC only allows the

exploration of differences among proteins (or lineages). The

single parameter eq3 models provide similar information while

eschewing a simplistic radical versus conservative classification of

interchanges.

The number of free parameters in the best-fitting eq3 models for

each of the 15 test datasets ranged from two to six (Table 3 and

Supplementary File S3); the more parameter-rich (i.e. five- or six-

parameter) models had the best fit for most datasets. However, the

same patterns revealed in single-parameter eq3 analyses were also

evident in the best-fitting models. C had the least impact on the like-

lihood in the single parameter analyses and C was not included the

best-fitting model for 10 of the 15 proteins. In fact, C was not

included in the best-fitting model for any yeast protein. P and G had

the largest impact on the likelihood in single-parameter analyses and

both of those parameters were included in the best-fitting models for

the test datasets. However, the parameter estimates obtained using

more parameter-rich models tended to be much lower than those

obtained using the single-parameter models. This appeared to reflect

interactions among the parameters. C presented an interesting case

since it was negative for the vertebrate VPS54 dataset. This can hap-

pen when certain amino acid interchanges that might be viewed as

radical based on composition alone were actually overly penalized

by the other parameters (i.e. their instantaneous rate is too low).

The best-fitting empirical models differed among proteins in the

test datasets. LG had the best fit for most of the yeast proteins (the

exception had the best fit to rtREV), whereas JTT was the best-

fitting model for all of the vertebrate proteins. The avian proteins

were split between HIVb (three proteins) and JTT (two proteins).

The likelihood of the best-fitting empirical model was higher than

the best-fitting eq3 model in all cases, although the best eq3 model

had a likelihood that of the best empirical model for two avian pro-

teins. In fact, adding the V parameter to analyses of APC actually

resulted in a slightly higher likelihood than that of the best-fitting

empirical model (lnL¼�23308.4891 for the full VPCAGT model

and lnL¼�23308.9690 for the HIVb model; DlnL¼0.4799).

However, the estimate of V was quite low (V¼0.23) when the

VPCAGT model was used to analyze APC; that is why the V param-

eter was not included in the best-fitting eq3 model for that protein.

Table 2. Parameter estimates for single parameter eq3 models

Dataset Sites V P C A G GþT

Yeasts:

Flc2p 494 4.86 4.87 3.33 2.73 3.25 3.05/0.65

Ptc1p 217 4.43 5.72 2.50 2.85 3.61 3.53/0.27

Rfc2p 296 4.69 4.79 3.22 3.71 3.07 2.90/0.54

Ung1p 185 3.71 4.39 1.99 3.22 2.08 1.89/0.48

Tkl1p 629 4.69 4.33 2.64 3.08 2.50 2.42/0.26

Mean 4.48 4.82 2.74 3.12 2.90 2.76/0.44

Birds:

APC (54) 2862 3.51 4.88 2.57 3.76 7.14 6.56/1.03

GFPT1 (15) 700 2.60 4.21 3.43 2.07 3.88 3.70/0.42

HMBS (76) 353 3.54 4.16 3.12 1.53 5.52 5.25/1.09

IFGN1 (78) 845 3.34 4.75 3.12 1.53 7.07 7.21/1.06

PCNX (79) 2359 3.31 4.31 2.52 3.01 5.33 4.89/0.96

Mean 3.26 4.46 3.05 2.55 5.79 5.52/0.91

Vertebrates:

AQR 1020 4.07 4.43 2.94 3.64 4.72 4.59/0.73

COX10 490 3.13 4.06 2.57 4.15 4.70 4.54/0.69

EDC4 761 4.22 5.43 2.80 4.02 4.52 4.43/0.58

GPATCH1 515 3.52 4.74 3.01 3.92 4.12 3.97/0.67

VPS54 347 3.94 4.91 2.40 4.37 4.52 4.24/0.77

Mean 3.78 4.71 2.74 4.02 4.52 4.36/0.69

Parameter estimates are rounded to the nearest 0.01. Estimates of the T

parameter were only obtained in combination with G; those parameter esti-

mates are listed in the order G/T. Bird gene numbers are from the study by

Jarvis et al. (2015). Complete output of the parameter optimization program

is available in Supplementary File S3.

Table 3. Parameter estimates and DlnL/site for the best-fitting eq3 models

Dataset V P C A G T DlnL Best EMP

Yeasts:

Flc2p 2.13 3.24 — 1.97 1.59 0.63 0.9621 LG (�0.2062)

Ptc1p 1.91 4.08 — 1.47 2.48 — 0.8091 LG (�0.1132)

Rfc2p 2.27 3.63 — 2.55 1.50 0.56 0.8790 LG (�0.1692)

Ung1p 1.85 3.51 — 2.66 0.72 0.35 0.7615 rtREV (�0.1217)

Tkl1p 2.65 2.91 — 1.71 1.08 0.24 0.6869 LG (�0.2438)

Mean 2.16 3.48 0.00 2.07 1.47 0.35

Birds:

APC — 2.66 0.55 2.72 5.95 0.89 0.7518 HIVb (�0.0002)

GFPT1 — 2.91 — — 3.36 — 0.0862 JTT (�0.0183)

HMBS 1.71 2.00 — — 4.71 0.93 0.7319 JTT (�0.0006)

IFGN1 0.55 2.40 0.55 1.53 6.46 0.83 2.9576 HIVb (�0.0667)

PCNX 0.91 2.08 0.66 1.78 4.14 0.86 0.2512 HIVb (�0.0039)

Mean 0.63 2.41 0.35 1.21 4.92 0.70

Vertebrates:

AQR 1.33 2.56 — 2.54 3.67 0.57 0.8500 JTT (�0.1015)

COX10 — 2.48 — 3.04 3.73 0.53 1.9200 JTT (�0.1689)

EDC4 0.85 3.32 — 3.13 3.36 0.57 1.8728 JTT (�0.1061)

GPATCH1 0.76 2.55 0.75 2.45 3.12 0.48 2.2052 JTT (�0.2815)

VPS54 0.88 3.15 �0.89 3.13 3.46 0.72 1.2291 JTT (�0.0804)

Mean 0.76 2.81 �0.03 2.86 3.47 0.57

Note: ‘—’ indicates parameters that were not in the best-fitting eq3 model (based on the AICc). Any parameters absent from the best-fitting model were

assumed to be zero when the mean was calculated. Parameter estimates are rounded to the nearest 0.01. DlnL is the likelihood difference per site (DlnL/site) rela-

tive to the F81-like model. DlnL/site is rounded to the nearest 0.0001. The best-fitting empirical model (‘Best EMP’) is followed by the DlnL/site relative to the

best-fitting eq3 model. Complete output of the parameter optimization program is available in Supplementary File S3.
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The V parameter was also absent from the best-fitting eq3 model

for one other avian protein and one vertebrate protein. Regardless,

eq3 parameter estimates for proteins with the same best-fitting

empirical model were often very different. This suggests that eq3

models can reveal patterns of evolution for different proteins; simply

identifying the best-fitting empirical model cannot reveal that

information.

3.2 The fit of empirical models can be improved
Although the six-parameter models result in substantial likelihood

improvements relative to a simple F81-like model, they did not fit

the data for any protein MSA and the best-fitting empirical model

(with the exception of APC). The raises two questions. First, can the

fit of empirical models be improved? Second, which aspects of the

evolutionary process do empirical models fail to capture? Using eq4

to adjust the best-fitting empirical model resulted in improvements

(based on the AICc) in all but one case (GFPT1; Table 4). Parameter

estimates for the eq4 models were much lower than those obtained

using eq3 models (compare Tables 3 and 4); this was expected since

the ‘starting point’ for the models (i.e. the empirical model) was pre-

sumably much better than the F81-like model. However, the param-

eters that played a role in best-fitting eq4 model differed among

proteins, emphasizing the fact that the ‘one size fits all’ nature of em-

pirical models is inappropriate.

3.3 Parameter estimates for concatenated datasets of

functionally related proteins
Empirical models obtained ultimately correspond to fixed R matrix

values estimated using large training sets. From a conceptual

standpoint, the simplest way to estimate those parameters would be

optimize the GTR20 model given a diverse set of functionally

unrelated proteins. In practice, many empirical models used less

computationally demanding approximate methods for parameter

estimation. However, the general point is that R matrix values for

empirical models should be close to the average GTR20 model

parameters for many different proteins. Thus, one might expect par-

ameter estimates for concatenated datasets to converge on some

average value that is as close as possible to the empirical model

parameters. However, this might not be true for concatenated data-

sets that comprise functionally related proteins.

Most concatenated datasets used in phylogenomics (e.g. Chen

et al., 2015; Jarvis et al., 2014; Rokas and Carroll, 2005) comprise

diverse and functionally-unrelated proteins. An early phylogenomic

study (Wolf et al., 2004) represents an exception to this; that study

analyzed eight separate six-taxon concatenated datasets, each of

which comprises functionally related proteins. The six focal taxa for

Wolf et al. (2004) are three animals (a vertebrate, an insect and a

nematode), two fungi (fission yeast and budding yeast) and a plant.

There are two plausible trees for those taxa: (i) Ecdysozoa (an

insectþnematode clade) and (ii) Coelomata (an insectþ vertebrate

clade); these trees are available in Supplementary File S2. Wolf et al.

(2004) supported Coelomata but later phylogenomic studies with

larger taxon samples have strongly supported Ecdysozoa (e.g. Dunn

et al., 2008; Hejnol et al., 2009). Thus, Wolf et al. (2004) data

provide an opportunity to ask two questions. First, do parameter

estimates for functionally related sets of proteins differ, like those

for individual proteins? Second, do analyses using the proposed

models support the Ecdysozoa tree? To do this the likelihood given

the best-fitting models (empirical, eq3, and eq4) was calculated

using both plausible topologies (Ecdysozoa and Coelomata).

Table 4. Parameter estimates for eq4 models using the best-fitting

empirical model

Dataset V P C A G T Best EMP

Yeasts:

Flc2p — — — — 0.60 — LG (0.0098)

Ptc1p — 1.03 — — 1.00 �0.44 LG (0.0550)

Rfc2p 1.34 — — — — — LG (0.0164)

Ung1p — 1.06 �1.06 1.13 — — rtREV (0.0464)

Tkl1p 0.92 — — — — — LG (0.0086)

Mean 0.45 0.42 �0.21 0.23 0.32 �0.09

Birds:

APC �0.26 0.97 �0.63 1.38 1.55 0.25 HIVb (0.0251)

GFPT1 — — — — — — JTT (—)

HMBS — — — — 2.57 0.56 JTT (0.0834)

IFGN1 0.35 0.40 — �0.28 2.76 — HIVb (0.0381)

PCNX — 0.45 — 0.80 — — HIVb (0.0027)

Mean 0.02 0.36 �0.13 0.38 1.18 0.16

Vertebrates:

AQR 0.56 — — 0.85 1.47 — JTT (0.0452)

COX10 �0.56 — — 1.11 1.56 — JTT (0.0961)

EDC4 — 1.01 — 1.71 1.11 0.20 JTT (0.1488)

GPATCH1 — — 0.63 0.52 0.92 — JTT (0.0605)

VPS54 — 0.86 �1.22 1.54 1.16 0.30 JTT (0.0858)

Mean 0.00 0.38 �0.12 1.15 1.25 0.10 LG (�0.2062)

Note: ‘—’ indicates parameters that were not in the best-fitting (based on

the AICc) eq4 model. In all cases, the best-fitting empirical model was used as

the ‘base model’ that provided the Kij values in eq3. Any parameters not pre-

sent in the best-fitting model were assumed to be zero for calculating the

mean. Parameter estimates are rounded to the nearest 0.01. The best-fitting

empirical model is followed by the DlnL per site relative to that model (‘—’

indicates the empirical model was not improved using eq4). Complete output

of the parameter optimization program is available in Supplementary File S3.

Table 5. Parameter estimates for concatenated datasets

Dataset Sites V P C A G T

Eq3 models:

Chaperonins 3970 2.68 3.87 �0.20 1.86 0.74 0.19

Clathrin 2138 2.11 3.62 �0.25 3.06 0.68 0.39

DNA polymerase 1782 2.19 2.99 0.53 2.15 1.03 0.16

DNA replication 2284 2.36 3.10 0.47 2.08 0.98 0.15

Proteasome 2474 2.43 3.18 0.21 2.44 0.76 0.18

Ribosomal proteins 11 586 2.23 2.92 0.29 2.28 0.62 0.10

RNA polymerase 3274 2.26 2.97 0.29 1.96 0.86 0.27

Translation factors 2045 2.13 3.21 0.32 2.36 0.80 0.21

Mean 2.30 3.23 0.21 2.27 0.81 0.21

Eq4 models:

Chaperonins 3970 1.10 0.88 �0.55 — �0.44 �0.18

Clathrin 2138 0.49 0.74 �0.65 1.11 �0.54 —

DNA polymerase 1782 0.68 — — 0.24 �0.24 �0.21

DNA replication 2284 0.89 — — — �0.21 �0.21

Proteasome 2474 0.84 0.27 — 0.51 �0.47 �0.19

Ribosomal proteins 11 586 0.73 �0.23 — 0.45 �0.34 �0.55

RNA polymerase 3274 0.54 — — 0.25 �0.31 �0.11

Translation factors 2045 0.44 — — 0.42 �0.33 �0.20

Mean 0.71 0.21 �0.15 0.37 �0.38 �0.18

All parameter estimates reflect the Ecdysozoa tree. ‘—’ indicates parame-

ters that were not in the best-fitting eq4 model (based on the AICc). Any

parameters not present in the best-fitting model were assumed to be zero for

calculating the mean. Parameter estimates are rounded to the nearest 0.01.

The empirical model used for the eq4 models was always LG. ‘DNA replica-

tion’ refers to DNA replication licensing factors, i.e. the MCM family.

Complete output of the parameter optimization program is available in

Supplementary File S4.
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The eq3 parameter estimates for the concatenated datasets did

show variation, albeit less than for individual proteins (compare

Tables 3 and 5). The C and A parameter estimates were especially

variable. All Wolf et al. (2004) datasets had the same best-fitting

eq3 model (VPCAGT) and empirical model (LG). LG always had a

better fit than the VPCAGT model. However, it was always possible

to improve model fit relative to the LG model using eq4 (Table 5).

The V and G parameters were included in every eq4 model, al-

though the estimates of G were always negative, suggesting LG

overcorrects for the impact of the genetic code on these data.

Parameter estimates in Table 5 were calculated using the

Ecdysozoa topology but analyses using the Coelomata topology

resulted in similar values (Supplementary File S4). Wolf et al. (2004)

found that different datasets supported different trees, with three

(proteasome subunits, ribosomal proteins and RNA polymerase)

supporting Ecdysozoa and the other five datasets supporting

Coelomata. Analyses using LG, eq3 and eq4 also revealed conflict;

four datasets (chaperonins and the same datasets as Wolf et al.,

2004) supported Ecdysozoa and the other four supported

Coelomata. Although that result was equivocal, the Ecdysozoa tree

had the highest overall likelihood in all analyses, consistent with the

results of studies with more taxa (e.g. Dunn et al., 2008; Hejnol

et al., 2009). The overall likelihood is the sum of the likelihoods of

for eight of the concatenated MSAs given a specific tree; this is the

likelihood given a model where each of the eight MSAs has distinct

parameters and distinct branch lengths. Surprisingly, the likelihood

difference (DlnL) favoring Ecdysozoa was actually larger for eq3

than for eq4 (DlnL¼44.9233 for eq3; DlnL¼33.5569 for eq4), des-

pite the better fit (based on AICc) of the eq4 models. However, the

relationship between model and topology was complex; the overall

DlnL favoring Ecdysozoa was smallest for LG (DlnL¼29.3364) and

largest for the F81-like model (DlnL¼60.1499). Moreover, one

additional dataset (clathrin) supported Ecdysozoa when the F81-like

model was used (see Supporting File 4 for details). Despite these

complexities the fact that the eq4 models resulted in a modest in-

crease in the likelihood difference relative to LG should be viewed as

encouraging. Broader surveys will be necessary to explore the poten-

tial of these models for estimating phylogenetic tree topologies.

3.4 General patterns and variation among proteins
A general framework for models of protein evolution that can be

used to explore general patterns of protein evolution and variation

among proteins was proposed (eq1). Specific versions of that general

model that focused amino acid physicochemical properties (eq2, eq3

and eq4) emphasized the important roles of side chain volume (V),

polarity (P), aromaticity (A) and the structure of the genetic code

(G) in determining relative rates of amino acid interchanges. The

role of polarity, volume, and the genetic code in determining rates of

amino acid interchanges has long been appreciated, but a role for

aromaticity independent of volume might be viewed as surprising

since aromaticity and volume are correlated (Pearson’s r¼0.716).

Composition (C) had less impact on protein evolution. That could

reflect way composition is calculated; composition has a modest cor-

relation with the other parameters (the maximum is with aromati-

city; r¼ -0.474) if all amino acids are considered, but it is strongly

correlated with polarity (r¼0.809) if cysteine is excluded (the

composition-polarity correlation is r¼0.37 when cysteine is

included). Thus, C could reflect two distinct aspects of protein evo-

lution (polarity and the special nature of cysteine). This may explain

why negative estimates of the C parameter emerged in some analyses

using eq3 (Tables 3 and 5). It also suggests that it may be desirable

to abandon the C parameter in favor of other properties. Regardless

of the details of the amino acid properties used for analyses, it is

clear that the patterns of evolution vary among proteins in ways that

cannot be examined using empirical models. The models proposed

here can reveal that variation and highlight the best amino acid

properties to examine in future studies.

The goal of this study was to develop an amino acid model that

could reveal the ways that patterns of molecular evolution vary

among proteins. The eq3 models include six parameters, four of

which reflect selection against radical amino acid substitutions. This

could make the eq3 models testable in a way that empirical models

(e.g., Table 1) are not. For example, if analyses of a specific protein

using eq3 results in a high estimate of V that protein is likely to be

more sensitive to volume changing substitutions than another pro-

tein associated with a lower estimate of V. Thus, eq3 could be tested

by mutagenesis experiments (e.g. using methods similar to the work

by Georgelis et al., 2007). The fact that KR/KC and effective popula-

tion size appear to be negatively correlated (Hughes and Friedman,

2009; Weber et al., 2014) could permit another test of eq3. The cor-

relation probably reflects the higher efficiency of selection in organ-

isms with large population sizes (Akashi et al., 2012). Since the eq3

model parameters are analogous to KR/KC they should exhibit the

same correlation. However, eq3 also of highlights the properties of

amino acids that contribute to the radical versus conservative nature

of substitutions in different proteins. Overall, eq3 provides a novel

tool to explore the differences among proteins.

Eq4 models provide different information than the eq3 models.

Specifically, eq4 reveals the ways that empirical models fail to cap-

ture specific patterns of amino acid substitution. The results shown

in Tables 4 and 5 reflect the use of eq4 with the best-fitting empirical

model; they do not show the degree to which other empirical models

might be improved. Testing the full set of empirical models in

Table 1 revealed three cases (APC, IFGN1 and PCNX) where eq4

with a suboptimal ‘base model’ performed better than eq4 with the

best-fitting empirical model (Supplementary File S5). In all three

cases, combining eq4 and the JTT model resulted in a better likeli-

hood than eq4 with the HIVb model; the estimate of the G param-

eter was much larger for the JTTþVPCAGT model than for the

HIVbþVPCAGT model for all three proteins (Supplementary File

S5). The parameter estimates that can be obtained using the eq4

models (Supplementary Files S5 and S6) provide an interesting way

to examine the ways each empirical model fails to capture the pat-

terns of amino acid substitution for individual proteins.

This study did not address variation among sites in patterns of

sequence evolution or the impact of these models on the estimation

of tree topology. Many studies have revealed variation among sites

within proteins in their evolutionary rate (Echave et al., 2016); sub-

stantial variation in the pattern of evolution is also likely to exist.

These models do not address that variation (except to the extent

that the C distribution captures variation in rates for all models

examined here). However, it would be straightforward to extend

eq3 or eq4 to a mixture model where one or more of the parameters

are drawn from a prior distribution (e.g. a C distribution or a uni-

form distribution); the mean and variance of that distribution could

be estimated by ML. Likewise, the potential for the proposed models

to improve tree topology estimation is unclear, although the fact that

eq4 improves the fit of empirical models makes it reasonable to specu-

late that it could be useful. However, other analytical approaches

should also be considered in studies focused on tree estimation

(e.g. site heterogeneous CAT models; Lartillot and Philippe, 2004;

Le, et al., 2008). However, information analogous to the KR/KC ratio

cannot be obtained from analyses using standard empirical models (or
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the CAT models). Ultimately, the value of the proposed models is

their potential to reveal differences among proteins in their patterns of

evolution and to identify the characteristics of amino acids that con-

tribute to protein evolution.
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