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Fault diagnosis method of bearing 
utilizing GLCM and MBASA‑based 
KELM
Sheng‑wei Fei* & Ying‑zhe Liu

In this study, fault diagnosis method of bearing utilizing gray level co-occurrence matrix (GLCM) 
and multi-beetles antennae search algorithm (MBASA)-based kernel extreme learning machine 
(KELM) is presented. In the proposed method, feature extraction of time–frequency image based 
on GLCM is proposed to extract the features of the bearing vibration signal, and multi-beetles 
antennae search algorithm-based KELM (MBASA-KELM) is presented to recognize the states of 
bearing. KELM employs the kernel-based framework, which has better generalization than traditional 
extreme learning machine, and it is necessary to look for an excellent optimization algorithm to 
select appropriate regularization parameter and kernel parameter of the KELM model because these 
parameters of the KELM model can affect its performance. As traditional beetle antennae search 
algorithm only employs one beetle, which is difficult to find the optimal parameters when the ranges 
of the parameters to be optimized are wide, multi-beetles antennae search algorithm (MBASA) 
employing multi-beetles is presented to select the regularization parameter and kernel parameter of 
KELM. The experimental results demonstrate that MBASA-KELM has stronger fault diagnosis ability 
for bearing than LSSVM, and KNN.

It is well known that the reliable fault diagnosis method for bearing is the key to ensuring the normal operation 
of equipments1–3. It is very significant to study the feature extraction method of the bearing vibration signal due 
to the important role of the excellent features of the bearing vibration signal for obtaining excellent diagnosis 
results of bearing4. Feature extraction based on time–frequency image of the vibration signal is a popular and 
effective feature extraction method5,6. In this study, short-time Fourier transform (STFT) is used to convert the 
bearing vibration signal of each sample into the corresponding time–frequency image, and feature extraction of 
time–frequency image based on gray level co-occurrence matrix (GLCM) is proposed. GLCM is a texture feature 
extraction method for image pixel processing, which is to count the number of pairs of pixels whose distance 
is specified in the specified direction. The four features including contrast, correlation, homogeneity, energy 
based on GLCM are unrelated, which are generally used for classification. However, the four features calculated 
from gray level co-occurrence matrix of time–frequency image do not achieve good classification effect in the 
experiment. Therefore, the way of feature extraction needs to be changed.

The excellent classification method is also important to obtain excellent diagnosis results of bearing. K-nearest 
neighbors (KNN) algorithm is a reliable and simple classification method7, which can simultaneously to rec-
ognize the bearing’s states. Support vector machine (SVM) classifier can solve the classification problems with 
high dimensions, small training samples, and nonlinearity8. Least squares support vector machine (LSSVM) is 
the least squares version of SVM, which can simplify the training process of SVM and make SVM more practical 
in engineering applications9,10. Kernel extreme learning machine (KELM) generalizes traditional extreme learn-
ing machine (ELM) to the kernel-based framework, which has better generalization than traditional ELM11,12.

Hereto, fault diagnosis of bearing utilizing GLCM and multi-beetles antennae search algorithm (MBASA)-
based KELM is presented in this study, feature extraction of time–frequency image based on GLCM is pro-
posed to extract the features of the bearing vibration signal, and multi-beetles antennae search algorithm-based 
KELM (MBASA-KELM) is presented to recognize the states of bearing. The regularization parameter and kernel 
parameter of the KELM model can affect the performance of KELM, so it is necessary to look for an excellent 
optimization algorithm to select appropriate regularization parameter and kernel parameter of the KELM model. 
Traditional beetle antennae search algorithm only employs one beetle, one beetle antennae search is difficult to 
find the optimal parameters when the ranges of the parameters to be optimized are wide. Thus, MBASA employ-
ing multi-beetles is presented to select the regularization parameter and kernel parameter of KELM. Multi-beetles 
antennae search increases the possibility of obtaining the optimal parameters compared with one beetle antennae 
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search. LSSVM and KNN are respectively used to compare with MBASA-KELM. The experimental results 
demonstrate that fault diagnosis ability of bearing of MBASA-KELM is better than that of LSSVM, and KNN.

Firstly, fault diagnosis method of bearing based on GLCM and MBASA-based KELM is introduced. Then, 
experimental analysis is performed to testify the superiority of the proposed method. Finally, conclusion is 
introduced.

Fault diagnosis method of bearing based on GLCM and MBASA‑based KELM
Feature extraction of time–frequency image based on GLCM.  GLCM is a texture feature extraction 
method for image pixel processing13. Its basic principle is to count the number of pixel pairs in a specific direc-
tion and distance. Direction is generally divided into four directions: 0°, 45°, 90°and 135°. Distance is a positive 
integer, which can be manually set to generate a gray level co-occurrence matrix. In order to reduce the amount 
of calculation, the time–frequency images are processed by changing the image size and gray level.

STFT is used to convert the bearing vibration signal of each sample into the corresponding time–frequency 
image, and Fig. 1 shows the time–frequency images of a set of samples representing four kinds of state types of 
bearing. As the time–frequency image generated by STFT14 has a large size which is 875 × 656, the size of the 
image is reduced to 128 × 128. In addition, as the gray image has 256 gray levels, which requires a lot of calcula-
tion, the gray level of time–frequency image is set to 4, and the 4×4 gray level co-occurrence matrix is obtained 
by counting the number of pixel pairs whose direction is 90 degree and whose distance is 2.

The four features including contrast, correlation, homogeneity, energy calculated from gray level co-occur-
rence matrix of time–frequency image do not achieve good classification effect in the experiment. Therefore, in 
this study, the 4× 4 co-occurrence matrix is converted into a 16-dimensional vector, which is the preliminary 
feature of each time–frequency image. Due to the large numerical span of each preliminary feature in the vector, 
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Figure 1.   The time–frequency images of a set of samples representing four kinds of state types of bearing.
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the preliminary features are processed to avoid the impact of too large numerical span on the classification effect. 
The mapminmax function in MATLAB shown in Eq. (1) is used to normalize the preliminary features in the 
training set. As mapminmax function is to normalize each row of data, the matrix composed of the preliminary 
features in the training set is transformed into a row vector before normalization, and then returned to the form 
of matrix after normalization. When Eq. (1) is used to normalize the preliminary features in the testing set, the 
values of xmax and xmin are the maximum and minimum values among the preliminary features in the training 
set rather than the testing set.

where xmax and xmin are the maximum and minimum values of each row before normalization, respectively, and 
ymax and ymin are the maximum and minimum values of each row after normalization, respectively.

The specific steps of extracting the features of time-frequency image based on GLCM are as follows:

Step 1:	�  Reduce the size of time–frequency image from 875 × 656 to 128 × 128.
Step 2:	�  Convert the color image into gray image. At this time, the pixel range of time–frequency image is 

0–255.
Step 3:	�  Convert the gray image into an image with four gray levels. At this time, the pixel range of time-

frequency image is 1–4.
Step 4:	�  Count the number of pixel pairs whose direction is 90 degree and whose distance is 2, and generate the 

4× 4 gray level co-occurrence matrix.
Step 5:	�  Convert the 4× 4 matrix to a 16-dimensional vector, and take this vector as the preliminary feature 

of time-frequency image. The preliminary features in the training set and testing set are normalized, 
respectively, and then the features of time-frequency image based on GLCM can be obtained.

The features of a set of samples with different states by using feature extraction method of time–frequency 
image based on GLCM are given in Fig. 2.

MBASA‑based KELM.  KELM.  The detailed description of ELM can be shown in the related literatures15,16, 
ELM can be expressed as follows:

where ω = GT
(

I
C + GGT

)−1
T denotes the weight connecting the hidden layer with the output layer, and C 

denotes the regularization parameter.
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Figure 2.   The features of a set of samples with different states by using feature extraction method of time–
frequency image based on GLCM.
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KELM employs a kernel function to replace the feature mapping g(x) of ELM, which makes KELM have better 
convergence and generalization performance than ELM17. KELM can be expressed as follows:

where �KELM denotes the kernel matrix,

Cauchy kernel is an excellent alternative kernel function, which is employed in this study and can be expressed 
in the following form:

where η is the Cauchy kernel parameter.
The regularization parameter and kernel parameter of the KELM model can affect the performance of KELM, 

which need to be carefully selected.

Parameter optimization of KELM based on MBASA.  BASA imitates the activities of the beetle’s antennae in 
nature18. However, traditional beetle antennae search algorithm only employs one beetle, one beetle antennae 
search is difficult to find the optimal parameters when the ranges of the parameters to be optimized are wide. 
Thus, MBASA which employs multi-beetles is presented in this paper. Multi-beetles antennae search increases 
the possibility of obtaining the optimal parameters.

The process of the parameters’ selection of KELM based on MBASA can be described as follows:

Step 1: 	� Define the beetles’ positions as a vector xt at the tth time instant ( t = 1, 2, · · · ) . Initialize the parameters 
of MBASA, including the beetles’ position x0 , antennae length d0 and step size δ0.

Step 2: 	� Evaluate the fitness of each beetle fivefold cross-validation method is employed to evaluate the fitnesses 
of the beetles. In fivefold cross-validation method, the training samples are equally divided into 5 
subsets of the samples, among which 4 subsets of the samples are used to train the KELM model, and 
the remaining subset is used to test the KELM model. Each subset can be used as the testing subset in 
turn. Then, the total diagnosis accuracy Ai of the 5 subsets of the samples can be obtained as follows:

	� The fitness of the ith beetle is defined as follows:

Step 3: 	� Obtain the searching behaviors of both right-hand and left-hand sides.

	� In order to model the searching behavior, a random direction of beetle searching can be described 
as follows,

where rv(m, 1) is a m-dimensional vector with random values between -1 and 1, m is the position’s dimensions, 
here, m is set to 2, and eps = 2−52.

	� The activities of the beetles’ antennae are imitated by the searching behaviors of both right-hand side 
and left-hand side, which are expressed as follows:

where xi,r is the position which is lying in the searching area of the ith beetle’s right-hand side, xi,l is the position 
which is lying in the searching area of the ith beetle’s left-hand side, and dt is the sensing length of antennae 
corresponding to the exploit ability at the tth time instant.
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Step 4: 	� Update the positions of the beetles.

	� The iterative model is generated as Eq. (9) to associate with the odour detection by considering the 
searching behavior,

where δt is the step size of searching, and sign(·) is a sign function.
Step 5: 	� Compare the fitness of xti  with the fitness of current best position of the ith beetle, if f

(

x
t
i

)

< fbest , 
then fbest = f

(

x
t
i

)

 , xi,best = x
t
i  , where xi,best is the current best position of the ith beetle, and fi,best is 

the fitness of current best position of the ith beetle.
Step 6: 	� Update the antennae length d and step size δ as follows,

where r0 is the constant.
Step 7: 	� Repeat steps 2-6 until the stopping condition is met.
Step 8: 	� Obtain the best position of the best fitness among all beetles, which is the optimal parameters of KELM.

Fault diagnosis process of bearing based on GLCM and MBASA‑based KELM.  Fault diagnosis 
process of bearing based on GLCM and MBASA-based KELM is given in Fig. 3. Firstly, convert the bearing 
vibration signal of each sample into the corresponding time–frequency image by STFT, and feature extraction 
of time–frequency image based on GLCM. Then, based on the training samples, create the fitness function, and 
optimize the regularization parameter and kernel parameter of KELM by using MBASA. Furthermore, establish 
the MBASA-KELM model by the optimized regularization parameter and kernel parameter of KELM. Finally, 
test the proposed diagnosis model.

Experimental analysis
In the experiment, the data of the faults including inner race fault, outer race fault and ball fault with a damage 
size of 0.014 inches and the data of normal state under a load of 3HP are used, the sampling frequency is 48 kHz19. 
In the experiment, the 480 samples with 120 samples for each state are employed as the training samples, and 
the 320 samples with 80 samples for each state are employed as the testing samples.

(10)x
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Figure 3.   Fault diagnosis process of bearing based on GLCM and MBASA-based KELM.
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The regularization parameter and kernel parameter of the KELM model are selected by MBASA. In MBASA, 
d0 = 2, δ0 = 0.5,r0 = 0.001 , and the range of the regularization parameter C of the KELM model is [1,10000], and 
the range of Cauchy kernel parameter η of the KELM model is [0.01,10].

LSSVM and KNN are respectively employed to compare with the proposed MBASA-KELM method. The 
regularization parameter and kernel parameter of the LSSVM model are selected by grid method, the range of 
the regularization parameter of LSSVM is {1, 10, 100, 1000, 10000} , and the range of Cauchy kernel parameter of 
LSSVM is {0.01, 0.1, 1, 10}.The parameter k of the KNN model is selected by grid method, k is the natural number, 
and the range of the natural number k of KNN is [1,20].

As shown in Fig. 4, all the testing samples are correctly classified based on MBASA-KELM; as shown in Fig. 5, 
the number of testing samples with incorrect diagnosis based on LSSVM is only 3; as shown in Fig. 6, the number 
of testing samples with incorrect diagnosis based on KNN is 18. Obviously, the diagnosis results of LSSVM for 
bearing are better than those of LSSVM, and KNN.

As shown in Table 1, the number of testing samples with correct diagnosis of MBASA-KELM is 320, and the 
diagnosis accuracy of MBASA-KELM is 100%, which demonstrates that feature extraction of time–frequency 
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Figure 4.   The diagnosis results of bearing based on MBASA-KELM.
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Figure 5.   The diagnosis results of bearing based on LSSVM.
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image based on GLCM can obtain excellent diagnosis results, and MBASA is helpful to select appropriate param-
eters of KELM; the number of testing samples with correct diagnosis of LSSVM is 317, and the diagnosis accuracy 
of LSSVM is 99.0625%; the number of testing samples with correct diagnosis of KNN is 302, and the diagnosis 
accuracy of KNN is 94.375%.It is indicated that MBASA-KELM has higher diagnosis accuracy for bearing than 
LSSVM, and KNN.

Conclusions
In this study, fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM is presented, feature 
extraction of time–frequency image based on GLCM is proposed to extract the features of the bearing vibration 
signal, and MBASA-based KELM is presented to recognize the states of bearing.

STFT is used to convert the vibration signal into a time–frequency image, and feature extraction of time–fre-
quency image based on GLCM is proposed in this study. GLCM is a texture feature extraction method for image 
pixel processing, and the basic principle of GLCM is to count the number of pairs of pixels whose distance is 
specified in the specified direction.

KELM with the kernel-based framework has better generalization than traditional extreme learning machine. 
MBASA employing multi-beetles is presented to select the regularization parameter and kernel parameter of 
KELM, which increases the possibility of obtaining the optimal parameters compared with one beetle antennae 
search. The experimental results demonstrate that MBASA is helpful to select appropriate parameters of KELM, 
and MBASA-KELM has better fault diagnosis ability for bearing than LSSVM, and KNN.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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