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Abstract

Learning how to allocate attention properly is essential for success at many categorization tasks. Advances in our
understanding of learned attention are stymied by a chicken-and-egg problem: there are no theoretical accounts of learned
attention that predict patterns of eye movements, making data collection difficult to justify, and there are not enough
datasets to support the development of a rich theory of learned attention. The present work addresses this by reporting five
measures relating to the overt allocation of attention across 10 category learning experiments: accuracy, probability of
fixating irrelevant information, number of fixations to category features, the amount of change in the allocation of attention
(using a new measure called Time Proportion Shift - TIPS), and a measure of the relationship between attention change and
erroneous responses. Using these measures, the data suggest that eye-movements are not substantially connected to error
in most cases and that aggregate trial-by-trial attention change is generally stable across a number of changing task
variables. The data presented here provide a target for computational models that aim to account for changes in overt
attentional behaviors across learning.

Citation: McColeman CM, Barnes JI, Chen L, Meier KM, Walshe RC, et al. (2014) Learning-Induced Changes in Attentional Allocation during Categorization: A
Sizable Catalog of Attention Change as Measured by Eye Movements. PLoS ONE 9(1): e83302. doi:10.1371/journal.pone.0083302

Editor: Haline Schendan, University of Plymouth, United Kingdom

Received December 11, 2012; Accepted November 12, 2013; Published January 31, 2014

Copyright: � 2014 McColeman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants from the Canada Foundation for Innovation (http://www.innovation.ca/), the British Columbia Knowledge
Development Fund (http://www.aved.gov.bc.ca/researchandinnovation/Funding/BCKDF/index.htm), and the Natural Sciences and Engineering Research Council
of Canada (http://www.nserc-crsng.gc.ca/index_eng.asp) to MRB. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: caitlyn_mccoleman@sfu.ca

Introduction

The visual modality is a primary source of information from

which our understanding of the world arises. We learn to navigate

through this world by prioritizing relevant sources of information

to which we further allocate mental resources. The relevance of

certain properties of the visual scene changes based on the goals of

the observer; meaning that our visual-cognitive system must be

able to respond to changes in both the task at hand and the scene

itself. This question of how the human cognitive architecture is

able to flexibly respond to a complex, dynamically changing visual

environment is a defining problem for the psychological sciences

[1–2]. Cognitive flexibility depends to a large degree on the

capacity to make quick and efficient classifications of objects in the

environment. Rapid classifications, in turn often depend on

learning to attend to the features of objects that most effectively

differentiate alternatives. For instance, when driving towards an

intersection, deciding whether to stop the car critically depends on

learning to attend toward the information conveyed by traffic

lights. Because of the complexities of real world decision-making,

we extract the basic elements of these decisions to study them in

controlled tasks in the laboratory. In this paper we use eye-tracking

to explore how allocation of overt attention changes over the

course of learning by providing data from ten such classification

experiments. The resulting data are made available to inform the

advancement of theories of goal-directed attention and category

learning.

Eye movements are an effective index of visual selective

attention due, in part, to the close coupling of attentional and

oculomotor processing at a neurological level [3]. The strategy of

tracking attention using eye movements has been leveraged in a

number of studies, which have found that oculomotor activity is

sensitive to small task variations [4] and prior knowledge [5–6]. In

studies of sport expertise it is typically found that skilled players

allocate their gaze to locations at which the ball is likely to land

[7], in addition to allocating gaze in ways that minimize the effects

of inattentional blindness [8]. The coupling of the allocation of

gaze and online performance [9] was also shown in several

landmark studies of gaze-allocation during tasks such as the

preparation of tea and sandwich making [10] and a change in gaze

paths following variable instruction sets [11]. These studies show

that eye movements capture the goal-directed attentional process-

ing of participants in a variety of tasks and that effective attentional

deployment is, at least in part, a learned skill [12–13].

This idea of learned attention has been explored in several

computational models of category learning [14–16], a field that

has, perhaps, the most formalized relationships between attention
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and learning. In the category learning literature, attention is

typically defined as the preferential weight assigned to the

important dimensions of a category represented in formal models.

These formal models do not predict eye movements or other

observable indices of attention, rather, attention is an abstract

concept that increases the likelihood to make a particular category

decision based on the input to the model. Error-driven algorithms,

such as back-propagation, are the most commonly implemented

attentional learning mechanisms in formal models. In these

algorithms, the degree of change in the model’s attention weights

is proportional to the degree of mismatch between model output

and the correct response: larger weight changes result from a

larger discrepancy between model output and target values. This

behaviour is a basic consequence of the classic delta-rule

formulation, Dwi,j = a(tj-yj)xi, where wi,j is the weight connecting

hidden (or input) unit xi with the output unit yj, in a supervised

network model where tj is the teacher and a is the learning rate.

This is the standard basis for error-driven learning. One problem

with using the delta rule to formalize notions of human attention

changes in categorization tasks is that the error generated by the

model cannot be measured directly in human participants, as there

is no known method to measure the values of internal dimension

weights. As such, a hypothesis like ‘attention change is tied to

error’ is hard to test, since error is a discrete measure in human

data and error in model attention weights is a continuous value.

Further, error in formal models is disembodied and abstract in that

the continuously valued prediction cannot be reduced to human

performance errors. This problem extends more generally, in that

attention weights are not observable in human learners over the

course of the learning curve, in response preparation, or other

important parts of categorization that models of category learning

aim to fit. Despite pervading formal models, attention weights are

an ethereal, immeasurable stand-in for attentional processes

preceding category choices. In contrast, eye movements provide

an observable measure of attention which can be leveraged to

understand the deployment of attention to stimulus features

preceding category choices [17–18].

An additional part of the problem of comparing human

performance to that of models is the paucity of data from which

to base theories. To make an effort to extend the data available, we

re-analyze a number of published experiments (using different

measures), and also report some new data that has not yet been

seen. Given the variation seen in eye-movements based on very

subtle tasks or environment changes, constructing a model to fit

one or two experimental manipulations does little to advance a

greater understanding of selective attention during learning more

generally (see [19] for additional discussion on this topic). In the

spirit of developing a point of comparison between humans and

popular computational models of learning and attention, recent

work was undertaken to compare the two using an early measure

of attention change after error and correct trials in a category

learning task [20]. The results show a large disparity between

formalizations of attentional learning and actual human behavior.

The difference between observable measures of attention and the

formal predictions point to a need to investigate the relationship

more comprehensively.

Although there is evidence to suggest that improved attention

patterns are related to the change in accuracy, there are further

concerns, beyond the simulation data, of relying on error

reduction algorithms that target attention weights to understand

attention change. Error-driven theories have been shown to be

problematic, as overt attention changes are observed well after

participants stop making errors during learning [17,21]. This

suggests a disconnect, or a mediating factor that separates

attention from response patterns, in contrast with the purportedly

tight coupling between the attention and accuracy expected in

formal models relying on error reduction algorithms. It could be,

as Rehder and Hoffman suggest, that there are simple factors like

strategic delays or spatial translation times that explain these

disconnects, but regardless of the source of the dissociation, it is

important to acknowledge that attention patterns predicted in

formal theories are often not commensurate with human data. We

propose that collecting the multifaceted body of evidence of

attention patterns in human learners described here is a necessary

precursor to developing a model that is able to realistically account

for attentional learning. The data presented here come from

experiments that use similar category structures as those that have

been used to test formal models [14] with the goal being to provide

a novel look at the underlying assumptions, and a more plausible

behavioral basis for models of category learning.

The following ten experiments are examined using five

measures: accuracy, probability of fixating irrelevant information,

the number of fixations to category features, and two novel

measures that describe the deployment of attention in a category

learning task, which we call Time Proportion Shift (TIPS) and

Error Bias. Separate measures using these data have been reported

elsewhere, but the analyses reported here have not been reported

using these experiments. We report classification accuracy, a

standard index of knowledge acquisition, to convey the extent of

participants’ knowledge of the category structures with which they

are presented. The probability of fixating irrelevant information

reflects one dimension of the attentional expertise of the

participants. This measure captures moments of uncertainty, in

that any eye movement to fixate an irrelevant feature is one that

the participant could have used to examine task-relevant areas of

the environment. The number of fixations to category features

elaborates on attentional efficiency in that a larger number of

fixations than there are relevant dimensions in the stimuli is

redundant and reflects some level of inefficiency. As we show in

this report, there are cases where participants are unlikely to fixate

irrelevant information, but still deploy a relatively large number of

fixations to the stimulus features, reflecting an inefficient use of eye

movements.

TIPS reflects the aggregate changes in eye-movements, trial-to-

trial. It is quantified by the sum of the differences in the proportion

of fixation time to the features of a stimulus in a categorization

task. Formally stated, we let Qi,t be the total amount of time spent

on feature i during trial t. We then calculate the proportion of time

spent on feature i during trial t, gi,t~
wi,tP
i wi,t

. The TIPS from trial

t-1 to trial t is defined simply as the total absolute difference

between gi,t and gi,t-1 for each i, namely:

dt~
P

i gi,t{
�
� gi,t{1

�
� ð1Þ

The range of the TIPS score for any pair of trials is 0 to 2. We

can see this most simply in the case of a two featured stimulus,

where the maximum change in attention would be all gaze

allocated to a particular feature on trial t-1 followed by all gaze

allocated to the alternative feature on trial t (e.g. |(0–1)|+|(1–

0)| = 2. In our experiments, features are considered for their

relevance to the category response rather than their spatial

location. This measure captures the stability of between-trial

attentional allocation, which might act as an effective aggregate

complement to recently developed measures that explore the

stability or strengths of within-trial attentional patterns [22]. From

Attention and Eye Movements in Categorization
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earlier work exploring eye movements in category learning tasks

we expect that TIPS will decrease over time as participants start to

make more automated movements. For instance, it was found that

attentional optimization improves over learning, as measured by

decreases by both numbers of fixations and fixation durations to

irrelevant information [17,21]. Additionally, recent work [22], has

suggested that participants in categorization tasks develop strong

consistent eye movement patterns over the course of learning, as

measured by tendencies to look at information in the same order,

even if that order is sub-optimal in terms probability or

information gain. As eye movements become more efficient,

trial-by-trial attention changes should decrease while the partic-

ipant is developing a consistent, efficient strategy, resulting in a

lower TIPS score. Fixations durations to features may show a level

of systematic variability that makes TIPS differ in its patterning

than what might be easily predicted from the trends in other

efficiency measures, and so pairing TIPS with other efficiency

measures builds a multi-pronged profile for attentional data.

From the TIPS measure we develop a second measure of

attention change, this one in response to predictions that tie

attention change and accuracy together. We do this, not only to

allow comparison with computational models of learning and

attention, but also as a way of demonstrating the capacity of this

kind of data to yield task sensitive descriptions in terms of

aggregate eye-movement data. To calculate Error Bias, we let e

denote a trial that follows an error trial, and c denote a trial that

follows a correct trial. The mean TIPS after error and the mean

TIPS following correct trials over the course of the experiment are,
�dde and, �ddc respectively. The raw Error Bias score for each

participant is then defined as,

b~
�dde

�ddez�ddc

ð2Þ

which is then normalized to produce Error Bias b9 = 2(b21/2) so

that the score ranges from 21 to 1. An Error Bias of 21 indicates

that there was no attention change following error trials since

TIPS = 0 after error; rather the entirety of the attention change in

the experiment follows correct trials. Conversely, an Error Bias of

1 means that all attention change followed error trials. These two

novel measures capture different elements of attentional learning

in categorization tasks.

We show a more complex relationship between learning and

attention than has previously been acknowledged in the catego-

rization literature, by presenting data from ten experiments. Some

of the findings reported here are new analyses on existing data. All

such cases are clearly marked during the description of the

experiment. A number of manipulations influence the attention

measures in ways that have not yet been reported: the complexity

of a task, the types of stimuli, the length of the experiment, and the

medium of access all work to influence how participants attend

information. In the interest of presenting a robust dataset that can

be replicated and examined in laboratories without access to eye

gaze data, and to demonstrate convergent results across modal-

ities, we describe an experiment where mouse movements are used

as indices of attention (see Experiment 10). In this regard,

laboratories that are not equipped with eye trackers are also able

to tap into the fine-grained, temporal nuances of attentional

deployment, and how it changes over the course of learning; we

also discuss some of the differences between hand-movements and

eye-movements that researchers should bear in mind when

comparing these measures. Unearthing all of the complex

relationships between all of these measures, however, will be an

ongoing effort and the large dataset provided here serves as an

initial step in that pursuit.

Experiments

This section describes the ten category learning experiments, all

of which measure the overt allocation of attention to stimulus

dimensions by tracking eye movements (or mouse drags,

Experiment 10). These experiments are presented in a manner

that increments the task complexity and includes important

category structures found in the categorization literature. In each

case we report five measures of learning and attentional

performance: accuracy, the probability of fixating irrelevant

information, the number of fixations to category features, the

Time Proportion Shift (TIPS) and the degree of Error Bias. Some

of the present work, as indicated, is a reanalysis of eye-movement

data from earlier experiments that have been described elsewhere

for other research goals based on different measures.

Ethics Statement
These data were collected with approval from the Office of

Research Ethics at Simon Fraser University, project number

37046. All participants provided written informed consent at the

beginning of the experiment, and were provided with a written

debrief form after the experiment.

Experiment 1. Categories Defined Using Simple
Conjunction

Experiment 1 was a simple categorization task, in which

participants used a two-dimensional conjunction rule informed by

two of the three stimulus features (Figure 1A). The two features

that were used in the category decision were the relevant features,

while the third was an irrelevant feature. These data were taken

from one of the experimental conditions of McColeman, Ancell

and Blair [23], and the raw data were made available through

SFU Summit under ‘‘Category Learning with Imperfect Feed-

back’’. Unlike subsequent experiments reported here, participants

were told that only two features would be relevant to the category

choice. However, the participants have to learn which of the three

features, or which of the feature locations were relevant.

Methods. Twenty-two undergraduates at Simon Fraser

University received course credit for their participation. The data

from two participants were excluded from analysis for failure to

meet the eye gaze quality criteria of at least 70% of the trials

exceeding 75% gaze collected. One participant failed to reach the

learning criterion of 9 consecutive correct trials and was also

excluded from analysis. Data were analyzed for 19 participants.

Stimuli and category structure. Participants learned a

four-category task using stimuli with three binary-valued features.

The configuration of two of these features determines the category

of the stimulus, while the third feature is irrelevant (Figure 1,

‘‘Data for Experiment 1’’, Panel A). Stimuli were fictitious

microorganisms in which the three features, appearing as

organelles spanning 1.3u of visual angle, were located equidistant

from each other and from the center of the image (shown in Figure

S1, ‘‘Stimuli for Experiment 1’’) separated by 10.6u. As is the case

for all subsequent experiments, the assignment of location and the

relevance of the organelles were counterbalanced between

subjects, but the location and relevance of the organelles to

making a category choice remained constant for each participant.

Unless noted otherwise, in all eye-tracking experiments, eye gaze

was recorded using a Tobii X120 eye-tracker sampling at 120 Hz

with a spatial resolution of 0.5u and fixations were defined by

transforming raw gaze data using a modified dispersion threshold

Attention and Eye Movements in Categorization
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algorithm with a spatial dispersion threshold of 1.9u and a

duration threshold of 75 ms [24]. These experiments also used a

nine-point calibration technique to establish the position of

participants’ eyes at the beginning of the task.

Procedure. At the beginning of the experiment, participants

were introduced to a fictitious space laboratory, and told that they

were to view a series of organisms that belonged to four species.

Each species produced its own mineral, which is the basis for

Figure 1. Data for Experiment 1. Each bin reflects the average of 20 trials and error bars represent standard error of the mean. A) The category
structure. B) Performance accuracy. C) Mean number of fixations per trial. D) Probability of fixating the irrelevant feature. E) Time proportion shift, dt.
F) Error Bias, b9.
doi:10.1371/journal.pone.0083302.g001
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participants’ category responses. The experiment consisted of 360

trials in blocks of 24 trials, where each block presents a random

ordering of three of each of the eight possible stimuli. Responses

were madeta using the four trigger buttons on a Logitech game

pad. Following a response, the participant’s selection was displayed

alongside a feedback screen displaying the correct answer

(‘sodium’, ‘lithium’, ‘potassium’ or ‘calcium’) and the re-presen-

tation of the stimulus from that trial. In this experiment, fixations

were considered as fixations to features if they fell within 2.98u of a

feature’s center.

Results. For each of the experiments in this report, we

provide a mixed effects logistic regression (LMER) for measures

that yielded binary responses trial-to-trial (accuracy and the

probability of fixating irrelevant features); and a within-subjects

analysis of variance (ANOVA) on the number of fixations and the

TIPS scores. Each analysis contained four levels of the within-

subjects factor, Block. Each Block (1–4) captured the average score

for the corresponding quarter of the experiment. In employing this

technique we were able to compare across a number of

experiments of varying trial lengths. To provide a clear picture

of the underlying data that informed these analyses, data were

visualized in bins of 20 trials each for easy comparison between

experiments, shown in Figure 1. Thus, for all of the experiments

reported here, one bin on a plot reflects the average of 20 trials;

and one level of the within-subjects factor Block in the ANOVA

reflects 25% of the total number of trials in the experiment. Text

S1, ‘‘Four Block Experiment Data’’, describes the conditional

means for the data used in the statistical analyses. These measures

were calculated based on data from trials where the eye-tracker

successfully recorded over 75% of gaze positions, a standard used

consistently throughout all of the experiments. Post-hoc analyses

were performed using Tukey’s HSD (a= .05) with corrections for

sphericity [26] where necessary (Text S1, ‘‘Four Block Experiment

Data’’).

In this experiment, each Block (1–4) of each one-way within-

subjects analysis contained 90 trials, or 4.5 bins of each plot

(Figure 1, A–E). The first analysis was conducted on participants’

response accuracy with Block as a fixed effect and Subjects as a

random effect. To perform this analysis, we used the lme4 package

in the freely available statistical software, R [25]. We find that

Block is a significant predictor for accuracy, bblock = 0.78,

estimated z = 16.32, p,0.001, indicating that the model con-

structed with Block is a stronger predictor of accuracy than a

model comprised of only the intercept. From this model, we can

infer that accuracy increased with block. Full model specification is

available in the supplementary material (along with the condi-

tional means and standard deviations, Text S1, ‘‘Four Block

Experiment Data’’).

Concurrent with learning the categories, participants learned to

use more efficient attentional patterns, as reflected in two

measures: probability of fixating the irrelevant feature, such that

more efficient patterns direct attention toward the irrelevant

information less often [21] and the average number of fixations

they made during a trial, which is related to repeat fixations to

features already viewed. A linear effects model to predict

participants’ probability of fixating the irrelevant feature revealing

Block to be a significant predictor, bblock = 21.23, z = 19.56, p,

0.001. The model indicates that the probability of fixating

irrelevant information decreases over time. An ANOVA conduct-

ed on participants’ average number of fixations per trial revealed a

significant main effect of Block, F(1.67, 30.04) = 13.16, p,.001

after Greenhouse-Geisser correction, gG
2 = .19 [27]. Post-hoc

analysis revealed that Block 1 had significantly more fixations

than all other Blocks. Additionally, significantly more fixations

were made in Block 2 compared to Block 4 (see Figure 1, Panel C).

An ANOVA was conducted on participants’ TIme Proportion

Shift (TIPS) scores (dt). Recall that this number reflects the degree

to which participants alter the proportion of time spent fixating

each of the three features from one trial to the next, and acts as an

index of participants’ propensity to change their information

access patterns. That is, a lower TIPS score indicates a more stable

fixation pattern. One participant was excluded from the analysis of

TIPS data due to one cell of missing data: unlike our other

measures, this relies on two successive trials of clean data, so

problems with either trial such as insufficient gaze collected by the

eye-tracker invalidates that particular data point. We found a

significant main effect of Block on TIPS, F(1.74, 29.52) = 5.83,

p = 0.007 after Greenhouse-Geisser correction, gG
2 = 0.14. Post-

hoc analysis suggests participants were allocating attention more

constantly as learning improves, with a significant difference found

only between Blocks 1 and 3 (see Figure 1, Panel E; and Text S1,

‘‘Four Block Experiment Data’’).

Finally, we investigated the extent to which participants tended

to engage in attention shifts in response to correct or incorrect

trials by examining their Error Bias (b9) scores. Recall that this

score is an aggregate of behavior over the entire experiment, and

that a score of 21 indicates that none of the attention shift in the

experiment follows error and a score of +1 indicates that all of the

attentional shifting occurs after an error trial. A single sample t-test

detected no significant difference from 0 in the Error Bias

distribution (M = 20.02, SD = 0.27), t(17) = 20.31, p = 0.759

(Figure 1, Panel F). We thus find no evidence to suggest that

participants are more likely to shift their attention following a

correct trial or an error trial.

Experiment 2. A Second Case of Simple Conjunction,
with a Speed/accuracy Manipulation

Building on the data derived from simple conjunction rule use,

this experiment had a similar design to that of Experiment 1,

however the instructions were worded such that each of the two

conditions prioritized either speed or accuracy in participants’

responses. It was expected that the number of fixations and the

information access strategy would differ between groups depend-

ing on the priority to respond either quickly or accurately. The

data from this experiment and Experiment 7 are publicly available

through the SFU Summit at summit.sfu.ca/collection/94 under

‘‘Speed Accuracy Trade-Offs in Category Learning’’.

Participants. Sixty-nine undergraduates participated in this

experiment. Four were excluded from analysis due to bad gaze

quality, and an additional fifteen were excluded for failure to meet

a learning criterion of twelve consecutive correct trials. Data were

analyzed for 50 participants.

Stimuli and category structure. The category structure for

this experiment was the same as in Experiment 1: the values of two

of the features were the basis of four categories, while a third

feature was irrelevant (Figure 1, Panel A). These stimuli were mock

animal cells, shown in Figure S2, ‘‘Stimulus and feature images for

Experiments 2 and 7’’.

Procedure. At the beginning of the experiment, participants

were assigned to either a speed-emphasis condition (25 partici-

pants) or an accuracy-emphasis condition (25 participants) wherein

either the speed or the accuracy of responses were prioritized for

the participant by the instructions that introduced the experimen-

tal task. A break at the end of each 20 trials indicated to a

participant their average response speed and accuracy from those

past 20 trials, a reminder to perform quickly or accurately

(corresponding to the condition assignment), and the number of

Attention and Eye Movements in Categorization
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blocks remaining in the experiment. The trial procedure was the

same as Experiment 1 where participants were presented with a

stimulus, made their self-timed response, and then received

feedback along with a re-presentation of the same stimulus.

Feedback in this experiment differed slightly from the earlier

experiment in that a square in each corner of the screen

corresponded to the physical location of the response buttons on

the gamepad. The correct square was highlighted in green and, if

Figure 2. Data for Experiment 2. A) Performance accuracy. B) Mean number of fixations per trial. C) Probability of fixating the irrelevant feature. D)
Time proportion shift, dt. E) Error Bias, b9, for speed instruction condition. F) Error Bias for accuracy instruction condition. Each bin reflects the average
of 20 trials.
doi:10.1371/journal.pone.0083302.g002
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the participant was wrong, the incorrect square was highlighted in

red to provide information about response accuracy. The

experiment terminated after 300 trials. Technical specifications

were the same as in Experiment 1. A feature was considered

fixated if the fixation fell within 3.20u visual angle of the center of

the feature.

Results. As in Experiment 1, data are presented in Blocks,

where each level of the Block factor represents 75 trials or 3.75

bins of Figure 2; additionally, we added Instruction Condition

(Speed, Accuracy) as a between-subjects factor in the ANOVA

analyses, and as a fixed effect in the LMER models constructed

from the accuracy and probability of fixating irrelevant features.

The means and standard deviations are available in Text S1,

‘‘Four Block Experiment Data’’. The first model shows that Block

is a significant predictor of accuracy in this experiment,

bblock = 1.06, z = 9.48, p,0.001, but that Condition, z = 0.34

p = 0.76, and the interaction between Condition and Block,

z = 0.05, p = 0.75 are not. Although there was a decrease in the

number of errors over time, there was no detectable influence of

the Instruction Condition, indicating that the experimental

manipulation prioritizing accuracy versus speed was unsuccessful.

Further exploration is necessary to make any direct claims about

why this might be the case, but it is likely that improving accuracy

is a necessary first step to improving efficiency in a categorization

task and participants were self-imposing an accuracy priority

regardless of the experiment instructions. Additionally, the failure

to elicit a difference between groups is partially attributed to the

exclusion criteria: participants who performed effectively enough

to be identified as learners were the only ones included in the

analysis. Since prior research has consistently shown that there is a

trade off between speed and accuracy, it is likely the instruction

manipulation was not strong enough to overpower the priority that

these participants placed on accurate performance. As the

differences between the two groups were non-significant, we

collapsed the data across the two conditions to report the change

in all fifty subjects over the course of the experiment. The resulting

conditional means and standard deviations are available in Text

S1, ‘‘Four Block Experiment Data’’. Though we failed to elicit an

effect of the speed-accuracy trade-off, these data provide

additional evidence for the behavior of the measures reported

throughout this paper and are provided to extend the public

dataset of eye movements and learning behavior.

Using a separate linear mixed effects model, we saw that the

probability of fixating irrelevant was predicted by Block, bblock = 2

2.35, z = 210.48, p,0.001 but not by Condition (z = 20.74,

p = 0.81) or the interaction between Block and Condition (z = 0.74,

p = 0.46). An ANOVA conducted on the number of fixations

showed significant changes over the duration of the experiment.

The ANOVA revealed a large effect of Block, F(2.04,

98.08) = 50.83, p,.001 after Greenhouse-Geisser correction,

gG
2 = .30; but no main effect of Instruction Condition, F(1,

48) = 0.24, p = 0.63 and no interaction between the two factors,

F(2.04, 98.08) = 0.21, p = 0.82. As with above, the between

subjects conditions were collapsed to examine the overall trend

over the course of the experiment, and so the post-hoc analysis on

the number of fixations to features was conducted using the data

from fifty participants. These analysis showed that all four of the

Blocks were different from one another. That is, the number of

fixations decreases over the course of the experiment and did not

level out by the last quarter of the trials.

A final ANOVA with the same factors was conducted on the

Time Proportion Shift (TIPS) scores. Excluding one participant

for missing data, there was a small but significant effect of Block

on attention change, F(2.98, 140.18) = 7.29, p,0.001, after

Huynh-Feldt correction, gG
2 = .05. The speed versus accuracy

manipulation failed to elicit a difference in TIPS, as there was no

main effect of Instruction Condition, F(1, 47) = 2.40, p = 0.13. The

two factors did not interact, F(2.98, 140.18) = 0.42, p = 0.74,

indicating the absence of a secondary influence of the instruction

manipulation over the four blocks. Post-hoc analysis on the

collapsed data reflect differences between Block 1 and all of Blocks

2–4, as well as a difference between Blocks 2 and 4. These findings

suggest that TIPS decreases through the first half of the

experiment, at which point the attention change remained

constant. The degree of Error Bias in these conditions was not

significantly different, t(48) = 0.63, p = 0.534, suggesting that both

the Speed and Accuracy conditions were similarly non-zero in

their Error Bias distributions. Consequently, the Error Bias data

points were combined to do one single sample t-test against the

null hypothesis of 0 Error Bias, which showed an Error Bias

(M = 0.10, SD = 0.10) significantly greater than zero, t(49) = 7.69,

p,0.001, d = 1.09, reflecting an overall bias to change attention

patterns following an error trial.

Visual inspection of Figures 1 and 2 indicate that of the six

measures, two exhibit less optimal outcomes in Experiment 2

relative to Experiment 1. Although the experiments were based on

the same simple category structure, a potential source of the

difference is the stimuli used in this experiment. Although it is

beyond the scope of this paper, it is important to note that the

properties of the visual environment will influence the visual

attention patterns of a participant. The discrimination of the

feature values was more challenging in this experiment than in

Experiment 1, which is thought to be a source of minor variation

between the two experiments (S1, S2; ‘‘Stimuli for Experiments’’).

A second influence on performance is the information provided to

participants in the instruction set, in that Experiment 1 identified

that there were only two relevant dimensions while that fact is left

to the participants to learn on their own in Experiment 2.

Experiment 3. Simple Conjunction Rule Applied to
Continuous Dimensions

This is the third experiment in which we explore the two-feature

conjunction rule. In contrast to the previous experiments, this

experiment used continuous, rather than binary-valued, features.

As in the previous two experiments, two features were relevant for

classification and one feature was never diagnostic of the correct

category. The rule-based structure of this category can be thought

of as a continuous-feature version of Experiments 1 and 2. Details

pertaining to the participants in the study, and the specifications of

the stimuli used are available in Chen and colleagues’ paper

(Experiment 2) [22]. The analyses below were not described in

their report, and the exclusion criterion differs slightly in that for

these analyses participants who achieved a learning criterion of

nine correct trials in a row were included for analysis, leaving a

total of 24. Unlike the previous experiments, a Tobii X50 eye-

tracker sampled eye movements at 50 Hz. For Experiments 3, 4, 5

and 6, fixations occurring within 3.73u visual angle of the center of

a feature were recorded as fixations to that feature. The raw data

for Experiments 3 and 4 can be accessed at summit.sfu.ca/

collection/94 under the title ‘‘Four Category Continuous Dimen-

sion Learning’’.

Results. In this experiment, each level of within-factor Block

represents the aggregate accuracy over 90 trials (4.5 bins of

Figure 3). The first analysis was conducted using linear mixed

effects modeling (LMER), which revealed Block to be a significant

predictor of accuracy, bblock = 0.54, z = 20.37, p,0.001. We also

analyzed the two measures of attentional efficiency to see if

attention patterns would become more efficient over time like in
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Experiments 1 and 2. A linear mixed effects model constructed

using the probability of fixating irrelevant information indicated

that Block was a significant predictor, bblock = 21.44, z = 236.02,

p,0.001, demonstrating increased efficiency in attentional alloca-

tion across the duration of the experiment. We also found a large,

significant main effect of Block on the number of fixations

participants made per trial, F(1.84, 42.26) = 53.33, p,.001 after

Greenhouse-Geisser correction, gG
2 = 0.33. Post-hoc analyses

indicated significant differences between all Blocks, suggesting

participants continued to decrease their number of fixations over

the entire experiment (Figure 3B).

The final ANOVA conducted on this experiment data did not

show an effect of Block on TIPS, F(3, 69) = 1.38, p = 0.26,

reflecting no difference in attention change over the course of the

experiment. A single sample t-test, t(23) = 1.76, p = 0.092, revealed

no significant Error Bias (M = 0.05, SD = 0.14), indicating atten-

tion change after error trials was not detectably different from

change after correct trials. The means and standard deviations for

all of the reported data are available in Text S1, ‘‘Four Block

Experiment Data’’.

Experiment 4. An Information Integration Category
Learning Experiment

The experiments examined so far used a rather simple rule-

based structure. We see a general consistency across the five

measures in rule-based tasks exhibited in the above analysis.

However, the task structure used in Experiment 4 made creating

simple rules and decision thresholds more difficult for the

participant. We included this experiment in our analyses to

expand on our findings of the five reported measures beyond a

simple rule conjunction task as well as to relate these findings to

other important contributions in the categorization literature. This

four-category structure was very similar to the four-category

information integration category structure used by Maddox,

Filoteo, Hejl, and Ing [28] but here, features are separated in

space. Other data from these participants and the precise

distributional parameters were described in Chen and colleagues’

Experiment 2 [22]. As in the previous experiments, two features

were relevant for classification and one feature was never

diagnostic of the correct category. The procedure, learning

criterion and gaze collection methods were identical to Experi-

ment 3 above.

Results. As before, we conducted a series of analyses on the

data of interest using within-subjects factor Block (1–4). Here, each

Block reflects performance over 90 trials or 4.5 bins of Figure 4.

The means and standard deviations for the data are available in

Table 4 in Text S1, ‘‘Four Block Experiment Data’’. A linear

mixed effects model was constructed using the observed accuracy

data, and showed that Block was a significant predictor of

performance, bblock = 0.44, z = 17.05, p,0.001 reflecting an

improvement in performance over time (Figure 4B).

Again, participants exhibited more efficient attentional patterns

over the duration of the experiment. In evaluating the effect of

Block on the probability of fixating the irrelevant feature

(Figure 4D) we found that Block was a significant predictor in a

linear mixed effect model, bblock = 21.22, z = 235.72, p,0.001,

reflecting more efficient distributions of attention as the experi-

ment proceeded. An ANOVA revealed a large significant main

effect of Block on average number of fixations per trial (Figure 4C),

F(1.69, 37.13) = 34.11, p,0.001 after Greenhouse-Geisser correc-

tion, gG
2 = .33. This measure of attentional efficiency showed a

consistent improvement over the experiment, exhibited in

significant differences between all four Blocks in post hoc analysis.

We detected no significant effect of Block F(3, 66) = 1.50, p = 0.22,

on TIPSand so there is no evidence of significant change over the

course of the experiment. A single sample t-test, t(22) = 2.18,

p = 0.04, d = 0.45 revealed a significant attention change bias to

error trials (M = 0.04, SD = 0.09). This test indicated that

participants are more likely to change their attention patterns

following an error trial than after a correct trial.

Experiment 5. A Simple Case of Information Integration:
A Two-category Experiment

The information integration structure used in Experiment 4

created a relatively challenging categorization task. Here we

explored a simpler case of information integration in Experiment

5, followed by a simpler case of rule based learning in Experiment

6. The category structure was similar in design to Experiments 3

and 4, in that stimuli were defined by continuously valued features

with a linear bivariate dependency (see Blair et al, [31]). The

difference in this experiment was that there are only two categories

(Figure 5A), rather than the four that were learned in the previous

experiments. The data for Experiments 5 and 6 can be accessed

online through SFU Summit under the title ‘‘2 Category

Continuous Dimension Learning’’.

Figure 5A represents the two-category information integration

task used to produce the stimuli in this experiment. There was a

third stimulus dimension that was not diagnostic of the correct

category. This kind of category has seen widespread use in the

category learning literature (e.g. [29,30]). Other analyses using

these data were published in a report by Blair, Chen, Meier,

Wood, Watson, and Wong [31] where methodological details and

the precise distributional parameters for the stimulus features were

described. Technical specifications of the stimulus presentation

and gaze collection were identical to Experiments 3 and 4. Fifteen

participants failed to respond correctly over 13 consecutive trials

and were excluded, leaving 23 participants in the analysis, all of

whom met the gaze criteria.

Results. Again, a series of analyses were conducted on the

measures of interest, with each level of Block reflected the average

of 50 trials. These data are visualized in Figure 5, and the means

and standard deviations are shown in Table 5 in Text S1, ‘‘Four

Block Experiment Data’’. A linear effects model predicting

response accuracy data from this experiment showed that Block

was an important predictor of accuracy, bblock = 0.23, z = 6.63, p,

0.001. A second linear mixed effect model using Block to predict

the probability of fixating irrelevant information showed that it is a

significant predictor, bblock = 21.14, z = 221.38, p,0.001. An

analysis of the number of fixations is conducted, with Block as a

factor in an ANOVA, and we found a main effect of Block F(2.56,

56.23) = 42.11, p,0.001 after Huynh-Feldt correction, gG
2 = 0.18.

Post-hoc analysis revealed significant differences between all

Blocks except for Block 3 and 4. However, we detected no

significant effect of Block on TIPS, F(3,66) = 1.69, p = 0.18.

An interesting complexity arises in cases like this, since efficiency

was improving over the course of the experiment but generally

there were high levels of attention change. This may be due in part

to the relative ease of the task - given that there were only two

categories it took less time to sort out an appropriate information

access strategy and the attention change measure hit a floor value

very early on. Another possibility is that participants were relying

on an implicit learning system, and their knowledge of the

category was tied very closely to learned oculomotor movements

rather than to abstracted, verbalizable rules, which would be

consistent with the claims made by Maddox and Ashby [32].

A single sample t-test, t(22) = 1.77, p = 0.09, d = .037 revealed a

marginally significant Error Bias, (M = 0.05, SD = 0.14).
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Figure 3. Data for Experiment 3. Each bin reflects the average of 20 trials and error bars represent standard error of the mean. A) The category
structure. B) Performance accuracy. C) Mean number of fixations per trial. D) Probability of fixating the irrelevant feature. E) Time proportion shift, dt.
F) Error Bias, b9.
doi:10.1371/journal.pone.0083302.g003
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Figure 4. Data for Experiment 4. Each bin reflects the average of 20 trials and error bars represent standard error of the mean. A) The category
structure. B) Performance accuracy. C) Mean number of fixations per trial. D) Probability of fixating the irrelevant feature. E) Time proportion shift, dt.
F) Error Bias, b9.
doi:10.1371/journal.pone.0083302.g004
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Experiment 6. Single Dimension Rule Use: A Simpler Two-
category Experiment

As with Experiment 5, the categories in this experiment were

determined by a single boundary in a continuous feature space.

However, only one of the three features was relevant for

classification (see Figure 6A). The two-category, single-dimension-

al, rule-based category structure was similar to that used by

Maddox and Ashby [32] and other studies, but instead had

spatially-separated features. Due to the simplicity of this task

relative to the others, we expected higher accuracy, fewer fixations

Figure 5. Data for Experiment 5. Each bin reflects the average of 20 trials and error bars represent standard error of the mean. A) The category
structure. B) Performance accuracy. C) Mean number of fixations per trial. D) Probability of fixating the irrelevant feature. E) Time proportion shift, dt.
F) Error Bias, b9.
doi:10.1371/journal.pone.0083302.g005
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per trial, decreased probability of fixating the irrelevant feature, a

rapid decrease in TIPS and an Error Bias.

Participants. Thirty-three undergraduates received partial

course credit for their participation in the experiment. Two

participants failed to reach the learning criterion of 13 consecutive

correct trials and were excluded from analysis, leaving 31

participants, who all met the gaze criteria, in the analysis.

Stimuli and category structure. Figure 6A shows the

category structure learned by the participants in this experiment.

Like the other structures, the stimuli were three dimensional, but

unlike the other structures only one of these features was

diagnostic of category membership. Additional analyses using

these data were published in Blair, Chen, and colleagues [31].

Procedure. The procedure was identical to that used in

Experiment 5 with the eye-tracker sampling at 50 Hz; here again,

participants are presented with 200 trials in a category learning

task.

Results. In these analyses, Block reflects the average of 50

trials. Data are visualized such that each bin reflects 20 trials in

Figure 6, the means and the standard deviations for which are in

Table 6 in Text S1, ‘‘Four Block Experiment Data’’. A linear

mixed effects model created to predict accuracy shows that Block

is an significant predictor of accuracy, bblock = 0.56, z = 9.53, p,

0.001. In a second model, we saw that Block is also an important

predictor of the probability of fixating irrelevant information,

bblock = 21.45, z = 228.16, p,0.001. The four levels of Block

acted as a within subjects factor to analyze the number of fixations

over the course of the experiment using an ANOVA. There was

again a main effect of the Block on the number of fixations, F(1.27,

38.00) = 40.33, p,0.001, gG
2 = 0.34. Post hoc analysis revealed a

significant difference between Block 1 and the rest of the Blocks, as

well as between Block 2 and 4.The final ANOVA was conducted

on TIPS, excluding a single participant who had a cell of missing

data. There was a main effect of Block on TIPS, F(2.67,

77.55) = 15.38, p,0.001 after Huynh-Feldt correction,

gG
2 = 0.17. Once again, post hoc analyses reflected the same

significant differences as the previous two measures, in that there

was a difference between Block 1 and all subsequent Blocks, and

between Blocks 2 and 4. Finally, the value of Error Bias was tested

against a mean of zero to uncover any bias to change attention

following error (or correct) trials. Due to substantial violations of

normality in the Error Bias distribution, a non-parametric Mann-

Whitney U test against a median of 0 was employed rather than a

t-test, Mdn = 0.28, M = 0.07, SD = 0.65, z = 0.66, p,0.51, detect-

ing no significant bias. Similar to Experiments 3 and 4,

Experiments 5 and 6 might have encouraged differing explicit

and implicit processing strategies. A test of this hypothesis again

detected no basis to this claim in our observed Error Bias data

using a non-parametric Mann-Whitney U test of unpaired

samples, showed z = 1.29, p = 0.197.

Experiment 7. A Single Dimension Rule with a Speed/
accuracy Condition Crossing

The category structure used here is similar to the Type 1

Category reported in the seminal work by Shepard, Hovland and

Jenkins [33]. A critical difference here is that the categories were

not based on continuously varying features, like in Experiments 3–

6, but instead were comprised of features that assumed binary

values like Experiments 1 and 2. Like Experiment 2, this

experiment contained an instruction manipulation that encour-

aged participants to be either fast or accurate. The raw data are

available in the collection titled ‘‘Speed-Accuracy Trade-Offs in

Category Learning’’, hosted at summit.sfu.ca/collection/94.

Participants. Sixty-seven undergraduates participated in this

experiment. Three were excluded for poor eye gaze quality, and

an additional seven were excluded for failing to reach the learning

criterion of 12 consecutive trials, leaving 57 participants for the

analysis: 29 in the Speed condition and 28 in the Accuracy

condition.

Stimuli and category structure. Participants learned two

categories in this task. Each of the three features could take one of

two possible values. Only one of the features determined the

category, while the remaining two features were irrelevant

(Table 1). Organelle images are shown in Figure S2, ‘‘Stimulus

and feature images for Experiments 2 and 7’’, for reference.

Procedure. The experiment consisted of 300 trials in 15

blocks of 20. On each trial, participants saw the stimulus and chose

a category response from the two possible categories. Responses

were made on a Logitech game pad’s trigger buttons in the same

manner as Experiment 2. Following the response, the participant’s

selected button was highlighted in red or green to communicate

the trial accuracy and the stimulus was simultaneously re-

presented. All gaze collection and stimulus specifications were

the same as those detailed in Experiment 2. Each Block represents

the aggregate of 75 trials or 3.75 bins of Figure 7.

Results. Data are visualized in Figure 7. A linear mixed effect

model is constructed to predict the accuracy of participants using

Block and Condition as predictors. Block is a significant predictor

of accuracy, bblock = 1.05, z = 10.122, p,0.001 as are Condition,

bblock = 1.63, z = 5.05, p,0.001 and the interaction between the

two, bblock = 20.53, z = 23.62, p,0.001. A linear mixed effects

model showed that Block is a significant predictor, bblock = 22.36,

z = 10.424, p,0.001, as was Condition, bcondition = 22.50,

z = 3.94, p,0.001. The interaction term was not a significant

predictor of the probability of fixating irrelevant information bblock

6 condition = 20.05, z = 20.15, p = 0.88. An ANOVA was con-

ducted on the number of fixations to features. Again, we found a

significant main effect of Block, F(1.75, 96.30) = 46.56, p,0.001

after Greenhouse-Geisser correction, gG
2 = .23. There was no

main effect of the Instruction Condition, F(1,55) = 0.27, p = 0.60

and no interaction between the factors, F(1.75, 96.30) = 0.87,

p = 0.41. There were significant differences between all four Blocks

via post-hoc analysis on the collapsed data. The same factors were

used to analyze the TIme Proportion Shift (TIPS) where one

subject was excluded from analysis for one cell of missing data. We

found a significant main effect of Block, F(2.43,131.11) = 41.88,

p,0.001 after Huynh-Feldt correction, gG
2 = 0.20 with no

significant main effect of Instruction Condition, F(1,54) = 0.32,

p = 0.57 or interaction, F(2.43,131.11) = 0.35, p = 0.75. Post hoc

analysis revealed a significant difference between Block 1 and all

other Blocks, as well as Block 2 and 4.

To determine if the speed/accuracy manipulation influences the

Error Bias, a Mann Whitney U test of unpaired samples was

performed as there were substantial violations of normality in the

samples. The result of this test showed no detectable differences

between condition, z = 21.00, p = 0.318. A non-parametric Mann

Whitney U test against a median of 0 was performed for the

combined speed and accuracy conditions, Mdn = 0.57, z = 4.78,

p,0.001, r = 0.63, revealing a significant attention change bias

towards error responses.

Experiment 8. A Complex Contingency Category
Learning Task

In contrast to the earlier experiments, the relevant dimensions

in this task were stimulus specific, meaning that each category

yielded its own optimal attention pattern [18]. This experiment

examined the influence of having the information necessary for
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optimally completing each trial embedded in the trial itself, rather

than learned spatial patterns that can be deployed constantly in each

trial in the experiment like the tasks above. Attentional optimization

was more difficult in this experiment, and participants continued to

slowly optimize attention well after performance errors had ceased.

The category structure, found in Figure 8A, was designed to elicit a

stimulus specific attentional pattern such that the relevance of

Feature 2 and Feature 3 was contingent upon the value of Feature 1;

participants can optimize their attentional patterns by looking at

Feature 1 first. Features 1 and 2 were relevant for two categories (A1

Figure 6. Data for Experiment 6. Each bin reflects the average of 20 trials and error bars represent standard error of the mean. A) The category
structure. B) Performance accuracy. C) Mean number of fixations per trial. D) Probability of fixating the irrelevant feature. E) Time proportion shift, dt.
F) Error Bias, b9.
doi:10.1371/journal.pone.0083302.g006
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and A2), and Features 1 and 3 are relevant for the other two (B1 and

B2). The feature location relevance was counterbalanced among

participants.

The length of the experiment varied among participants. If the

learning criterion, 25 correct trials in a row, was reached prior to

the 200th trial than the participant would only have to do 72 more

trials. These final 72 trials did not contain performance feedback.

Otherwise, the experiment lasted a maximum of 272 trials but

those who failed to learn by the 200th trial are excluded from the

following analyses and identified as non-learners. Additional

methodological details and technical specifications are available

in Chen and colleagues’ work [22], which report a different set of

results than those discussed below. The data can be accessed at

summit.sfu.ca/collection/94 under ‘‘Stimulus Specific Association

with Learning Dependent Feedback’’.

Results. It is important to note that, unlike in all other

experiments, the number of trials in this experiment varied across

participants. The end of the experiment was determined by how

quickly participants learned the categories, and so the actual number

of trials in each plot bin of Figure 8, and in each Block of the analysis,

may differ slightly between participants. Like in previous experi-

ments, the data to be included in Figure 8 bins were calculated by the

proportion of the experiment total, such that the bin size was

approximately 20 trials to align with the other experiments.

Although there was a slight difference in the number of trials, the

data included in the blocks are more sensitive to participants’ place

along the learning trajectory. Namely, the mastery of the task for

those who learn quickly was compared closely with those who learn

slowly in that the learning curves were dependent on when exactly

participants achieved the learning criterion. In these analyses, Block

(1–4) reflects an average of 46 trials per block. A linear mixed effects

model was constructed to predict participants’ response accuracy

using the Block number, and revealed that Block was an effective

predictor of accuracy, bblock = 1.54, z = 63.33, p,0.001. The

probability of fixating irrelevant information was predicted using a

linear mixed effects model with Block as a significant predictor,

bblock = 20.68, z = 241.62, p,0.001. There was also a main effect

of Block on the number of fixations, F(1.82, 263.84) = 140.34, p,

0.001 after Greenhouse-Geisser correction, gG
2 = .24. Post hoc tests

showed a significant difference between all Blocks, which suggested

that the number of fixations continued to decrease over the course of

the whole experiment. A main effect of Block on TIPS is found too,

F(2.58, 374.33) = 4.21, p = 0.009 after Huynh-Feldt correction,

gG
2 = 0.01. Post-hoc analysis revealed the only significant mean

difference was between Blocks 1 and 3. As one can see from the

Figure 8F, a very slight Error Bias was detected (M = 0.02,

SD = 0.09). A one-sample t-test confirmed that the sample mean

was significantly different from zero t(145) = 2.64, p = 0.009, d = 0.22.

Experiment 9. Efficiency and Accuracy Manipulation over
Extended Time

This experiment was conducted to investigate how participants

solving a structure akin to that of Experiment 8 would change their

attentional patterns if the frequency of the categories they saw was

altered such that the informative value of category features

changed. Methodological details and technical specifications are

available in Meier and Blair [34] who report a different set of

findings. Like Experiment 8, this task uses a category structure that

was designed to invoke stimulus specific attention (Table 2).

Participants were assigned to one of two possible conditions: the

1:1 ratio condition wherein all categories were equally probable;

or the 5:1 condition wherein two of the four categories were

presented five times as often. The data can be found at

summit.sfu.ca/collection/94 under the title ‘‘Probability Gain

versus Information Gain in Category Learning: Eye Movements’’.

Results. Analyses are conducted using the between-subjects

factor Probability Condition (1:1, 5:1) and the within-subjects

factor Block (1–4). In this analysis, each Block contains 120 trials,

or 6 bins of Figure 9. Accuracy scores were predicted using a linear

mixed effects model, which included Block, Condition and the

interaction between them as predictors. The model shows that

Block, bblock = 0.97, z = 11.90, p,0.001, Condition, bcondition = 2

0.72, z = 23.993, p,0.001, and the interaction, bblock 6

condition = 0.34, z = 2.85, p = 0.004 were all important predictors

of accuracy. The increased learning speed in the 5:1 condition is

thought to be a result of learning the high presentation categories

quickly and using that knowledge to bootstrap their learning for

the remaining categories.

The probability of fixating irrelevant information was predicted

by a linear mixed effects model, which showed Block, bblock = 2

0.37, z = 27.27, p,0.001, Condition, bcondition = 1.05, z = 6.65,

p,0.001 and the interaction between Block and Condition, bblock

6 condition = 20.16, z = 2.05, p = 0.04 were all significant predic-

tors. An ANOVA conducted on the number of fixations per trial

revealed a significant main effect of Condition, F(1,87) = 12.70,

p,.001, gG
2 = .10, such that participants in the 5:1 Condition

fixated fewer features; a significant main effect of Block, F(1.62,

140.71) = 36.85, p,.001 after Greenhouse-Geisser correction,

gG
2 = .10; and no interaction between the two, F(1.62,

140.71) = 1.87, p = 0.17. Post-hoc analyses on Block revealed that

each level of Block was significantly different from each other level.

Analyses on attention change, measured by TIPS detects no

main effect of Condition, F(1, 87) = 3.73, p = 0.057. There was

however an effect of Block, F(2.72, 236.64) = 9.80, p,0.001 after

Huynh-Feldt correction, gG
2 = .03 but no detected interaction

between Condition and Block, F(2.72, 236.64) = 0.23 after Huynh-

Feldt correction, p = 0.87. A post-hoc follow up shows significant

differences between all Block pairs except for Blocks 1 and 2 and

between Blocks 3 and 4.

An independent samples t-test of the Error Bias distributions,

t(87) = 4.13, p,0.001, d = 0.88, SD = 0.15, showed that an unequal

presentation rate of categories yielded more Error Biased eye-

movements. Each distribution was tested separately as a result in a

single sample t-test. When the categories are all equally likely (1:1),

a t-test against a mean of 0, t(43) = 1.43, p = 0.16, detected no

effect of error on attention change (M = 0.03, SD = 0.13).

However, a similar t-test for the 5:1 condition, t(44) = 6.72, p,

0.001, d = 1.00, revealed a significant Error Bias (M = 0.16,

SD = 0.16).

Visual inspection of Figures 8 and 9 indicated that there were

differences in the 1:1 condition in Experiment 9 (Figure 9), and

Experiment 8 (Figure 8) which would be unexpected at first pass

given that the category rule in Experiment 8 and the 1:1 condition

of Experiment 9 are similar. An important difference in the

visualization is the manner in which the bins are formed, where

the final trial in Experiment 8 is determined by how quickly

participants learned. For instance, someone who learned the task

early may have their 70th trial in the final bin, whereas someone

Table 1. The category structure used in Experiment 7.

Category Feature 1 Feature 2 Feature 3

A 0 0 or 1 1 or 0

B 1 1 or 0 0 or 1

doi:10.1371/journal.pone.0083302.t001
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who learned much later may have their 70th trial in the third bin.

The final trial in Experiment 9 is always the 480th trial regardless

of participants’ performance. The disparity between the measures

was largest in the first bin, and lessens in the 9th bin, suggesting

that part of the difference was a function of learning-contingent

end points used for Experiment 8. There were important

Figure 7. Data for Experiment 7. Each bin reflects the average of 20 trials and error bars represent standard error of the mean. A)Performance
accuracy. B) Mean number of fixations per trial. C) Probability of fixating the irrelevant feature. D) Time proportion shift, dt. E) Error Bias, b9, for the
speed condition. F) Error Bias, b9, for the accuracy condition.
doi:10.1371/journal.pone.0083302.g007
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differences to note between the two experiments in themselves,

however. In Experiment 8, the stimulus was not on screen during

the collection of the category response. This results in a heavier

cognitive load, since participants made their category decision

while the stimulus was on screen, then memorized the appropriate

label and then used that label to make their response using the

scrambled response buttons on the next screen. Another critical

difference between the two was that each trial in Experiment 8

begins with a central fixation cross that had to be clicked before

moving on to stimulus presentation, whereas in Experiment 9 the

Figure 8. Data for Experiment 8. Each bin reflects the average of approximately 20 trials depending on how quickly each individual learned the
categories Error bars represent standard error of the mean. A) The category structure. B) Performance accuracy. C) Mean number of fixations per trial.
D) Probability of fixating the irrelevant feature. E) Time proportion shift. F) Error Bias, b9.
doi:10.1371/journal.pone.0083302.g008

Attention and Eye Movements in Categorization

PLOS ONE | www.plosone.org 16 January 2014 | Volume 9 | Issue 1 | e83302



central cross did not require a directed manual movement. The

contributions of these small differences between Experiment 8 and

9 require further investigation, but regardless of the weighting of

the task differences in eliciting the varying results, we take the

changes in these measures as evidence for their sensitivity to task

variation and as support for their efficacy in capturing subtle

differences in cognitive processing.

Experiment 10: Hand-based Information Access
This experiment extends the findings elicited by the category

structure used in Experiment 9. Additional analysis from this

experiment, not reported here, are included elsewhere where the

methods and materials are also described [34], and the raw data

are found through SFU summit, collection 94 entitled ‘‘Probability

Gain versus Information Gain in Category Learning: Hand

Movements’’. The critical difference between this experiment and

the ones that precede it was the manner in which participants

access information. Instead of having only to make eye movements

to gather the information from each of the features, participants

used mouse movements to uncover features that were obscured by

visual noise masks. Approximately half of the participants were

assigned to a condition with a three-second delay between the time

a feature was moused over, and when a feature was revealed. This

manipulation was designed to probe how strategies geared towards

maximizing either efficiency or accuracy was mediated by access

cost (i.e. the delay in uncovering the feature). The stimuli were the

same as in the previous experiment, but in this experiment they

were covered with a mask so participants could not see the feature

itself until they hovered over the mask with a mouse cursor. In the

no delay condition, the feature was shown immediately, and in the

delay condition the participant had to keep the mouse cursor over

the mask for three seconds to see the feature underneath it.

Results. The conditional means and standard deviations for

all of the measures, along with details of the linear mixed effects

models reported here are available in Table 10 in Text S1, ‘‘Four

Block Experiment Data’’. For this experiment there were 60 trials

per block, 3 bins of Figure 10. A linear mixed effects model was

constructed to predict accuracy using Block, Delay Condition and

the interaction between the two. The model showed Block to be a

significant predictor, bblock, 1.79, z = 14.73, p,0.01; but revealed

that Condition, bcondition = 20.05, z = 20.034, p = 0.738, and the

interaction between Condition and Block, bblock 6 condition = 0.09,

z = 0.51, p = 0.61, were not significant predictors.

A linear mixed effects model designed to predict the probability

of fixating irrelevant information showed that Block, bblock = 2

1.03, z = 27.649, p,0.001, Condition, bcondition = 21.38, z = 2

3.18, p,0.001 and the interaction of the two, bblock 6 condition = 2

0.50, z = 22.471, p = 0.013 were all important predictors.

Analyses of the number of fixations to features showed that there

was a significant main effect of Condition F(1, 80) = 74.43, p,

0.001, gG
2 = .40, and there was a significant effect of Block F(1.87,

149.48) = 10.76, p,0.001 after Greenhouse-Geisser correction,

gG
2 = .04. There was also a significant interaction between

Condition and Block, F(1.87, 149.48) = 17.04, p,0.001 after

Greenhouse-Geisser correction, gG
2 = .06. Follow-up analyses

revealed a significant simple main effect of Block in both the

delay condition, F(1.87, 149.48) = 10.76, p,0.001, and in the No-

delay condition, F(1.87, 149.48) = 93.69, p,0.001. Post-hoc

analyses showed significant difference between the first block

and all other blocks, as well as a significant difference between

Blocks 3 and 4 for the delay condition, and significant difference in

all block pairs in the No-delay condition.

The TIPS was analyzed with a mixed model ANOVA wherein

no effect of Condition was found F(1,80) = 0.01, p = 0.91. No main

effect of Block F(2.18, 174.60) = 55.26, p,0.001 after Greenhouse-

Geisser correction, gG
2 = 0.22 was detected but there was an

interaction between Condition and Block, F(2.18, 174.60) = 4.67,

p = 0.008, gG
2 = 0.02. Follow-up analyses showed significant effects

of Block for the delay condition, F(2.18, 174.60) = 55.26, p,0.001,

and for the no delay condition, F(2.18, 174.60) = 27.00, p,0.001.

Post-hoc followups showed a difference between all Block pairs,

except between Blocks 2 and 3 in the delay condition.

An independent samples t-test, t(80) = 2.91, p = 0.005, d = 0.65,

SD = 0.14 showed the two Error Bias distributions differ. In the

delay condition, a single sample t-test, t(36) = 12.97, p,0.001,

d = 2.13, revealed a significant attention change bias on error

(M = 0.33, SD = 0.15). In the no delay condition, a single sample t-

test, t(44) = 11.39, p,0.001, d = 1.70, again revealed a significant

attention change bias towards error responses (M = 0.23,

SD = 0.14) but with a smaller effect size. Notably, these results

replicate the eye-movement Error Bias scores for the similar

unbalanced category presentation condition (5:1) of Experiment 9,

which was also shown to be positive.

General Discussion

This dataset from nearly 600 participants, spanning ten

experiments, presents a unique contribution to attentional learning

research in several different ways. Because of the complexity of

human attention and the relative paucity of data on the

relationship between overt attention and category learning,

advancement of the field will require more data than is usually

presented for scientific publication. The data provided here

cement the kinds of patterns and variation that can be expected

from eye-movements during learning, as they are both method-

ologically sound and congruent with previous research. For

instance, as accuracy improves, the number of fixations made

during a trial decreases, and those fixations are deployed more

efficiently [17,21]. This is as much of a litmus test as can currently

be constructed for eye-tracking data during categorization because

of how sparse the established findings are. With respect to the

utility of the novel measures, TIPS and Error Bias, they each

Table 2. Category structure for stimuli in Experiment 9.

Category Feature 1 Feature 2 Feature 3
5:1 Condition
Category Frequency

1:1 Condition
Category Frequency

A1 0 0 0 or 1 5/12 1/4

A2 0 1 1 or 0 5/12 1/4

B1 1 0 or 1 0 1/12 1/4

B2 1 1 or 0 1 1/12 1/4

doi:10.1371/journal.pone.0083302.t002
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exhibit desirable properties in that they respond to subtle changes

in the task, but are also quite consistent in important ways - TIPS

generally, though not always, tends to decrease over the

experiment and Error Bias is often detected, but often with small

to medium effect sizes, reflecting no strong bias to change

attention following error or correct trials. Further, these measures

Figure 9. Data for Experiment 9. Each bin reflects the average of 20 trials and error bars represent standard error of the mean. A) Performance
accuracy. B) Mean number of fixations per trial. C) Probability of fixating the irrelevant feature. D) Time proportion shift, dt. E) Error Bias, b9 for the 5:1
condition and F) for the 1:1 condition.
doi:10.1371/journal.pone.0083302.g009

Attention and Eye Movements in Categorization

PLOS ONE | www.plosone.org 18 January 2014 | Volume 9 | Issue 1 | e83302



can be related back to the more standard measures, like the

accuracy and optimization, in ways that make sense and are

available for modeling at a finer grained, nested individual level. In

order to better extract the theme that emerges for each measure

over the course of the experiments, and how those themes relate to

one another, it is important to look at each measure individually.

Figure 10. Data for Experiment 10. A) Performance accuracy. B) Mean number of fixations per trial. C) Probability of fixating the irrelevant feature.
D) Time proportion shift, dt. E) Error Bias, b9, for the delay condition and F) for the no delay condition. Each bin reflects the average of 20 trials.
doi:10.1371/journal.pone.0083302.g010
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Accuracy
As has been established in previous work [21], attention is,

predictably, influenced by a participants’ knowledge of the

category structure. We see this consistent trend for accuracy to

improve over the course of the experiment, with variation that

confirms the expected or intended effect of a particular

experimental manipulation. For example, the accuracy for a

single dimensional rule task is higher relative to other category

structures over similar trials. Conversely, accuracy tends to be

lower when categories are based on continuous dimensions, which

is thought to be a function of the more difficult perceptual

discrimination underlying the category choice. In many ways the

accuracy data are unsurprising. However, these learning curves

have not previously been reported for the given category structures

when paired with attention data, so the findings have utility for the

modeling community, above and beyond their role in confirming

the efficacy of the experimental manipulations.

Probability of Fixating Irrelevant Information
All category structures reported in this paper have at least one

irrelevant feature. The probability of fixating irrelevant informa-

tion acts as a measure of attentional efficiency in the task, since a

highly efficient participant will dedicate their effort to fixating the

relevant feature(s) and ignoring the information that does not

inform their category choice. We find that participants become

more efficient with the deployment of their attention over the

course of a task. Generally, participants become highly efficient

after their accuracy begins to asymptote. This finding serves both

to replicate earlier work [17] and to pair externally verified

measures with the ones we introduce for the first time in this

paper.

Number of Fixations
The number of fixations measures attentional efficiency in a

different way: rather than testing where the participants’ fixations

are deployed, this measure tests simply how many fixations are

deployed to features in total. Efficient participants will minimize

the number of fixations they make prior to responding with their

category choice, since the information on the stimulus remains

constant for the duration of the trial and there is no need to revisit

information that has already been fixated and encoded, especially

if the information is unimportant for the category decision. The

findings here replicate those previously reported and allow for

interesting pairings such as how the number of fixations might

relate to the TIPS measure as a function of sample size and the

central limit theorem (i.e. as there are more fixations, the measures

here should approximate a normal distribution and the proportion

of time spent on each feature will be more robust to the possibility

of erroneous sampling that may mask changes in the allocation of

attention trial-to-trial). Unfortunately, it is hard to draw inferences

from the findings here on this possibility.

Time Proportion Shifts (TIPS), dt

TIPS was developed to measure changes in trial-to-trial

attentional allocation. The theoretical motivation for this measure

arises, in part, from formal models of attentional change in

categorization that predict attentional patterns should stabilize

over the course of learning. The rationale for decreasing

attentional changes over learning is that once the system has

found an ideal response pattern then attention change is no longer

necessary for improving performance [15]. We find the predicted

decrease in attentional changes through TIPS in Experiments 1, 2,

6, and 7, for which there is a main effect of Block. score. The

remaining experiments fail to elicit a detectable change in TIPS

over the course of the experiment.

There are a number of factors varying between the experiments

that evidence attentional change over learning versus those that do

not. Tasks built on category structures such as the ones in

Experiments 6 and 7 are defined by simple one dimensional rules.

Tasks with more complex perceptual discrimination (e.g. Exper-

iments 3, 4) or more complex rules for categorization (e.g.

Experiments 8, 9 and 10) do not yield a significant TIPS score.

Both task complexity and the difficulty of perceptually discrimi-

nating stimulus features may play a role in the change of attention

over learning, but additional experiments will be needed to

establish their influence.

A possible limitation in comparing the attention change data

from Experiment 9 and 10 is that eye-movements differ from

hand movements how they’re used during and after learning

[35], although they are often correlated in goal directed activity.

The relationship between the two has been previously formalized

by measures like eye-hand span [36], which captures the

direction and latency between the two movements. This kind of

measure has been used to study complex motor movements, such

as speed stacking cups, (a unique and complex sensorimotor task

capable of being quickly learned) and in novel tool use. It is

generally found that over the course of the development of

expertise in tasks that require joint coordination between the eyes

and hands, that eye movements will begin to precede hand

movements to task relevant objects. This points to a dynamic

relationship between the two movements, with shifting roles and

specializations. Although mouse movements, like those in

Experiment 10, require less energy than rotating or grasping

objects, they require more motor resources than eye movements,

and consequently, less shifting should be expected [34]. It is not

surprising, then, that we see those kinds of qualitative differences

at an aggregate level in the TIPS score between Experiments 9

and 10 (Fig. 9F and Fig. 10F).

Error Bias, b9
The purpose of the Error Bias (b9) score is to measure the

tendency for attention change to follow error trials, where b9 = 1

means that all attention change follows error and b9 = 21 means

all attention change follows correct trials. Error Biases were

primarily clustered around zero, but showed variation that is

interesting and requires some explanation. One hypothesis for

our pattern of Error Bias findings is that the ease of deploying

attention to relevant stimulus dimensions is important. It is

necessarily the case in a learning task that error trials occur more

frequently at the beginning of the experiment and correspond to

the highest amount of attention change in these easier tasks (see

Figure 6B and 6E for an example). This observation might lend

itself to a sensible critique: the existence of an Error Bias is solely

related to the likelihood of error trials being clustered earlier in

learning. However, we note cases where attention change is

constant throughout the experiment, but an Error Bias is

observed (Experiments 3 and 9). These examples show that Error

Bias is able to pick up on subtle, aggregate tendencies to shift

attention after error that would not be expected by simple

comparison of learning curve and TIPS magnitudes. That is,

Error Bias is a measure that is meaningful for more than simply

aggregating the uncertainty that defines participants in early

learning. This is a new measure – one in which the contribution

of aggregate accuracy, experiment length, fixation durations,

probability matching [37] and other aspects of attention and

learning, warrant exploration in future research to determine

more completely the mediating relationships of Error Bias. It is
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for the multitude of additional analyses like this that we have

posted all of our data online, down to the level of raw gaze for

individuals, but also refined into fixations to reduce that barrier.

Although it is worth considering Error Bias to capture the

subtleties described above, its value also lies in minimizing the

importance of error that has been so strongly championed by

error-driven learning algorithms. In the strict sense, an error

driven-learning algorithm should have nearly all of its attention

change following error trials such that b9>1: a trend that is not

evident, given the effect sizes we see, in the dataset presented here.

Although error-driven accounts seem applicable in certain

instances [38], we suggest that models based solely on error-

driven shifts of attention are not realistic representations of overt

attentional changes in human learning.

Summary
Correctly identifying consistent influences of selective attention

in learning has broad implications. One of the key features of

selective attention is in its ability to reduce the complexity of an

information source by biasing the selection of relevant informa-

tion. Understanding the factors that tune such behavior has

obvious theoretical import in areas like skill training and computer

modeling. It has been shown in previous work, such as that by

Haider and Frensch [39], that performance on a wide variety of

tasks is augmented when processing is limited to task-relevant

properties. Research has also implicated impaired ability to

selectively attend in a variety of clinical contexts where, for

instance, distractibility of autistic children is related to their

inability to properly selectively attend to stimuli with certain

dynamic properties [40]. With respect to learning, Blair and

Homa [41] demonstrated how training with incomplete sources of

information can lead to selective attention patterns which hinder

performance relative to participants with no prior training at all.

These studies highlight the importance of developing models that

accurately capture changes in how selective attention is deployed

over time. To this end, the between-trial attentional variation

highlighted by dt and b9, indicate that a different kind of

formalism, perhaps more embodied, is needed to relate learning

and attention.

Work on attentional learning is in its early stages, and the

previously small body of empirical data leaves little guidance for

researchers interested in modeling this important part of overall

learning. By comparison, the study of learned selective attention in

the context of categorization has an admirable role model in

studies of eye-movements during reading, which has derived many

of its findings from its use of very large datasets [42]. Our aim here

is to provide a comparable dataset and a basis for a new kind of

data-driven theory construction. The inferential claims, that task

errors are not major predictors of eye-movement changes and that

those changes are relatively stable across learning would appear to

be two useful, initial, offerings from this dataset.

Supporting Information

Figure S1 Stimulus and feature images for Experiment
1, 9 and 10. The background (left) is located in the centre of a

168061050 resolution display, and the diameter of the back-

ground circle is approximately the height of the screen. One value

of each of the three features (right) is pasted in the arms of the

fictitious microorganism. The features pasted on the background

are an example configuration. The three features are span

approximately 80680 pixels. The locations of each type of feature

is constant for a single participant during the experiment, but the

locations of the features are counterbalanced between subjects.

(TIFF)

Figure S2 Stimulus and feature images for Experiments
2 and 7. The background (left) is located in the centre of a

168061050 resolution display, and the diameter of the approx-

imate circle surrounding the background image approximately

1000 px. The full display was coloured yellow, like is shown

behind the background cell. The one value of each of the three

features (right) is pasted in the same locations as the features in

Experiments 1, 9 and 10. The three features span approximately

80680 pixels each.

(TIFF)

Figure S3 Stimulus and feature images for Experiments
3–6. The background (left) is located in the centre of a 168061050

resolution display, and the diameter of the circle surrounding the

background image is approximately 1000 pixels. One value of

each of the three features (right) is pasted in the arms of the

fictitious microorganism. The three features span approximately

1306130 pixels each, and vary on one dimension over 90 degrees

(see Figures 3–6A). The right side of the image shows examples of

each of the three features at 0u, 45u, 60u, and 90u of variation of

feature value.

(TIFF)

Figure S4 Stimulus and feature images for Experiment
8. The background (left) is located in the centre of a 8006600

resolution display, and the diameter of the circle surrounding the

background image is approximately 590 pixels. One value of each

of the three features is pasted in the arms of the fictitious

microorganism. The three features span approximately 80680

pixels each, and vary on one dimension taking on only two

possible values. The left side shows one possible configuration of

the features, all with one of the two possible feature values

displayed. The location of each type of feature is constant for a

single participant during the experiment, but the locations of the

features are counterbalanced between subjects.

(TIFF)

Table S1 The category structures used in Experiments
3 and 4. For stimulus value tables, F1, F2, and F3 denote the

stimulus dimension. The physical locations of the dimension on

screen and the stimulus image used for the dimension are both

counterbalanced.

(DOC)

Table S2 The category structures used in Experiments
5 and 6.
(DOC)

Text S1 Four Block Experiment Data.
(DOC)
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