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Abstract

Background: Many of the most popular pre-processing methods for Affymetrix expression
arrays, such as RMA, gcRMA, and PLIER, simultaneously analyze data across a set of predetermined
arrays to improve precision of the final measures of expression. One problem associated with
these algorithms is that expression measurements for a particular sample are highly dependent on
the set of samples used for normalization and results obtained by normalization with a different set
may not be comparable. A related problem is that an organization producing and/or storing large
amounts of data in a sequential fashion will need to either re-run the pre-processing algorithm
every time an array is added or store them in batches that are pre-processed together.
Furthermore, pre-processing of large numbers of arrays requires loading all the feature-level data
into memory which is a difficult task even with modern computers. We utilize a scheme that
produces all the information necessary for pre-processing using a very large training set that can
be used for summarization of samples outside of the training set. All subsequent pre-processing
tasks can be done on an individual array basis. We demonstrate the utility of this approach by
defining a new version of the Robust Multi-chip Averaging (RMA) algorithm which we refer to as
refRMA.

Results: We assess performance based on multiple sets of samples processed over HG U133A
Affymetrix GeneChip®arrays. We show that the refRMA workflow, when used in conjunction with
a large, biologically diverse training set, results in the same general characteristics as that of RMA
in its classic form when comparing overall data structure, sample-to-sample correlation, and
variation. Further, we demonstrate that the refRMA workflow and reference set can be robustly
applied to naive organ types and to benchmark data where its performance indicates respectable
results.

Conclusion: Our results indicate that a biologically diverse reference database can be used to
train a model for estimating probe set intensities of exclusive test sets, while retaining the overall
characteristics of the base algorithm. Although the results we present are specific for RMA, similar
versions of other multi-array normalization and summarization schemes can be developed.
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Background

Pre-processing of Affymetrix GeneChip® feature-level data
has been a widely researched topic over the past few years.
Many of the commonly used algorithms utilize models
where parameters are estimated using data from multiple
arrays. These approaches are typically used in the normal-
ization and summarization steps. Examples of multi-array
procedures are RMA, gcRMA, MBEI, and, most recently,
PLIER [1-4]. Each of the algorithms have been extensively
compared to one another based on a variety of dilution
and spike-in series of data sets [5-8]. From these studies,
measures of precision and accuracy have been utilized to
determine advantages and disadvantages for each of these
methods. In general, multi-array based methods outper-
form those that derive expression measures using data
from just the array in question.

A problem associated with these algorithms that has not
received much attention is the limitation they impose on
data archiving. When data from a new study becomes
available, all arrays are pre-processed together to obtain
expression measures. Because different data is used to
define the normalization routine and estimate probe-
effects, data from different studies might not be compara-
ble because of this pre-processing bias. A solution is to
group together the feature-level data for both experiments
and re-run the pre-processing algorithm. However, this
approach will be logistically impossible in the case of
building large probe set-level reference databases. These
databases can be used to quickly combine samples that
may have been generated from a variety of different exper-
iments into a user-defined data set based on some com-
mon attribute such as clinical or pathological status,
treatment level, or technology-derived attribute. The lack
of comparability between sets of samples normalized
based on different schemes does not allow for archiving
and continual updating of probe set-level data and ulti-
mately prevents the analyst from combining disparately
normalized samples into cohesive sets.

There is a need to develop summarization schemes that
offer both the statistical advantages of multi-array algo-
rithms such as RMA, gcRMA, MBEI, and PLIER and the
flexibility of a workflow that is not specific to a single set
of samples. We utilize the RMA model as an example
methodology to demonstrate the feasibility of such an
approach,

We have utilized an alternate RMA workflow that includes
two distinct steps: (a) training of an RMA model based on
a large number of biologically distinct Affymetrix Gene-
Chip samples from Gene Logic's BioExpress reference
database and (b) application of the resulting RMA model
parameters to multiple test sets. We have named this alter-
nate workflow, "Reference RMA" (refRMA), to emphasize
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the reliance of this methodology on a standardized train-
ing set of samples exclusive of a test set. Results in this
paper are shown for the HG U133A Affymetrix GeneChip
array for a specific implementation of refRMA trained
using 1,614 .cel files representing 144 different organ
types from four different pathology states. We show that
the application of such a biologically diverse model to test
data results in similar probe set-level data when compared
to classic RMA outputs as measured by overall data struc-
ture, correlation, differential expression, and other met-
rics. Furthermore, a model trained on a large training set
of biologically distinct samples seems to be robust for tis-
sues that were not used in its training. Finally, we show
that the model can be applied to data sets external to the
site of microarray processing specific for the training set
such that the model can be used universally.

Results

Training set for the "Full refRMA" model

Two goals for building a common reference refRMA
model are to incorporate as much biological variability as
possible into the training set and to appropriately balance
the principal sources of variability such that there is not a
large degree of overrepresentation of any one of the types.
The Gene Logic BioExpress reference database is com-
prised of thousands of samples from 144 tissues and cell
types, which are represented in up to four pathological
categories (i.e., Normal, Diseased, Malignant, or Benign)
as determined by a board certified pathologist's review of
each sample. Individual brain regions were treated as sep-
arate organs due to their highly heterogeneous gene
expression profiles.

Selection of the samples was based on a two-step filtering
system. The first step involved an initial balancing proto-
col that attempted to correct for unintended effects on the
normalization due to organs that are disproportionately
represented within the database. For instance, samples
from organs such as liver, lung, and kidney have high
numbers of samples, whereas samples from organs of
more limited research may only have a few samples. A bal-
anced pool of samples was created by capping the maxi-
mum samples per organ and pathological category at 20
samples and randomly selecting samples for those organs
with sample numbers above the cap. This first filter
resulted in a balanced pool of over 6,000 samples. The
next filter randomly selected 1,500 non-blood samples
from the balanced pool in order to accommodate compu-
tational memory limitations.

Whole blood was considered a special case due to its
unique expression profiles as compared with other tissue
types, its relative importance in clinical genomics, and the
usage of two types of blood processing protocols that have
or have not undergone globin depletion procedures. The
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final number of samples used for the training set was
1,614 after the addition of 114 whole blood samples
available at the time of model training. A summarized list
of the individual organ or cell types, their pathological sta-
tus as determined by a board certified pathologist, and the
number of samples within each category is provided as a
supplemental file; see Additional file 1. A total of 251 tis-
sue and pathological categories are present within the
training set over the 144 represented organ and cell types.

Results of Affycomp as a comparative benchmark

The Full refRMA model trained as described above was
used to summarize HG U133A arrays with spiked-in
probe sets as part of the commonly used affycomp com-
parative benchmark system [9]. This system uses a variety
of measures and diagnostic plots to assess ability of sum-
marization methods to accurately and precisely estimate
the nominal fold changes as a function of gene expression
levels. Full refRMA was compared with Classic RMA,
where the 42 spiked-in samples served as both training
and test set, original MAS5, and MAS5+32 algorithms. The
MAS5+32 algorithm adds a constant of 32 to the resulting
MASS values in order to stabilize variance. Results of the
comparative assessment are presented in Table 1 and Fig-
ure 1.

Table 1 shows that, for measures that capture areas under
the ROC curves (AUC's) and percentiles of fold changes
for non-spiked genes, refRMA performs better than either
of the MAS5 algorithms, but does not perform as well as
Classic RMA for this data set. Figure 1 shows the low and
medium probe set expression ROC curves from which the
AUC's were derived. The advantage of refRMA over single-
chip summarization algorithms is obvious in this plot. In
addition, refRMA outperformed the other algorithms for
regression between nominal and observed fold changes at
higher levels of expression, as evidenced by the high

Table I: Results of affycomp comparative benchmark.
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expression intensity slope measure (i.e., "High slope") in
Table 1.

The overall interpretation from the affycomp results is
that refRMA outperforms MAS5 summarization, but does
not perform as well as Classic RMA where the training set
and test set are identical. This is to be expected under nor-
mal circumstances given that Classic RMA is highly spe-
cific to its training set. The spiked-in nature of the
experiment introduces an additional probe-level effect
into the system and most likely contributes to the size of
the disparity between Classic and refRMA, as Classic RMA
will be trained on this effect and refRMA will not. These
results indicate a limitation to the applicability of refRMA
to data that has been heavily manipulated. The manipula-
tion may be due to exogenous addition of probe, such as
in the case of a spike-in data set, or may be due to other
sample processing factors such as alternate amplification
and labelling processes. In addition, the data suggests that
arefRMA model trained on a large, biologically diverse set
of samples may not summarize highly tissue-specific
probe sets as well as Classic RMA, although refRMA may
outperform single chip-based summarization methods
such as MAS5.

Application of refRMA to true biological samples

To test the performance of the Full refRMA model on
unmodified biological samples, a variety of normal con-
trol samples from multiple organs were extracted from the
Gene Expression Omnibus (GEO) database based on the
descriptive fields within each sample's annotation [10].
Random subsets of 10, 25, 50, 100, and 200 arrays were
selected from the available 491 arrays and used to train
refRMA models. Each was applied to an exclusive test set
of 50 arrays from the same normal GEO population. Note
that, as the training set size increases, the more likely the
50 test arrays will have common characteristics. Classic

Metric Optimal Value Full reFRMA Classic RMA MAS 5.0 MAS 5.0+32
Null log-fc IQR 0.00 0.20 0.13 0.47 0.34
Null log-fc 99% 0.00 0.51 0.29 2.83 1.30
Null log-fc 99.9% 0.00 0.74 0.40 4.01 1.8l
Low AUC 1.00 0.20 0.45 0.00 0.03
Med AUC 1.00 0.53 0.87 0.00 0.0l
High AUC 1.00 0.67 0.92 0.00 0.0l
Weighted Avg 1.00 0.28 0.55 0.00 0.03
AUC
Low slope 1.00 0.27 0.25 0.6l 0.42
Med slope 1.00 0.68 0.69 0.70 0.67
High slope 1.00 0.87 0.82 0.8l 0.8l
Specific descriptions of each metric are provided in the original publication describing the affycomp system [9].
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ROC curves for the Classic RMA, Full refRMA, and MASS algorithms via affycomp. Each of the summarization algo-
rithms are shown with respect to False Positive probe sets vs. True Positive percentage for the affycomp spiked-in HG U133A
data set. The spiked-in probe sets used are limited to a) lowly expressed probe sets (< 2 pM) and b) moderately expressed
probe sets (= 4 and < 32 pM) as defined in [9]. The Full refRMA model performs better than either of the MAS5 algorithms,
but does not do as well as the Classic RMA model for the spiked-in probe sets. The likely reason for this result is discussed in

the text.

RMA probe set summaries were also created using these
same 50 arrays. Correlation of each test sample summa-
rized by refRMA was calculated relative to the same test
sample summarized by Classic RMA (i.e., trained on the
50 test set samples) using all probe sets. The mean corre-
lation across the 50 test samples was then calculated. This
process was repeated 100 times using random selection of
both training and test sets to yield correlation distribu-
tions. Boxplots of the correlation distributions relative to
training set size are shown in Figure 2. The Full refRMA
model (noted in the plot as "DB") was also compared to
Classic RMA using the same 50 randomly selected test sets
over 100 iterations.

As expected, the correlation to Classic RMA increases as
the refRMA training set size increases until correlations
approaching 1 are achieved. The Full refRMA model also
approaches 100% correlation. The plot also indicates dif-
ferences in correlation as a function of independence of
training and test set arrays. As the GEO-based refRMA
models randomly select from the same population as that
of the 50 test set arrays, there are likely to be many com-
mon biological and technical factors such as microarray
processing site, replicate arrays from the same treatment
or disease group, etc. The Full refRMA represents a more
independent training set. The slight drop in correlation
suggests that this effect is observable, but not of substan-
tial consequence.

The results generally indicate that the Full refRMA model
can be applied to data external to Gene Logic's processes
with good confidence.

Data structure was assessed after application of separate
normalization schemes using 2 exclusive sets of 15 liver
normal samples from Gene Logic's BioExpress® database
that were not used to build the Full refRMA model. For
each probe set, the mean intensity was calculated by aver-
aging individual expression values across the 15 samples
in each set. MA plots of the mean probe set intensities are
shown in Figure 3 for the Full refRMA and Classic models.
The plots indicate the same general structure of data with
similar distributions of both signal (M) and variability

(A).

MA plots of the mean probe set intensities were also con-
structed for comparisons of a single set of 15 normal liver
samples summarized using either Classic RMA, Full
refRMA, or a similar version of the Full refRMA where all
liver samples have been replaced with samples from other
organs. The results are shown in Figure 4 using y-axis
scales based on the spread of data dictated by the biolog-
ical variability from the Figure 3 MA plots. The compari-
son of Classic RMA to Full refRMA results in an overall
correlation over mean probe set intensities of 0.981 and
shows some spread of data primarily at the low end of
expression. A slight systematic shift is observed at the low
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Figure 2

Correlations between Classic and refRMA data
trained with GEO samples. Randomly selected samples
from normal GEO samples of mutiple organs were used to
train refRMA models at each of the sample sizes (I) indicated
and were applied to 50 exclusive test set samples. Correla-
tion for each test sample summarized by refRMA was calcu-
lated relative to the same test sample summarized by Classic
RMA (i.e., trained on the 50 test set samples) using all probe
sets. The mean correlation across the 50 test samples was
then calculated. This process was repeated 100 times using
random selection of both training and test sets to yield the
correlation distributions shown as box plots. The entry
shown as "DB" is the Full refRMA model trained on 1,614
samples from Gene Logic's reference database. Note that the
GEO-based models, where test set experiments are not
completely exclusive of training set, show slightly higher cor-
relations than the Full refRMA model, which represents com-
plete exclusivity of training and test sets.

end of expression. It is not clear what this shift is due to,
but is an indication of subtle systematic differences
between small and large training set size models. The
comparison of the Full refRMA and liver-naive refRMA
models results in an overall correlation of mean probe set
intensities of 0.99993. This high degree of correlation is
most likely due to the low percentage of data removed
from the training set for the liver-naive refRMA model and
suggests stability by design. Therefore, almost identical
probe set intensities result from a model either built with
or without any single organ.

Histograms for coefficients of correlations and variation
are shown in Figure 5 according to the Classic RMA and
Full refRMA workflows. The correlation histogram is
based on all possible pair-wise sample comparisons
across 30 normal liver samples that were not used to build
the Full refRMA model. The covariance histogram is based
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on each probe set's covariance across these same 30 nor-
mal liver samples.

The histograms indicate almost identical distributions for
both probe set-based variation and sample-based correla-
tion for both the Classic RMA and Full refRMA workflows
with a slight unfavorable shift for Full refRMA compared
to Classic RMA. This small shift can be viewed as the nec-
essary "cost" associated with the use of a static normaliza-
tion scheme for true biological samples. Two small
"bumps" in the distribution of Classic RMA correlations
are evident. The bump centered at 0.83 is explained by a
single sample's correlation to the rest of the data set. We
were not able to explain the smaller bump centered close
to 1. Interestingly, both are resolved by the refRMA
model, which indicates potential differences between the
two models. Unfortunately, it is not clear as to whether
this is a case of Full refRMA more successfully dealing with
technical artifacts on the chip or if it is a case of Full
refRMA diluting true biological effects.

Fold change and p-value conservation is important to
establish with any summarization algorithm. Although it
cannot be expected that different normalization and sum-
marization techniques will select exactly the same probe
sets, our goal is to show that a large number of probe sets
are selected with both the Classic RMA and Full refRMA
normalization schemes.

Consistency of regulation events was compared for the
case where the same model was used to summarize differ-
ent test sets of 15 normal vs. 15 malignant liver samples
using 20 bootstrapping iterations with sample replace-
ment and for the case where Classic RMA and Full refRMA
were used to summarize the same test set of 15 normal vs.
15 malignant liver samples [11].

Results are shown in Figure 6 as a function of increasing
thresholds of top regulated probe sets, also known as a
"correspondence at the top" (CAT) plot more fully
described in Irizarry, et al [12]. For both fold change and
t-test metrics, the consistency of regulation events based
on selection of top regulated probe sets is higher for Clas-
sic RMA vs. Full refRMA for the same test set than when
different test sets are summarized by the same model. This
indicates that the variability associated with different test
sets of arrays is higher than that of different summariza-
tion models and constitutes a positive outcome for the
Full refRMA model as a viable summarization technique.
In addition, Full refRMA and Classic RMA yield approxi-
mately the same degree of regulation consistency for both
metrics when challenged with different test sets.
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Figure 3
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h) Classic RMA
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MA plots for Classic RMA and refRMA models. Mean probe set intensities as summarized for each of two sets of 15 nor-
mal liver samples are shown. The a) Full refRMA model was calculated based on 1,614 biologically diverse samples exclusive of
the 30 normal liver test set samples contributing to this plot. The b) Classic RMA model was trained using only the 30 test set
samples. Consistency in general data structure is observed regardless of training set. For each probe set, the mean intensity
was calculated by averaging individual expression values across the 15 samples in each set.

Discussion

One of the limitations with the Classic RMA workflow
and other types of multiple array-dependent normaliza-
tion and summarization schemes is that the resulting
models are usually applied to the same samples that were
used in its training. This tight dependency between the
training and test sets results in a situation where the probe
set data cannot be archived in a continuously updated
database in the absence of a static normalization scheme.

To counter this limitation, we have used the extensive
content from Gene Logic's BioExpress® reference database
of human samples to build a static normalization scheme
that can be applied to incoming human data from the HG
U133A array on a continual basis. We have shown that a
Full refRMA model, trained on a widely varying number
of biologically distinct samples, results in similar probe
set intensities compared to the classic RMA workflow as
far as general data structure, similarity metrics, and
number of regulation events. We have also shown that the

Full refRMA model is applicable to data external to the
processes underlying the BioExpress® database.

Our conclusion from the above observations is that the
Full refRMA model can generally be used to summarize an
archival database on an ongoing basis for incoming sam-
ples. By applying the model to all samples, we can create
a probe set-level expression database that is both consist-
ent across organ and pathology category and provides the
inherent benefits of RMA summarization. This same
observation may be transitive across other multi-array
summarization algorithms such as gcRMA, MBEI, and
PLIER or variants thereof. The appropriate reference
objects would need to be trained and provided for each of
these according to their basic input requirements.

Reference database normalization schemes such as the
Full refRMA model described can also be applied to sam-
ples in an ad hoc manner (i.e., for purposes other than
establishing a reference database). Analysts can use the
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b) Full refRMA vs. Mo Liver refRMA
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MA plots showing differences between Classic and refRMA models for the same test set. Mean probe set intensi-
ties as summarized by the two different RMA models are shown for the same test set of |15 normal liver samples. In each case,
the y-axis (i.e., the axis indicating variability) is scaled relative to the biological variability observed in Figure 3 in order to con-
textualize the effect of model relative to effect of inherent variability contributed by different test set sampling. a) Classic and
refRMA models differ somewhat, while b) the Full refRMA model and a refRMA model where liver has not been used in the
training set are almost identical, indicating that the Full refRMA model is unaffected by incorporation of other single organs. For
each probe set, the mean was calculated by averaging individual expression values across the |5 samples in each set.

normalization schemes on single sample set activities. A
number of logistical advantages are inherent within such
a workflow.

First, a pre-computed reference model can be used to alle-
viate memory-intensive calculations for studies of large
sample sizes. This issue has been noted previously and has
been addressed by re-sampling and partitioning methods
[13]. Models such as RMA increase memory usage relative
to the number of input samples for its training such that
desktop computing may not be possible for sample sizes
in the hundreds or thousands. Pre-calculated models of
appropriate training set scope would allow for a close
approximation of the sample set-specific model, while cir-
cumventing memory constraints.

Second, any one of a number of the models could eventu-
ally be used as a standardization mechanism across the
industry if a large number of users find such models appli-
cable and valid for their data sets. Obviously, the degree

of validation necessary for such an "industry-universal"
model is extensive and is outside the scope of this publi-
cation. However, given the recent emphasis on microarray
analysis standards, the development of a static normaliza-
tion scheme on a widely varying training set for such algo-
rithms as RMA is a useful starting tool.

Despite attempts to maximize the applicability of any ref-
erence model for the multi-array algorithms, there are
potential technical and biological variables which may
degrade their performance. Microarray data generation
protocols are comprised of many hands-on technical
processes and reagents. The combination of all possible
variants of each step and types of reagents prohibits claim-
ing that any single model is robust for all variables.
Sources of technical variability include different labeling
technologies, PMT settings, human operators, RNA qual-
ity, reagent lots/manufacturer, and innate day-to-day var-
iables. Despite this multi-step process, technical
variability has been reported to be among the smallest
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b) Sample Correlations Within Algorithms
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Coefficient of Variation and Correlations for summarization methods. The distributions of a) probe set-specific
coefficients of variation resulting from log, MASS5, Classic RMA, and Full refRMA summarization schemes on 30 liver normal
samples and b) correlations of all possible pair-wise comparisons across samples using all probe sets on the HG UI33A Gene-
Chip. The two small bumps in the correlation Classic RMA plot are discussed in the manuscript body.

variability factors within organ systems in human and
mouse, although these studies have not attempted to
quantify individual technical factors and have not
assessed cross-laboratory factors [14,15]. In our own expe-
rience, biological variability according to organ and path-
ological category is rather large, while technical variation
is relatively small. The results of the GEO-based assess-
ment suggest that appropriate summarization across array
processing centers is supported by the Full refRMA model.

In addition to normal technical variability associated with
microarray data generation, there are more extreme devi-
ations in sample preparation associated with small- or
micro-sample amplification, laser-capture microdissec-
tion techniques, and multi-gene knockout experiments
that may perturb the probe-level signal distributions
beyond what is reasonable for a conventional training set.
The ability of the Full refRMA model to properly summa-
rize these types of purposeful deviations has not been
investigated and cannot be claimed. This concern is also
generally applicable to the other multiple array-depend-
ent algorithms.

Biological variables such as organ, pathology state, gen-
der, age, race, and others are well represented within the
training set of 1,614 unique samples and the Full refRMA
model should be relatively robust for these factors. We
have demonstrated that samples from an organ naive to a
large-sample refRMA training set are normalized almost
identically to a large-sample refRMA training set where the
organ is well-represented.

Finally, it should be noted that most applications of the
RMA workflow involve a relatively small number of exper-
iments (n < 50) obtained directly from .cel file data. We
believe that the Classic RMA workflow should be utilized
for these situations whenever possible due to the optimal
applicability of a model to its component samples. The
refRMA workflow is valuable for situations where summa-
rized expression data is archived within large, continually
updated enterprise database systems or for alleviating
memory constraints for experiments of large size, but in
no way substitutes for the Classic RMA workflow when
study designs permit the use of the latter.
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b) t-test Regulation Consistency
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CAT plots showing the overlap of top n selected probe sets. Two types of comparisons are made for each of the a)
fold change and b) t-test metrics frequently used for selection of regulated probe sets within a simple experimental design such
as the one used here (i.e., 15 normal vs. 15 malignant liver samples). For both fold change and t-test metrics, the consistency of
regulation events is based on overlapping selection of top n regulated probe sets. First, multiple test sets of 15 normal and 15
malignant samples are used to assess consistency of regulation using the same summarization algorithm over 20 bootstrap iter-
ations with sample replacement. Second, the same test set of |5 normal and 15 malignant samples are used to assess consist-
ency of regulation using different summarization schemes, namely Classic vs. Full refRMA. For each metric, regulation
consistency due to summarization scheme is higher than consistency due to different test sets

Conclusion

In conclusion, a primary logistical issue associated with
multiple array-dependent normalization and summariza-
tion algorithms is their reliance on a limited set of arrays
to produce a model that is specific to that set. A reference
model based on a training set comprised of a large, bio-
logically diverse training set has been developed for the
HG U133A GeneChip® arrays such that it can be applied
to a wide range of sample organ types and pathology
states.

Methods

refRMA algorithm and workflow

The refRMA algorithm is a version of the log scale linear
additive RMA procedure as described in Irizarry, et al. [1]
and is explained as follows within that manuscript: "The
model can be written as T(PM) = ¢;+ a;+ &, i=1,... I, j =
1,..., J, where T represents the transformation that back-
ground corrects, normalizes, and logs the PM intensities,
e; represents the log, scale expression value found on

arrays i = 1,..., I, a; represents the log scale affinity effects
forprobesj = 1,..., J, and g;represents error..." The original
implementation of RMA uses multiple array information
in two ways. The first is through quantile normalization,
which uses all available arrays to form an average empiri-
cal distribution. Normalization is achieved by forcing all
arrays to have this distribution [6]. The second comes
from fitting the linear model for each probe set across all
available arrays. The original implementation uses
median polish. In this article we will refer to this workflow
as "Classic RMA". Classic RMA can be thought of as a one-
step process given that any implemented script or code
base can assume a single sample set input and an imme-
diate output in the form of a single matrix of probe set
expression values for each sample set. Persistence of inter-
mediate data objects or other outputs is not necessary
using the Classic RMA scheme.

The refRMA workflow utilizes the above model, but uses

a predetermined group of arrays to estimate the probe
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effects and the average empirical distribution to be used
with quantile normalization. Specifically, the workflow
can be described as two separate processes, a training
process and an application process. The training process
accepts a single data set (i.e., set of arrays) as input and
outputs two data objects which will be persistently
archived: 1) a "probe effect" vector is compiled based on
the individual log scale probe affinity effects, a;, with vec-
tor length equivalent to the number of probes on the
array, and 2) a "normalization" vector, also of length
equivalent to the number of probes on the array, is com-
piled based on the intensity, T(PM;;), Note that this train-
ing portion of the refRMA workflow is exactly as specified
by the Classic RMA model and existing BioConductor
code within the affy package can be utilized to support it
[17].

The inputs for the application portion of the workflow are
the two archived vectors and a single sample run on the
same array type. The normalization and probe effect vec-
tors are applied to the test sample, as defined by the
model, to calculate probe level intensity values. Note that
the application of these two static vectors to the test sam-
ple constitutes a one-way function in which the test sam-
ple is normalized and summarized by both vectors, but
does not modify either one. BioConductor code for the
Classic RMA implementation can also be utilized for this
portion of the workflow with a modification to utilize the
archived vector objects from the training portion instead
of the default intermediate objects. Note that there is no
longer a group of samples to perform the full median
polish summarization. Therefore, a median is taken across
the resident probes of each probe set to establish probe set
level summaries. The output is a vector of probe set
expression values for the single sample. The application
process can be repeated over each sample in a multiple
array test set such that a single matrix of probe set expres-
sion values is derived. An important advantage of this pro-
cedure is that it does not require multiple arrays.

Note that, although this alternate workflow is defined for
the RMA algorithm, a similar workflow can be defined for
other multiple array-dependent algorithms.

Awvailability

The HGU133A Full refRMA model will be provided for
public use as a part of the Bioconductor project [16]. In
the interim, the Full refRMA model is available by request
from the corresponding author.
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