

Article Subtyping Cryptosporidium xiaoi, a Common Pathogen in Sheep and Goats

Yingying Fan ^{1,2,†}, Xitong Huang ^{1,†}, Sheng Guo ¹, Fang Yang ¹, Xin Yang ³, Yaqiong Guo ¹, Yaoyu Feng ^{1,2}, Lihua Xiao ^{1,2,*} and Na Li ^{1,2,*}

- ¹ Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; fanyingying@webmail.hzau.edu.cn (Y.F.); huangxitong2021@163.com (X.H.); guosheng201911@163.com (S.G.); yf1432277601@163.com (F.Y.); guoyq@scau.edu.cn (Y.G.); yyfeng@scau.edu.cn (Y.F.)
- ² Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- ³ College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; xinyang@nwafu.edu.cn
- Correspondence: lxiao1961@gmail.com (L.X.); nli@scau.edu.cn (N.L.)
- + These authors contributed to the research equally.

Abstract: Cryptosporidiosis is a significant cause of diarrhea in sheep and goats. Among the over 40 established species of *Cryptosporidium*, *Cryptosporidium xiaoi* is one of the dominant species infecting ovine and caprine animals. The lack of subtyping tools makes it impossible to examine the transmission of this pathogen. In the present study, we identified and characterized the 60-kDa glycoprotein (*gp60*) gene by sequencing the genome of *C. xiaoi*. The GP60 protein of *C. xiaoi* had a signal peptide, a furin cleavage site of RSRR, a glycosylphosphatidylinositol anchor, and over 100 O-glycosylation sites. Based on the *gp60* sequence, a subtyping tool was developed and used in characterizing *C. xiaoi* in 355 positive samples from sheep and goats in China. A high sequence heterogeneity was observed in the *gp60* gene, with 94 sequence types in 12 subtype families, namely XXIIIa to XXIIII. Co-infections with multiple subtypes were common in these animals, suggesting that genetic recombination might be responsible for the high diversity within *C. xiaoi*. This was supported by the mosaic sequence patterns among the subtype families. In addition, a potential host adaptation was identified within this species, reflected by the exclusive occurrence of XXIIIa, XXIIIc, XXIIIg, and XXIIIj in goats. This subtyping tool should be useful in studies of the genetic diversity and transmission dynamics of *C. xiaoi*.

Keywords: Cryptosporidium xiaoi; 60-kDa glycoprotein; gp60; subtyping; genetic diversity; host adaptation

1. Introduction

Cryptosporidium spp. are important diarrheal pathogens in humans and various animals [1]. Currently, 45 *Cryptosporidium* species and over 100 genotypes have been recognized [2]. Among them, *C. parvum*, *C. ubiquitum*, and *C. xiaoi* are common species in sheep and goats. *C. parvum* and *C. ubiquitum* are zoonotic species that infect a wide range of hosts, while *C. xiaoi* appears to be adapted to ovine and caprine animals [3]. *C. xiaoi*, previously known as the *C. bovis*-like genotype, is the most common species in sheep and goats in most areas except Europe [4–8].

Sequence analysis of the 60-kDa glycoprotein (*gp60*) gene has been used extensively in subtyping *C. parvum*, *C. ubiquitum*, and other zoonotic species due to its high sequence heterogeneity and relevance to parasite biology. The unique distribution of subtype families and subtypes have significantly improved our understanding of host adaptation and transmission dynamics within these *Cryptosporidium* spp. [2,9–15]. Recently, *gp60* genebased subtyping tools have been developed for molecular epidemiological studies of some non-human pathogenic *Cryptosporidium* spp., such as the bovine-adapted *C. ryanae* and the

Citation: Fan, Y.; Huang, X.; Guo, S.; Yang, F.; Yang, X.; Guo, Y.; Feng, Y.; Xiao, L.; Li, N. Subtyping *Cryptosporidium xiaoi*, a Common Pathogen in Sheep and Goats. *Pathogens* **2021**, *10*, 800. https:// doi.org/10.3390/pathogens10070800

Academic Editor: Luiz Shozo Ozaki

Received: 2 June 2021 Accepted: 22 June 2021 Published: 24 June 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). marsupial-adapted *C. fayeri* [16,17]. However, such a tool is not available for *C. xiaoi*, which is occasionally found in humans [18].

In this study, we sequenced the genome of *C. xiaoi*, identified its *gp60* gene, and developed a subtyping tool for genetic characterizations of isolates from sheep and goats.

2. Materials and Methods

2.1. Samples

DNA extracts from 434 *C. xiaoi*-positive samples were used in this study, including those from Small Tail Han sheep (*Ovis aries*), Hu sheep (*Ovis aries*), Tibetan sheep (*Ovis aries*), Huanghuai goats (*Capra hircus*), and Black goats (*Capra hircus*) on 11 farms in Qinghai, Henan, Anhui, and Guangdong, China (Table 1). The *C. xiaoi*-positive samples were obtained from previous and ongoing studies of molecular epidemiology of cryptosporidiosis in sheep and goats in China [19]. All the samples were identified as positive for *C. xiaoi* by PCR and sequence analysis of an ~830-bp fragment of the small subunit (*SSU*) rRNA gene [20].

2.2. Identification of the gp60 Gene of C. xiaoi

To obtain the nucleotide sequence of the *gp60* gene of *C. xiaoi*, we conducted wholegenome sequencing of one isolate (SCAU2942) from a Hu sheep in Anhui, China using the established procedures [21]. The genome was sequenced using Illumina HiSeq 2500 analysis of an Illumina TruSeq (v3) library with 250-bp paired-end reads. The sequence reads were assembled de novo using the SPAdes version 3.13 (http://cab.spbu.ru/software/ spades/, accessed on 21 November 2019) with a K-mer size of 63. The *gp60* gene of *C. xiaoi* was identified by the blastn analysis of the genome assembly with the *gp60* (cgd6_1080) sequence of *C. parvum*. The coding region and amino acid sequence of the *gp60* gene were predicted using the combination of FGENESH (http://www.softberry.com/berry.phtml, accessed on 15 December 2019) and blastp search of the NCBI database.

2.3. Subtyping of C. xiaoi

Based on the sequence of the *C. xiaoi gp60* gene, nested PCR primers were designed for the subtyping analysis. The primers used in primary and secondary PCR were Xiaoi-*gp60*-F1 (5'-CCTCTCGGCACTTATTGCCCT-3') and Xiaoi-*gp60*-R1 (5'-ATACCTGAGATCAAAT GCTGATGAA-3'), and Xiaoi-*gp60*-F2 (5'-CCTCTTAGGGGTTCATTGTCTA-3') and Xiaoi*gp60*-R2 (5'-TACCTTCAAAGATGACATCAC-3'), respectively. Each PCR was performed in a 50 µL-reaction containing $1 \times$ PCR master mix (Thermo Scientific, Waltham, MA, USA), 0.25 µM primary PCR primers or 0.5 µM secondary PCR primers, and 1 µL of DNA (primary PCR) or 2 µL of the primary PCR product (secondary PCR). To reduce PCR inhibitors, 400 ng/µL of nonacetylated bovine serum albumin (Sigma-Aldrich, St. Louis, MO, USA) was used in the primary PCR. The PCR amplification consisted of an initial denaturation at 94 °C for 5 min; 35 cycles of 94 °C (denaturation) for 45 s, 55 °C (annealing) for 45 s, and 72 °C (extension) for 90 s; and a final extension of 72 °C for 10 min. The secondary PCR products were visualized by 1.5% agarose gel electrophoresis.

Host	Region	Breed	Farm ID	No. of <i>C. xiaoi-</i> Positive Samples	No. of Samples Positive at the <i>gp60</i>	No. of Samples with Divergent <i>gp60</i> PCR Banding Patterns (%)		Subtype Family (no.)			
				I I I I	Locus (%)	One Band	Two Bands				
	Henan	Han	1	71	58 (81.7)	49 (84.5)	9 (15.5)	XXIIIb (13), XXIIId (3), XXIIIf (1), XXIIIh (13), XXIIII (22), XXIIId + XXIIIk (1), XXIIId + XXIIII (1)			
01			2	18	18 (100.0)	18 (100.0)	-	XXIIIb (1), XXIIIf (1), XXIIIk (5), XXIIII (3)			
Sheep	Anhui	Hu	3	84	64 (76.2)	57 (89.0)	7 (11.0)	XXIIIb (8), XXIIIe (2), XXIIIf (1), XXIIIh (17), XXIIIk (3), XXIIII (17), XXIIIh + XXIIIk (2), XXIIIb + XXIIIk (1), XXIIId + XXIIII (1)			
	Qinghai *	Tibetan	4	39	8 (20.5)	8 (100.0)	-	XXIIId (1), XXIIIe (1), XXIIIh (1), XXIIIi (3)			
	Anhui	Huanghuai	5	77	77 (100.0)	66 (84.7)	11 (15.3)	XXIIIa (6), XXIIIb (4), XXIIIc (1), XXIIId (2), XXIIIe (5), XXIIIh (7), XXIIIi (4), XXIIIj (4), XXIIIk (5), XXIII (18), XXIIIb + XXIII (1), XXIIIh + XXIIIi (1), XXIIIh + XXIIIj (1), XXIIIh + XXIIIk (1), XXIIIi + XXIIIi (1)			
Goats			6	51	46 (90.2)	43 (93.5)	3 (6.5)	XXIIIb (3), XXIIIc (1), XXIIId (3), XXIIIe (5), XXIIIf (7), XXIIIh (4), XXIIIi (3), XXIIIj (1), XXIIIk (7), XXIIII (4), XXIIIh +XXIIIk (1)			
			7	33	33 (100.0)	31 (93.9)	2 (6.1)	XXIIIa (20), XXIIIg (5), XXIIIa + XXIIIg (1)			
			8	20	16 (80.0)	16 (100.0)	-	XXIIId (1), XXIIIg (14)			
	Guangdong	Black	9	11	8 (72.7)	8 (100.0)	-	XXIIIa (8)			
	0 0		10	18	16 (88.9)	16 (100.0)	-	XXIIIa (16)			
			11	12	11 (91.7)	11 (100.0)	-	XXIIIa (11)			
Total	-	-	-	434	355 (81.8%)	323 (90.1)	32 (9.9)	XXIIIa (61), XXIIIb (29), XXIIIc (2), XXIIId (10), XXIIIe (13), XXIIIf (10), XXIIIg (19), XXIIIh (42), XXIIIi (10), XXIIIj (5), XXIIIk (20), XXIII (64), XXIIIa + XXIIIg (1), XXIIIb + XXIIIk (1), XXIIIb + XXIIII (1), XXIIId + XXIIIk (1), XXIIId + XXIIII (2), XXIIIh + XXIIIi (1), XXIIIh + XXIIIj (1), XXIIIh + XXIIIk (4), XXIIIi + XXIIII (1)			

Table 1. Cryptosporidium xiaoi subtype families identified in sheep and goats in China.

* Samples from a previous study [19].

2.4. DNA Sequence Analysis

All secondary *gp60* PCR products were sequenced in both directions using Sanger sequencing by Sangon Biotech (Shanghai, China). For the samples yielding double PCR bands with different sizes, PCR products of each band were excised from the agarose electrophoresis gel and purified using the E.Z.N.A.® Gel Extraction Kit (Omega bio-tek, Norcross, GA, USA) before sequencing. The sequences obtained were assembled using ChromasPro 1.5 (http://technelysium.com.au/wp/chromaspro/, accessed on 20 March 2020), edited using BioEdit 7.1 (http://www. mbio.ncsu.edu/bioedit/bioedit, accessed on 20 March 2020), and aligned with reference sequences from GenBank using MUSCLE in MEGA 7.0 (https://www.megasoftware.net/, accessed on 20 March 2020). Short tandem repeats in the gene were identified using the Tandem Repeat Finder (http://www.tandem.bu.edu/ trf/trf, accessed on 21 March 2020). The signal peptide and glycosylphosphatidylinositol (GPI) anchor were predicted using PSORT II (http://psort.hgc.jp/form2.html, accessed on 22 March 2020). N-glycosylated sites, O-glycosylated sites, and furin proteolytic cleavage sites were predicted using NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/, accessed on 22 March 2020), YinOYang 1.2 (http://www.cbs.dtu.dk/services/YinOYang/, accessed on 22 March 2020), and ProP 1.0 (http://www.cbs.dtu.dk/services/ProP/, accessed on 22 March 2020), respectively. To assess the genetic relationship of C. xiaoi subtype families, a phylogenetic tree was conducted using the maximum likelihood (ML) analysis in MEGA 7.0 based on substitution rates calculated with the general time-reversible model. DnaSP 5.10 (www.ub.es/dnasp/, accessed on 25 March 2020) was used to calculate the recombination rates among subtype families of C. xiaoi.

2.5. Nucleotide Sequence Accession Numbers

Representative nucleotide sequences of the *C. xiaoi gp60* gene generated in this study were deposited in GenBank under accession numbers MW589389, MW815183-MW815276.

3. Results

3.1. Features of the gp60 Gene of C. xiaoi

A total of 25.85 million paired-end reads were obtained from the *C. xiaoi* isolate SCAU2942, and assembled into 334,080 contigs. The full *gp60* gene (MW589389) was identified in contig 1122 (8944 bp). The gene was 1437 bp in length and encoded 478 amino acids. Although it shared sequence similarities with the *gp60* gene of *C. parvum* (AF022929), *C. hominis* (FJ839883), *C. ubiquitum* [12], and *C. ryanae* [17] in the 5' and 3' regions at the amino acid level, the full sequence similarity was only 19.9 to 41.6% between *C. xiaoi* and the other four species (Figure 1). The GP60 protein of *C. xiaoi* had classic features of *Cryptosporidium* GP60 proteins, including an N-terminal signal peptide, a furin cleavage site (RSRR), two potential N-glycosylation sites, nearly 100 O-glycosylation sites in the GP40 region, and a GPI anchor at the C terminus. Nevertheless, the serine repeats (TCA/TCG/TCT) commonly seen in *C. parvum*, *C. hominis*, and related species, were absent in the 5' region of the *gp60* gene of *C. xiaoi*.

3.2. Sequence Polymorphisms in the gp60 Gene of C. xiaoi

Among the 434 samples positive for *C. xiaoi* in this study, the *gp60* gene in 355 samples (81.8%) was successfully amplified by PCR. PCR products of 323 samples generated one expected band in gel electrophoresis. However, 32 samples yielded two PCR bands with different sizes, including 16 sheep samples and 16 goat samples (Table 1 and Figure 2). All PCR products with either one or two bands were sequenced, generating 298 *gp60* nucleotide sequences with length ranging from 800 to 1170 bp. Nucleotide sequences from 18 samples were identical to the reference sequence (SCAU2942) from the whole-genome sequencing, while the remaining sequences were highly divergent and displayed nucleotide differences of 24.0–68.3% (Table 2). Altogether, 94 sequence types were identified among the 298 *gp60* sequences obtained. In addition to the numerous nucleotide substitutions observed over

the partial *gp60* gene, there was a significant length polymorphism among the 94 sequence types mostly due to the presence of repetitive sequences.

		1.0	20	30	40	50	60	70	80
С.	parvum	MRLSLIVLL	SVIVSAVESA	PAVPLRGTLK					
с.	hominis	MRELLATVEL	SVETSVVESA	PGVPLRGTLK					
C.	ubiquitum	MRELLATVSL	SVELSVVESA	PGVPLRGTLK					
с.	xiaoi	MRI.PL.YVTLL	SALIALVISA	PSVPLRGSLS	SOLGNSRSA	PAPAPAPA ST	TTSGADTDTD	AGSDSSRAEG	EVDOTTVEGG
с.	ryanae	MKPLLLASLC	LAFLALVFSA	P-VPLRGSLA	VRQSAVSE	-EPAGSQGSQ	TSAQPGTP-G	SVSQPTGAES	ETEVTGQHSN
	-	0.0	100	110		120		150	1.60
~		90	100	110	120	130	140	150	TOO
с. С	hominia								DVPV
с. С	mbiguitum								DV <u>3</u> V
с. С	wizoi	SCKCEDSCAC	UNTCECUEDA	TERCONTC	VCAOADCCCA	ASCONCON	CHCOTCAVCC	VTVTCDAAUC	CCENTUDEO
с. С	XIAOI	DCKDENSGAG	DODCKENS	NMUSSCOCU	VGAQAF 333A	VERCEC	CHEQIGAVGG	CTVIGDAANS	GSENTHDEQ
υ.	ryanae	DGKDENS	-D3QDGKEN3	MMV 33 GQGV -	AQE <u>33</u> D3A	V <u>3</u> E <u>313</u>	GH1Q33AA3D	<u>SI</u>VQILA<u>S</u>GA	G 33 D 33 NGD 3
		170	180	190	200	210	220	230	240
C.	parvum	EG SSSSSSS	SSSSSSSSS	SSSSSTST	VAPANKAR T G	-EDAEGSQDS	SGTEASGSQ-	GSEEEGSEDD	GQ
C.	hominis	EG SSSSSSS	SSSST VAPAP	KKER $\underline{\mathbf{T}}$ VEGG $\underline{\mathbf{T}}$	EGKNGESSPG	SEEQDGGKED	GGKEDGGKED	GGKEDGGKEN	GEGDTVDGVQ
C.	ubiquitum	TN VS T T T AAP	KKIIVR st ee	G TT P T AP T	<u>TT</u> P STT AP T A	AP TT V STT AP	<u>S</u> GSGVDP TST	dgdek t d t G s	G
C.	xiaoi	H- T SHSTNTE	ASG-TPAGDS	EQETTGTGTG	EATGEEGNEE	TD N T <u>T</u> QAAPG	$\underline{\mathbf{T}}$ G $\underline{\mathbf{S}}$ QGSSGTQ	DGAENSGQED	GSGGDGGAGG
C.	ryanae	HGD SSSSTT P	P S G SSS E STS	DNEQ ssss dQ	VGNGVGGGNG	GGNGGGNGGG	GG S GGGGGGG	dgvdg s aqgn	GG <u>S</u> GAGDH <u>TS</u>
		250	260	270	280	290	300	310	320
C.	parvum	TSAASQP		-TTPAQSEG-	ATTETIEATP	KEECG T SF	VMWFGEGTPA	ATLKCGAYTI	VYAPIKDQTD
C.	hominis	TGSGSQ		-VTPSESAGT	ATESTATTTP	KEECG T SF	VMWFEKGTPV	ATLKCGDYTI	VYAPIKDQTD
C.	ubiquitum				TTDETVTTTP	DPMEKCG T SF	VMWFVSGVPV	TTLECGSYTM	VYGPVE N ETN
C.	xiaoi	AGAGAGG-AG	AGGAGAG	AGGAGGND	GNDGNDGS-S	TAPVVCGEKF	VVWFSDGVPV	TT VSCGKYTG	IYYPSADG-N
C.	ryanae	gg s g s dgdaa	TGEDGAGDDT	DVDG T VP ST G	PSEPQGGSGS	GAGVICGEKF	KVWFK S G T PV	TT VNCGAY T G	IYFP S K S G-G
	-					270			
~		DADDVICCEU	340	350	360	370	380	390	400
<i>C</i> .	parvum	PAPRIISGEV	TSVIFERSDN	TVKIKVNGQD	FSTLSANS			SSPTENGG	SAGQAS
с.	nominis	PAPRIISGEV	TSVSFERSES	TVIIKVNGKE	FSTLSANS			SSPIRDNGES	SDSHVQ
с.	ubiquitum	PAAKIVSGIV	TIVIIDASN-	-KELMVINIQE	FAILSIDS			SUPTIATI	-APAAR
с. с	XIAOI	NCDKVICCDU	TAVVVEEGK-	TKUNCOF	LSIISVIP			REMIGDDSV3	CTT ANALSAGIDA
с.	ryanae	NGFKII	13 VDVEEEK-	IKANGÖF	L <u>33</u> IFVDF <u>I</u> K	<u>111</u> 1A <u>131</u> V <u>3</u>	<u>1A111</u> E1511	<u>36131</u> F133F	311 A3QUAEE
		410	420	430	440	450	460	470	480
C.	parvum		<u>S</u> R <u>S</u>	RRSLSEET	SEAAA	TVDLFAFTLD	GGKRIEVAVP	NVEDASKRDK	YSLVADDKPF
C.	hominis		S <mark>RS</mark>	RRSLAEEN	GETVA	TVDLFAFTLD	GGRRIEVAVP	KDENADKRSE	YSLVADDKPF
C.	ubiquitum		L <mark>LA</mark>	EDTVTEA	VT	MTDLYTFTLK	GGKAISVGVP	ANQDESKRDK	YSLSADNQVF
C.	xiaoi	S	AKS <mark>RS</mark>	RRSLQQG	TE N QT <u>T</u> E	VVDVYSFTAG	G-KTFSVKLP	NEKEAEKRNK	YFLADDGGDV
C.	ryanae	DEEDEEEAAV	AAAAKAK <mark>S</mark> RS	RR <mark>S</mark> LQEEGQE	EGREE S Q T TE	IADVYSFSAG	G-KVFVVKLP	KEESADKRNK	YMLADSDGDV
		490	500	510	520	530	540		
C.	parvum	YTGANSGT	TNGVYRLNEN	GDLVDKDNTV	LL-KDAG-SS	AFG <mark>LRYIVPS</mark>	VFAIFAALFVI	6	
C.	hominis	YTGANSGI	TNGVYKLDEN	GNLVDKDNEV	LL-KDAG-SS	AFG <mark>FKYIVPS</mark>	VFAIFAALFVI		
C.	ubiquitum	YTGTASNSGV	TSGIFKLNEN	GDLVDPSNTV	VL-KDAD-SA	AFG <mark>FRYIIPS</mark>	VFAIFAAFFM	2	
C.	xiaoi	IFEGNK	-KEEFHFDGE	GDLLDSEGKV	ILESGD-SSS	AFD <mark>LKYIIPS</mark>	ISAFVLSILLE	7	
C.	ryanae	IFEGSK	EQEEFKFDDK	GDLLDSEGKV	ILANDSGSSS	AFGYRYVIPS	ILAFILTVFLE	2	

Figure 1. Deduced amino acid sequence of the *gp60* gene of *Cryptosporidium xiaoi* compared with sequences of *C. parvum* (AF022929), *C. hominis* (FJ839883), *C. ubiquitum* [12], and *C. ryanae* [17]. Potential *N*-glycosylation sites are indicated in bold and italic letters, and predicted O-glycosylation sites are indicated in bold and underlined letters. Amino acid sequences of the N-terminal signal peptide, furin cleavage site (RSRR), and C-terminal glycosylphosphatidylinositol anchor are highlighted in green, red, and blue, respectively. Dashes represent amino acid deletions.

Table 2. Pairwise nucleotide sequence similarity among subtype families of *Cryptosporidium xiaoi* in the *gp60* gene.

	XXIIIa	XXIIIb	XXIIIc	XXIIId	XXIIIe	XXIIIf	XXIIIg	XXIIIh	XXIIIi	XXIIIj	XXIIIk	XXIIII
XXIIIa												
XXIIIb	76.0%											
XXIIIc	71.2%	74.0%										
XXIIId	70.1%	72.7%	68.8%									
XXIIIe	71.8%	72.7%	68.3%	71.6%								
XXIIIf	74.3%	69.0%	66.3%	70.1%	75.8%							
XXIIIg	68.3%	66.2%	66.0%	66.4%	69.8%	71.4%						
XXIIIh	54.1%	56.0%	50.4%	55.0%	56.4%	57.1%	57.6%					
XXIIIi	41.4%	38.2%	37.9%	42.6%	40.9%	41.4%	39.4%	38.5%				
XXIIIj	47.6%	45.3%	43.6%	46.1%	44.8%	45.2%	44.3%	42.4%	47.1%			
XXIIIk	37.9%	35.7%	35.5%	37.3%	37.9%	39.4%	37.6%	34.7%	49.8%	50.5%		
XXIIII	33.9%	31.7%	32.2%	35.4%	33.6%	35.3%	33.9%	31.8%	42.3%	42.5%	58.3%	

Figure 2. Nested PCR amplification of the partial *gp60* gene of *Cryptosporidium xiaoi* in sheep and goat samples. M: 100-bp DNA ladder. Lanes 1–20: Replicate PCR of 10 samples with divergent binding patterns. N-1 and N-2: No-template controls in the primary and secondary PCR, respectively.

3.3. Subtype Families and Subtypes of C.xiaoi

A total of 94 *gp60* sequences, including one sequence of each sequence type, were used in a phylogenetic analysis of the *gp60* gene. The ML tree generated comprised 12 clusters of sequences (Figure 3). They were named as subtype families XXIIIa–XXIIII in concordance with the established nomenclature of *gp60* subtype families of *Cryptosporidium* spp. [22]. Subtype families XXIIIa–XXIIIh formed a group highly divergent from the other group of XXIIIi–XXIIII (Figure 3). The nucleotide sequence differences among 12 subtype families ranged from 24.0 to 68.3% (Table 2). Among these subtype families, XXIIII had the shortest nucleotide sequences and contained some unique AGC/AGT trinucleotide repeats encoding serine, leading to the occurrence of a long stretch of highly O-glycosylated amino acids. Subtypes within XXIIII differed from each other mostly in the number of AGC/AGT trinucleotide repeats. The DnaSP analysis of the *gp60* nucleotide sequences revealed the presence of 71 potential recombination events among all 12 subtype families (Table 2). In addition, mosaic sequence patterns were observed among these subtype families (Figure 4).

At the amino acid level, extensive sequence polymorphism was found among 12 subtype families, mostly in the GP40 region (Figure 4). Despite the extensive sequence difference, all subtype families had the furin cleavage site of RSRR. There were one to four N-glycosylation sites in these subtype families, except for XXIIIk, which had none. In addition, the number of O-glycosylation sites was divergent among subtype families, with XXIIIb and XXIIII having more O-glycosylation sites than other subtype families.

Figure 3. Phylogenetic relationship among 12 *Cryptosporidium xiaoi* subtype families (XXIIIa–XXIII) based on the maximum likelihood analysis of the partial *gp60* gene. General time-reversible model and Gamma distribution were used in the calculation of substitution rates. Bootstrap values lower than 50% are not displayed.

XXIIIa-20843 XXIIIb-2607 XXIIIc-3198 XXIIId-2640 XXIIIf-2603 XXIIIf-2603 XXIIIf-2648 XXIIIh-2648 XXIIIi-3200 XXIIIj-3145 XXIIIk-3201 XXIIII-4276	10 <u>\$</u> <u>\$</u> IVYSVKWFNR <u>\$</u>	20 GR <u>SS</u> V ADGP <u>SS</u> V T <u>T</u> AV N GSSSV NGHSSV GR <u>SS</u> V GR <u>SS</u> V GR <u>SS</u> V HCLVPQ T <u>T</u> VNGH <u>SS</u> V	30 QPRDAPAEPG QRRDS_PE QRRDSPEPTT QRRDSTE QPRDYPAESV QPRDSAA SGADTDTDAG AKPSALS LGNSRSA QRRASTE QRRASTE	40 VEGSGENGEN TETTESAV TPAKPSEV VPSEVEEGEE TTTEPSET VDGSGE TPTEETAA SDSSRAEGEV EEPKEEK PASDPSH STTDSGV STTESEV	50 GESEESEVKE GGSEG-SEV GGSGGSVVSE GGTEG-QEQ SESAED -SEES GGGVGGE EQTTVG PKEEG SGEDV SGEDV SGGGG	60 KEEKEEKEEK EGQTEEQ NTI EGEQGDEQEG E-QVIGQGI EVEEQAEGQG KEGKEKAEE- EGEQEEESKG SEGEKGEE SEVASGDG ESIEAQEG ESIEAQEG EDEGEGGG	70 PEEQVTTENS E-DSSSSSS E-QPSTGETT G-DSSSSSS TTEDSTS-TS -EGHVTTENG EGEQASTVDG SGAEVNTGSG VVTHPTSDSE DSQNSTTHEG ASQSPTQEG EVEEETDDG	80 <u>TSNTVQSS</u> DS <u>SSTTVQSS</u> NS <u>SSTTAQSPGS</u> <u>TSSTVQSS</u> GS NSDSVQSDSG GSGTVQP <u>S</u> GA V <u>S</u> GATEP <u>S</u> AG AQETPV <u>T</u> QEQPE <u>T</u> EVG <u>ASQSPTTQ</u> EG <u>SSSS</u>	$\begin{array}{c} 90\\ \text{GNTV}-\underline{T}Q\underline{T}P\\ \text{GS}\underline{T}DAQ\underline{TS}\\ \text{GS}\underline{T}DDE\underline{TS}\\ \text{ES}\underline{T}DAETP\\ \text{ES}\underline{T}GSTQQ\underline{TS}\\ \text{NEED}-AQ\underline{TS}\\ \text{ES}\underline{T}\underline{ES}\underline{T}QQ\underline{TS}\\ \text{QN}\underline{TS}VGAQ\underline{T}P\\ -\dots-ETQQQ\\ \text{AS}T\underline{T}Q\underline{ST}\\ \textbf{A}\underline{S}QSPT\underline{T}QG\underline{SS}\\ -\dots-\underline{SSSS} \end{array}$	100 <u>SASTST</u> -SQQ <u>SS</u> SAGTQQ <u>SSST</u> SAPQ PADAE <u>TST</u> QQ <u>STSTS</u> A-SQQ <u>STGTVP-STQ</u> <u>STNAE<u>TST</u>HQ <u>SSSAAS-SS</u>T QSQEEQ<u>TEDQ</u> <u>VTTGS</u>SGNGD <u>ASQSPTTQEG</u> <u>SSSSSSSSS</u></u>
XXIIIa-20843 XXIIIc-3198 XXIIId-2640 XXIIId-2640 XXIIIf-2603 XXIIIg-3048 XXIIIf-2648 XXIIIh-2648 XXIIIi-3200 XXIIIj-3145 XXIIIk-3201 XXIII1-4276	110 SNGETQNTGS DSGATQNTES ESTES GSDGAHTSES QGDGEQNTEV GSGEAHTSEN QNGGNGHGQT REDSTTPGQG NSGTVDSMHS ASQSPTTQEG SSSSSTTS	120 <u>TGSTTETPSS</u> <u>TSSTGETTAS</u> <u>TGSTGGTTVS</u> <u>TGSTSETASS</u> <u>SDSTSETASS</u> <u>SDSTSETASS</u> <u>ASSTGDTTAS</u> EAVGGVTV <u>TG</u> VAGGHTPTG <u>TSADSTSQPT</u> <u>ASQSTTQEG</u> <u>TSATSSS</u>	130 -TTSPPTSES STTSPSSES -TTPPSNSES -TTPPSNSES -TTPPSSES STASPSSES DAAHSSGSES SEADVSHTEN GSGSGTTTES ASQSPTTQEG -SSSSSSSS	140 TPGGEQE <u>SSS</u> <u>TS</u> DQQ <u>TSST</u> T <u>F</u> GQQ <u>TST</u> P T <u>T</u> MGEQ <u>TSST</u> T <u>S</u> MGQH <u>TS</u> TP THDEQD <u>TTHS</u> SGAQTENGEG GSGEDDVEAG A <u>S</u> HSPT <u>T</u> QEG <u>S</u>	150 SAGT TAV <u>TST</u> QQGS S <u>T</u> ETPG SAGT GTE <u>T</u> GTE <u>T</u> SDASG <u>SST</u> S <u>SSSS</u>	160 S GGAHTSEDAS TG AS S S S S S S S S 	170 DIDNQEHSTT SIDETTASTI DQDGQDHNTI GTNNHGDSTT PTGGSEQEII GTDHEHGAT GTHGQDHSTT PTGGSEQGTI SVS QEGASHSPII	180 QP SSSVS TSG G Q Q	190 GG QQ TST PGTGT GD GD GD DG DG DG DG	200 TGTDGS SGTGDAT NES TGTGDATVES TGTGDANNES TGTSS MGTVGS TGTD N ATDES SGTGEAEGEE ETGE
XXIIIa-20843 XXIIIc-3198 XXIIIc-3198 XXIIId-2640 XXIIIe-3329 XXIIIf-2603 XXIIIg-3048 XXIIIh-2648 XXIIIi-3200 XXIIIj-3145 XXIIIj-3145 XXIIIk-3201 XXIIII-4276	210 GMN-TDHTDS EST-TDH-VS GST-TGN EST-TDHDAS GST-TDHDAS GST-TDHTG- EST-TDHTG- EST-TDHDVS GNGETDTTQA HMGTTGDNAH GSPTSG HSPTTQEGAS	220 SGAGTEADST SGTSTEADST TG <u>S</u> GAGS- <u>S</u> GTSTNTGSE SGTGST <u>S</u> GTSTDTGS- AG <u>T</u> G <u>S</u> Q DQ <u>TNNSGVHT</u> 	230 EGDDT <u>T</u> DSNT EGGDT <u>T</u> DSNT AGGGSTNSGA EGGDTTDGNT EGGDA <u>T</u> DSDS <u>T</u> GGDNTN <u>S</u> GA <u>GSSGTQDGTE</u> DAE <u>SSTGSST</u> - <u><u>S</u>ESQEEP<u>T</u> QH<u>S</u>E<u>T</u>EVE<u>SS</u> <u>S</u></u>	240 HGTTPGSGS QEGTTPGSGS QEGTTFGSGS QDGTTTGSGS QEGTTPETGS NNGQENGSG GSSTSSDAVT TAPTS SSSSSTGTN STSTS	250 QGGSTNGS-A QGSSTNGS-D QGSSTNGS-A PGSSTNGS-A HGSSTNGG-G QDSSTNGN-A AGGPGPGAGA NQGGDQSDVS 	$\begin{array}{c} 260\\ \text{SGNGQG}\text{NE-S}\\ \text{NGNGQG}S\\ \text{NGNGQGGS}\\ \text{NGNGQGGG-S}\\ \text{GGNGQGSG-S}\\ \text{GGAGGGST}\\ \text{GGAGAG}\\ \underline{\textbf{T}GAGS\underline{\textbf{T}}\underline{\textbf{T}}GS\\ \underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{G}}GS\\ \underline{\textbf{T}}\underline{\textbf{T}}\underline{\textbf{G}}\underline{\textbf{S}}\underline{\textbf{T}}\\ \underline{\textbf{T}}\underline{\textbf{S}}\underline{\textbf{T}}\underline{\textbf{S}}\underline{\textbf{T}}-\underline{\textbf{S}}\\ -A\underline{\textbf{T}}\underline{\textbf{S}}\underline{\textbf{SSS}}-S \end{array}$	270 GDSGA GSGGS GSGGS GGAGA GGAGA GAGAGAGNGA GAGGN GSGS G <u>S</u> AS GSAP <u>STST</u>	280 ENGGSAPG GVGNGGS-TA GAGNDGS-TA GAGNDGSGTT GAGNDGSGTT GAGNGGSGTT DGGNDGSSTA HDAPGSP QEGPTTA QEGPTTA	290 -IVCGEEFTI GIVCGEEFTI GIVCGEEFTI PVVCGEKFVV PVICGEKFVV PVICGEKFVV TVVCGEKFTI PTVCGEKFTI AIVCGEFTI ATVCGERFTI	300 WFDSGAIPVT WFDSGAVPVT WFSDG-VPVT WFSDG-VPVT WFSDG-VPVT WFSGG-VPVT WFSGG-VPVT WFSGG-VPVT WFSDG-VPVT
XXIIIa-20843 XXIIIb-2607 XXIIIc-3198 XXIIId-2640 XXIIIf-3229 XXIIIf-2603 XXIIIf-3048 XXIIIh-2648 XXIIIh-2648 XXIIIi-3200 XXIIIj-3145 XXIIIk-3201 XXIIII-4276	310 TVSCGDYTGI TVSCGDYTGI TVSCGPYTGI TVSCGEYTGI TVSCGEYTGI TVSCGEYTGI TVDCGPYTGI TVDCGPYTGI TVDCGPYTGI TVDCGPYTGI	320 YYPAIGGNSE YYPSADGN <u>S</u> D YYPSAGGNPG YYPSAGGNPG YYPSADGNPG YYPSADGNHG YYPT <u>T</u> SGGGE YYPT <u>T</u> SGGGE YYPT <u>T</u> SGGGG YYPT <u>T</u> SGGGG	330 PKYISGEVTT PKYISGEVTS PKYISGEVTS PKYISGEVTS PKYISGEVTT PKYISGEVTT PKYISGEVTS PKYISGEVES PKYISGEVES	340 VVVTENKIKV VDVTDNKIKV VDVTDDKIKV VEVEDGKIKV VEVEDGKIKV VEVKDGKIKV VVVEGGKIKV VEVTGGVIKV VDVTDNIIKV VVVTDGVIKV	350 NGQELS <u>T</u> IPV NGQELS <u>S</u> IPV NGQELSSIPV NGQELSSIPV NGELSSIPV NDHELSSIPV NGKELSSLSV NGKDLSSIPV NNQELSSIPV NDKDLSTIPV	360 SPGEATGSSG SPGDAT-VSS NPGDAV-SST NPNDATGSST KPGDAV-SSA KPGDAV-SSA TPNENTGDDS GSGA KPEAAGGNGA KPEAAGGSGA	370 AV PA PA AV PV EG ESGAGAGAGA ES	380	390 TIPEVAASGA TTLEVASED TIPEVVASKG TIPEVVASKG -SEVAASGA TIPELVASED -VSAAAASKG 	400 AGKSAS KSRE SGESAS KSRE AGKSAS KSRE AGKSAS KSRE GKSGS KSRE TDKSAS KSRE TEGVAS KSRE GEGPAS KSRE GEGPAS KSRE GEGLAS KSRE
XXIIIa-20843 XXIIIb-2607 XXIIIc-3198 XXIIId-2640 XXIIIe-3329 XXIIIf-2603 XXIIIg-3048 XXIIIh-2648 XXIIIi-3200 XXIIIj-3145 XXIIIk-3201 XXIIIh-2648	410 SLQEGVVT SLQEEVVT SLQEEVVT SLQEEVVT SLQQGTEDQT SLQQGTEDQT SLQEEVVT SLQDVETV SLQEDVVT SLQEGVET	420 TEVADVYSFT TEVADAYSFS TEVADAYTFT TEVADAYTFT TEVADVYSFT TEVADVYSFT TEVADVYSFT TEVADVYSFT TEVADVYSFT TEVADAYTFP	430 AGGKTFTVKL AGGRVFTVKL AGGK <u>T</u> F AGGKSFTVKL AGGKSFTVKL AGGKTFTVKL AGGKTFTVKL AGGKTFTVKL AGGKTFTVKL	440 PKEEE PKETEA PKETEA PKEEAS PNE PKEADEKKRN PKEADEKRN PKEAEA PKETEADKRN	450	454 VIF- VIFE				

Figure 4. Deduced amino acid sequences of the partial *gp60* gene of 12 subtype families (XXIIIa–XXIIII) in *Cryptosporidium xiaoi*. N-glycosylation sites are indicated in bold and italic letters, and O-glycosylation sites are indicated in bold and underlined letters. The furin cleavage site "RSRR" is highlighted in red. Dashes represent amino acid deletions (except those at both ends of the sequences).

3.4. Distribution of C. xiaoi Subtype Families by Host

Among the 12 subtype families of C. xiaoi, XXIIIa (61), XXIIIc (2), XXIIIg (19), and XXIIIj (5) were detected only in goats, while the remaining eight subtype families were found in both sheep and goats. In addition, a common occurrence of co-infections with multiple subtype families was observed in these animals. Among the three breeds of sheep, 64 samples from Han sheep were successfully subtyped, yielding XXIIIb (14), XXIIId (3), XXIIIf (2), XXIIIh (13), XXIIIk (5), XXIIII (25), XXIIId + XXIIIk (1), and XXIIId + XXIIII (1); 52 samples from Hu sheep were successfully subtyped, yielding XXIIIb (8), XXIIIe (2), XXIIIf (1), XXIIIh (17), XXIIIk (3), XXIIII (17), XXIIIh + XXIIIk (2), XXIIIb + XXIIIk, (1) and XXIIId + XXIIII (1); only a few samples from Tibetan sheep were successfully subtyped, yielding XXIIId (1), XXIIIe (1), XXIIIh (1), and XXIIIi (3). Between the two breeds of goats, only XXIIIa was identified in Black goats, while more divergent subtype families were detected in Huanghuai goats, yielding XXIIIa (26), XXIIIb (7), XXIIIc (2), XXIIId (6), XXIIIe (10), XXIIIf (7), XXIIIg (19), XXIIIh (11), XXIIIi (7), XXIIIj (5), XXIIIk (12), and XXIII (22). Noticeably, co-infections of various subtype families were detected in Huanghuai goats, including XXIIIa + XXIIIg (1), XXIIIb + XXIIII (1), XXIIIh + XXIIIi (1), XXIIIh + XXIIIj (1), XXIIIh + XXIIIk (2), and XXIIIi + XXIIII (1) (Table 1).

3.5. Distribution of C. xiaoi Subtype Families by Farm

One to 10 subtype families were found on each farm. As shown in Table 1, three farms had only one subtype family, two farms had two, two farms had four, one farm had six, one farm had seven, and two farms had 10. On Farms 9, 10, and 11 in Guangdong, all *gp60* sequences obtained belonged to the subtype family XXIIIa. In contrast, although only eight samples were subtyped on Farm 4 in Qinghai, they belonged to four subtype families (XXIIId, XXIIIe, XXIIIh, and XXIIIi). In addition, co-infections of different subtype families were observed in animals on Farms 1, 3, 5, 6, and 7, mostly with prevalent subtype families on the farm (Table 1).

4. Discussion

In the present study, we conducted whole genome sequencing of *C. xiaoi* and identified its *gp60* gene. Based on the sequence data, we established a *gp60*-based subtyping tool to assess the genetic diversity of *C. xiaoi*. The application of this subtyping tool in the analysis of *C. xiaoi*-positive samples from various breeds of sheep and goats has identified high genetic diversity within the species and possible differences in the distribution of subtypes between the two types of hosts.

The *gp60* gene sequence of *C. xiaoi* is highly divergent from that of other *Cryptosporidium* spp. Similar to the *gp60* gene of *C. ryanae* (~1548 bp), the *C. xiaoi gp60* gene (~1437 bp) is much longer than those in *C. parvum*, *C. hominis*, and *C. ubiquitum* (~873–1035 bp). Both the nucleotide and amino acid sequences of the *C. xiaoi gp60* gene showed low identity to those of other *Cryptosporidium* spp. This may explain the inability of the commonly used *gp60* primers to amplify DNA of *C. xiaoi* [23]. Similar to *C. ubiquitum*, *C. canis*, *C. felis*, and *C. ryanae*, the trinucleotide repeats of TCA/TCG/TCT encoding a polyserine tract at the 5' end of the *gp60* gene and widely used to differentiate subtypes within subtype families, were absent in the *gp60* sequence of *C. xiaoi* [12,13,17,24]. However, a polyserine tract encoded by AGC/AGT repeats was observed in the *gp60* gene of the subtype family XXIIII, and subtypes within XXIIII differed mostly in the number of AGC/AGT repeats. Similar to most *Cryptosporidium* spp., the GP60 protein of *C. xiaoi* has a classic furin cleavage site "RSRR" between GP40 and GP15, which is absent in *C. ubiquitum*, *C. viatorum*, *Cryptosporidium* chipmunk genotype I and skunk genotype [9,11,12,14].

Based on the sequence analysis, the *gp60* gene of *C. xiaoi* displays an extremely high genetic diversity. The analysis of 298 sequences obtained led to the identification of 94 sequence types in 12 subtype families, including significant length polymorphism and sequence variability. The high sequence heterogeneity in this gene, nevertheless, has made PCR amplification difficult, which together with the large amplicon could

be responsible for the poor amplification efficiency. In addition, some samples (13/355) produced double bands in *gp60* PCR, indicating the presence of concurrent infection with different subtypes in sheep and goats. This may facilitate the occurrence of genetic recombination among *C. xiaoi* subtypes, illustrated by the identification of mosaic sequence patterns and 71 potential recombination events in the overall sequence data. Thus, genetic recombination might be responsible for high sequence heterogeneity in the *gp60* gene of *C. xiaoi*. Genetic recombination at the *gp60* locus was observed in *C. parvum*, *C. hominis*, *C. ubiquitum*, and *C. ryanae* [2,12,17].

The *gp60* subtyping results suggest the presence of host adaptation within *C. xiaoi*. Among the 12 subtype families, XXIIIa, XXIIIc, XXIIIg, and XXIIIj were observed only in goats thus far. For the two breeds of goats, Huanghuai goats in Anhui harboured all subtype families of XXIIIa–XXIIII. In contrast, all 35 samples from Black goats in Guangdong belonged to XXIIIa. The latter could be due to the reduced genetic diversity of *C. xiaoi* in the province. Previously, host-adapted *gp60* subtype families had been identified in other *Cryptosporidium* spp., such as *C. parvum*, *C. hominis*, *C. felis*, *C. ubiquitum*, *C. tyzzeri*, and *C. ryanae* [2,12,17,25–27].

No obvious correlation was found between the distribution of *C. xiaoi* subtype families and geographic locations in this study. Even though all *C. xiaoi* isolates from three farms in Guangdong belonged to XXIIIa, this subtype family was found in goats on two farms in Anhui. Subtyping data of *C. xiaoi* from more geographic locations and diverse animals are needed for better understanding of the distribution of *C. xiaoi* subtypes. Previously, geographical differences had been reported in the subtype distribution of *C. hominis, C. parvum, C. felis, C. ubiquitum, C. ryanae,* and *Cryptosporidium* chipmunk genotype I, indicating possible differences in the transmission of these pathogens [9,12,17,25,27,28].

5. Conclusions

In the present study, we conducted whole-genome sequencing of *C. xiaoi* and developed a subtyping tool based on the *gp60* gene. The application of this new tool in the analysis of fecal samples from sheep and goats has revealed a high genetic diversity within the species, and likely identified the occurrence of host adaptation at the subtype family level. Further studies with extensive sampling of various hosts in diverse areas are needed to improve our understanding of the transmission characteristics of *C. xiaoi*.

Author Contributions: L.X. and N.L. conceived and designed the experiments; Y.F. (Yingying Fan), X.H. and S.G. performed the experiments; F.Y. X.Y., Y.G. and Y.F. (Yaoyu Feng) provided technical assistance; Y.F. (Yingying Fan), L.X. and N.L. analyzed the data; Y.F. (Yingying Fan), L.X. and N.L. wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China (U1901208 and 32030109), 111 Project (D20008), and Innovation Team Project of Guangdong University (2019KCXTD001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Kotloff, K.L. The burden and etiology of diarrheal illness in developing countries. *Pediatr. Clin. N. Am.* 2017, *64*, 799–814. [CrossRef]
- Feng, Y.; Ryan, U.M.; Xiao, L. Genetic diversity and population structure of *Cryptosporidium*. *Trends Parasitol.* 2018, 34, 997–1011. [CrossRef]
- 3. Feng, Y.; Xiao, L. Molecular epidemiology of cryptosporidiosis in China. *Front. Microbiol.* **2017**, *8*, 1701. [CrossRef] [PubMed]
- Fayer, R.; Santin, M. Cryptosporidium xiaoi n. sp. (Apicomplexa: Cryptosporidiidae) in sheep (Ovis aries). Vet. Parasitol. 2009, 164, 192–200. [CrossRef] [PubMed]
- Kaupke, A.; Michalski, M.M.; Rzezutka, A. Diversity of *Cryptosporidium* species occurring in sheep and goat breeds reared in Poland. *Parasitol. Res.* 2017, *116*, 871–879. [CrossRef] [PubMed]

- Yang, R.; Jacobson, C.; Gardner, G.; Carmichael, I.; Campbell, A.J.; Ng-Hublin, J.; Ryan, U. Longitudinal prevalence, oocyst shedding and molecular characterisation of *Cryptosporidium* species in sheep across four states in Australia. *Vet. Parasitol.* 2014, 200, 50–58. [CrossRef]
- Parsons, M.B.; Travis, D.; Lonsdorf, E.V.; Lipende, I.; Roellig, D.M.; Kamenya, S.; Zhang, H.; Xiao, L.; Gillespie, T.R. Epidemiology and molecular characterization of *Cryptosporidium* spp. in humans, wild primates, and domesticated animals in the Greater Gombe Ecosystem, Tanzania. *PLoS Negl. Trop. Dis.* 2015, *9*, e0003529. [CrossRef] [PubMed]
- 8. Mi, R.; Wang, X.; Huang, Y.; Zhou, P.; Liu, Y.; Chen, Y.; Chen, J.; Zhu, W.; Chen, Z. Prevalence and molecular characterization of *Cryptosporidium* in goats across four provincial level areas in China. *PLoS ONE* **2014**, *9*, e111164. [CrossRef]
- 9. Guo, Y.; Cebelinski, E.; Matusevich, C.; Alderisio, K.A.; Lebbad, M.; McEvoy, J.; Roellig, D.M.; Yang, C.; Feng, Y.; Xiao, L. Subtyping novel zoonotic pathogen *Cryptosporidium* chipmunk genotype I. *J. Clin. Microbiol.* **2015**, *53*, 1648–1654. [CrossRef]
- Stensvold, C.R.; Beser, J.; Axen, C.; Lebbad, M. High applicability of a novel method for gp60-based subtyping of *Cryptosporidium* meleagridis. J. Clin. Microbiol. 2014, 52, 2311–2319. [CrossRef]
- 11. Yan, W.; Alderisio, K.; Roellig, D.M.; Elwin, K.; Chalmers, R.M.; Yang, F.; Wang, Y.; Feng, Y.; Xiao, L. Subtype analysis of zoonotic pathogen *Cryptosporidium* skunk genotype. *Infect. Genet. Evol.* **2017**, *55*, 20–25. [CrossRef] [PubMed]
- 12. Li, N.; Xiao, L.; Alderisio, K.; Elwin, K.; Cebelinski, E.; Chalmers, R.; Santin, M.; Fayer, R.; Kvac, M.; Ryan, U.; et al. Subtyping *Cryptosporidium ubiquitum*, a zoonotic pathogen emerging in humans. *Emerg. Infect. Dis.* **2014**, *20*, 217–224. [CrossRef]
- Rojas-Lopez, L.; Elwin, K.; Chalmers, R.M.; Enemark, H.L.; Beser, J.; Troell, K. Development of a gp60-subtyping method for Cryptosporidium felis. Parasites Vectors 2020, 13, 39. [CrossRef] [PubMed]
- 14. Stensvold, C.R.; Elwin, K.; Winiecka-Krusnell, J.; Chalmers, R.M.; Xiao, L.; Lebbad, M. Development and application of a *gp60*-based typing assay for *Cryptosporidium viatorum*. J. Clin. Microbiol. **2015**, *53*, 1891–1897. [CrossRef] [PubMed]
- 15. Rahmouni, I.; Essid, R.; Aoun, K.; Bouratbine, A. Glycoprotein 60 diversity in *Cryptosporidium parvum* causing human and cattle cryptosporidiosis in the rural region of Northern Tunisia. *Am. J. Trop. Med. Hyg.* **2014**, *90*, 346–350. [CrossRef] [PubMed]
- 16. Power, M.L.; Cheung-Kwok-Sang, C.; Slade, M.; Williamson, S. *Cryptosporidium fayeri*: Diversity within the gp60 locus of isolates from different marsupial hosts. *Exp. Parasitol.* **2009**, *121*, 219–223. [CrossRef]
- 17. Yang, X.; Huang, N.; Jiang, W.; Wang, X.; Li, N.; Guo, Y.; Kváč, M.; Feng, Y.; Xiao, L. Subtyping *Cryptosporidium ryanae*: A common pathogen in bovine animals. *Microorganisms* **2020**, *8*, 1107. [CrossRef] [PubMed]
- Adamu, H.; Petros, B.; Zhang, G.; Kassa, H.; Amer, S.; Ye, J.; Feng, Y.; Xiao, L. Distribution and clinical manifestations of *Cryptosporidium* species and subtypes in HIV/AIDS patients in Ethiopia. *PLoS Negl. Trop. Dis.* 2014, *8*, e2831. [CrossRef]
- 19. Li, P.; Cai, J.; Cai, M.; Wu, W.; Li, C.; Lei, M.; Xu, H.; Feng, L.; Ma, J.; Feng, Y.; et al. Distribution of *Cryptosporidium* species in Tibetan sheep and yaks in Qinghai, China. *Vet. Parasitol.* **2016**, *215*, 58–62. [CrossRef]
- Xiao, L.; Escalante, L.; Yang, C.; Sulaiman, I.; Escalante, A.A.; Montali, R.J.; Fayer, R.; Lal, A.A. Phylogenetic analysis of *Cryptosporidium* parasites based on the small-subunit rRNA gene locus. *Appl. Environ. Microbiol.* 1999, 65, 1578–1583. [CrossRef]
- Guo, Y.; Li, N.; Lysen, C.; Frace, M.; Tang, K.; Sammons, S.; Roellig, D.M.; Feng, Y.; Xiao, L. Isolation and enrichment of *Cryp-tosporidium* DNA and verification of DNA purity for whole genome sequencing. *J. Clin. Microbiol.* 2015, 53, 641–647. [CrossRef]
- 22. Xiao, L.; Feng, Y. Molecular epidemiologic tools for waterborne pathogens *Cryptosporidium* spp. and *Giardia duodenalis*. *Food Waterborne Parasitol*. **2017**, 8–9, 14–32. [CrossRef] [PubMed]
- 23. Feng, Y.; Lal, A.A.; Li, N.; Xiao, L. Subtypes of *Cryptosporidium* spp. in mice and other small mammals. *Exp. Parasitol.* **2011**, 127, 238–242. [CrossRef]
- 24. Jiang, W.; Roellig, D.M.; Guo, Y.; Li, N.; Feng, Y.; Xiao, L. Development of a subtyping tool for zoonotic pathogen *Cryptosporidium canis. J. Clin. Microbiol.* **2020**, *59*, e02474-20. [CrossRef]
- 25. Xiao, L. Molecular epidemiology of cryptosporidiosis: An update. Exp. Parasitol. 2010, 124, 80–89. [CrossRef] [PubMed]
- Kváč, M.; McEvoy, J.; Loudová, M.; Stenger, B.; Sak, B.; Květoňová, D.; Ditrich, O.; Rašková, V.; Moriarty, E.; Rost, M.; et al. Coevolution of *Cryptosporidium tyzzeri* and the house mouse (*Mus musculus*). *Int. J. Parasitol.* 2013, 43, 805–817. [CrossRef] [PubMed]
- Jiang, W.; Roellig, D.M.; Lebbad, M.; Beser, J.; Troell, K.; Guo, Y.Q.; Li, N.; Xiao, L.H.; Feng, Y.Y. Subtype distribution of zoonotic pathogen *Cryptosporidium felis* in humans and animals in several countries. *Emerg. Microbes Infect.* 2020, *9*, 2446–2454. [CrossRef] [PubMed]
- Caccio, S.M.; de Waele, V.; Widmer, G. Geographical segregation of *Cryptosporidium parvum* multilocus genotypes in Europe. *Infect. Genet. Evol.* 2015, 31, 245–249. [CrossRef]