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Abstract

Chronic pain is a debilitating problem, and insights in the neurobiology of chronic pain are

needed for the development of novel pain therapies. A genome-wide association study

implicated the 5p15.2 region in chronic widespread pain. This region includes the coding

region for FAM173B, a functionally uncharacterized protein. We demonstrate here that

FAM173B is a mitochondrial lysine methyltransferase that promotes chronic pain. Knock-

down and sensory neuron overexpression strategies showed that FAM173B is involved in

persistent inflammatory and neuropathic pain via a pathway dependent on its methyltrans-

ferase activity. FAM173B methyltransferase activity in sensory neurons hyperpolarized

mitochondria and promoted macrophage/microglia activation through a reactive oxygen

species–dependent pathway. In summary, we uncover a role for methyltransferase activity

of FAM173B in the neurobiology of pain. These results also highlight FAM173B methyltrans-

ferase activity as a potential therapeutic target to treat debilitating chronic pain conditions.

Author summary

Pain is an evolutionarily conserved physiological phenomenon necessary for survival. Yet,

pain can become pathological when it occurs independently of noxious stimuli. The

molecular mechanisms of pathological pain are still poorly understood, limiting the devel-

opment of highly needed novel analgesics. Recently, genetic variations in the genomic

region encoding FAM173B—a functionally uncharacterized protein—have been linked to

chronic pain in humans. In this study, we identify the role and function of FAM173B in

the development of pathological pain. We used genetic, biochemical, and behavioral
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approaches in mice to show that FAM173B is a mitochondrial lysine methyltransferase—a

protein that transfers methyl group to donor proteins. By genetically silencing or overex-

pressing FAM173B in sensory neurons, we showed that FAM173B methyltransferase

activity promotes the development of chronic pain. In addition, we discovered that

FAM173B methyltransferase activity in the mitochondria of sensory neurons promotes

chronic pain via a pathway that depends on the production of reactive oxygen species and

on the engagement of spinal cord microglia—engulfing cells of the central nervous sys-

tem. These data point to an essential role of FAM173B in the regulation of pathological

pain.

Introduction

Chronic pain is a major clinical problem and affects approximately 20% of the population [1–

3]. Inflammation, tissue, and nerve damage induce long-lasting changes in the nociceptive cir-

cuitry, causing pain and exaggerated responses to noxious and innocuous stimuli [4, 5].

Although many efforts have been undertaken to elucidate the molecular pathways driving

chronic pain, a complete understanding of the mechanisms leading to chronic pain is missing,

hampering the development of highly needed therapeutic approaches to treat debilitating pain

conditions.

At the mechanistic level, the activation of spinal cord glial cells is thought to drive persistent

pain. In various rodent models of chronic pain, including neuropathic and persistent inflam-

matory pain, spinal cord microglia have an activated phenotype and produce inflammatory

mediators that trigger or maintain the long-lasting changes in nociceptive circuitry, thereby

contributing to persistent pain [6–10]. Many efforts have been undertaken to elucidate how

peripheral sensory neurons drive the engagement of these glial cells in chronic pain condi-

tions. Sensory neurons engage spinal glial cells through the release of soluble factors [6, 11,

12]. However, the intracellular pathways in sensory neurons upstream of the release of glia-

activating factors are still unknown.

Another driving force of pathological pain is the formation of reactive oxygen species

(ROS) [13]. ROS are derived from electrons leaking from the mitochondrial electron transport

chain and can initiate proinflammatory cascades and activate microglia in the central nervous

system [14]. Importantly, increased ROS levels in the dorsal root ganglia (DRG) and/or spinal

cord contribute to chronic pain development in several rodent models [13, 15–18], and altered

ROS levels are associated with chronic pain development in humans [19–21].

Further understanding of the mechanism that drives pathological pain is needed. The iden-

tification of novel “pain genes” that lie at the root of the transition from acute to persistent

pain, possibly through glial cell engagement and ROS formation, aids in this understanding

and could identify highly needed novel targets for therapeutic pain interventions. Several

genome-wide association studies (GWAS) in humans have offered a glimpse of the genetic

contributions to pain syndromes. Nevertheless, very few have pinpointed new pain genes that

provided novel insights in pain neurobiology. Recently, specific single nucleotide polymor-

phisms (SNPs) have been identified in patients with chronic widespread pain in a large-scale

GWAS [22]. Two top intronic SNPs on chromosome 5p15.2 were shown to be associated with

a 30% higher risk of developing chronic widespread pain. This genomic region encodes Cha-

peronin Containing TCP1 Subunit 5 (CCT5) and the hitherto functionally uncharacterized

FAM173B protein, indicating potential novel pain genes. The 2 top SNPs found in the GWAS

are linked to a nonsynonymous SNP (rs2438652) in the FAM173B gene and to 1 intronic SNP
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in FAM173B (rs2445871) that has a predicted effect on FAM173B expression levels [22, 23].

However, the molecular function of FAM173B and its potential role in the neurobiology of

chronic pain have not been revealed. Here, we identify FAM173B as a lysine-specific protein

methyltransferase that resides in the mitochondrial cristae and show that neuronal FAM173B

methyltransferase activity controls the development of chronic pain through an ROS-depen-

dent pathway resulting in the activation of glial cells.

Results

FAM173B promotes chronic pain development in vivo

To determine whether FAM173B is involved in chronic pain, we down-regulated Fam173b

expression in vivo by lumbar intrathecal injections of a nuclease-resistant antisense oligodeox-

ynucleotide (ODN), a method that has been shown to reduce mRNA expression and protein

translation [24]. We injected mouse Fam173b antisense ODN (mFam173b-AS) intrathecal

into the lumbar enlargement because, through this application route, antisense ODNs mainly

target the lumbar DRGs [25–28]. Five daily intrathecal injections of mFam173b-AS reduced

mFam173b mRNA expression in vivo in lumbar DRG in the complete Freund’s adjuvant

(CFA) model of persistent inflammatory pain [29] and in vehicle-treated mice (S1B Fig), with-

out affecting spinal cord mFam173b mRNA expression (Fig 1A). Intrathecal injection of a fluo-

rescently labeled mFam173b-AS targeted almost all sensory neurons and some other cells,

including ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein

(GFAP)-positive cells in the DRG (S1A Fig). Intrathecal administration of mFam173b-AS at

day 5 until 10 in the CFA model of persistent inflammatory pain abrogated thermal and

mechanical hyperalgesia (Fig 1B/1C). These results were confirmed by using another

mFam173b-AS targeted to a different region of mFam173b mRNA (S1B–S1D Fig), indicating

the ODN-induced effects are likely not due to off-target effects. Intrathecal injections of

mFam173b-AS from day 1 until 9 also attenuated the development of neuropathic pain in the

spared nerve injury model [30]. Mechanical thresholds in the contralateral paw were not

affected by mFam173b-AS treatment (Fig 1D).

To test if FAM173B in sensory neurons is central to the inhibitory effect of intrathecal

mFam173b-AS on chronic inflammatory pain, we performed a rescue experiment. We

expressed human FAM173B (hFAM173B) in sensory neurons in vivo using herpes simplex

virus (HSV)-mediated gene transfer in mice treated intrathecally with mFam173b-AS that does

not recognize human FAM173B mRNA. HSV selectively infects primary sensory neurons, and

intraplantar or intrathecal HSV amplicons encoding for hFAM173B and green fluorescent

protein (GFP) transferred GFP (S1E Fig) and hFAM173B into sensory neurons in the DRG

(Fig 2A and S1F Fig) but not to other cells in the DRG such as F4/80-positive macrophages

(S1F Fig).

Intraplantar HSV-hFAM173B injections induced protein expression of hFAM173B

detected by western blot in the lumbar DRG (S1G Fig). Furthermore, GFP was detected in per-

ipherin-positive sciatic nerve fibers and peripherin-positive nerve endings in the skin of the

injected hind paw, indicating gene transfer to sensory neurons (S1H/S1I Fig). This sensory

neuron selective expression of proteins using HSV is consistent with previous literature [27,

31, 32]. Intraplantar (to target sensory neurons innervating the hind paw) (Fig 2B/2C) or intra-

thecal (S1J/S1K Fig) administration of HSV-hFAM173B completely prevented the mFam173b-
AS–mediated attenuation of persistent thermal and mechanical hypersensitivity in the CFA

model, indicating that sensory neuron FAM173B is required for persistent inflammatory pain.

Next, we tested whether increasing sensory neuron hFAM173B is sufficient to promote the

transition of transient inflammatory pain into persistent pain. Intraplantar injection of 5 μl of

FAM173B a novel identified regulator of chronic pain
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Fig 1. FAM173B knockdown abrogated persistent inflammatory and neuropathic pain. (A) Intrathecal mFam173b antisense ODN (mFam173b-AS)

injection at day 5, 6, 7, 9, and 10 after intraplantar injection of CFA reduces mFam173b mRNA expression (corrected for housekeeping genes GAPDH
and HPRT) in the DRG 24 hours after the last mFam173b-AS injection (n = 8 mice). (B–D) Time course of (B) thermal and (C, D) mechanical

hyperalgesia following (B, C) intraplantar injection of CFA (n = 8 mice), veh (n = 4 mice), or (D) after SNI (n = 4 mice). Mice received intrathecal

injections of mFam173b-AS or MM-ODN at days 5, 6, 7, 9, and 10 during inflammatory pain or day 1–9 after SNI. Data are represented as mean ± SEM.
� = P< 0.05; �� = P< 0.01; ��� = P< 0.001. Statistical analyses were performed by unpaired two-tailed t tests (A) or by two-way repeated measures

ANOVA followed by a post-hoc Holm-Sidak multiple comparison test (B–D). Underlying data can be found in S1 Data. CFA, complete Freund’s

adjuvant; contra, contralateral; DRG, dorsal root ganglia; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HPRT, Hypoxanthine

Phosphoribosyltransferase 1; ipsi, ipsilateral; MM-ODN, mismatch ODN; ODN, oligodeoxynucleotide; SEM, standard error of the mean; SNI, spared

nerve injury; veh, vehicle.

https://doi.org/10.1371/journal.pbio.2003452.g001
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Fig 2. Sensory neuron FAM173B promotes chronic pain. (A) Intraplantar injections with HSV amplicons (day 1 and

3) encoding either for hFAM173B-GFP or GFP alone (HSV-EV) induced hFAM173B expression selectively in sensory

neurons at day 4. Left panel depicts rabbit IgG control. Nuclei are visualized with DAPI (blue). Scale bar is 50 μm. For

larger magnification of FAM173B staining of the DRG after HSV-hFAM173b, see S1 Fig. (B, C) Intraplantar HSV-

hFAM173B injection at day 5 and 7 rescued mFam173b-AS–mediated attenuation of (B) thermal and (C) mechanical

hypersensitivity in the CFA model of persistent inflammatory pain. Mice received intrathecal ODN at day 5, 6, 7, 9,

FAM173B a novel identified regulator of chronic pain
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1% carrageenan induced transient hyperalgesia [27, 33] that resolved within 4 to 6 days (Fig

2D/2E). Intraplantar (Fig 2D/2E) or intrathecal (S1L/S1M Fig) administration of HSV-

hFAM173B prior to the induction of transient inflammatory pain markedly prolonged carra-

geenan-evoked thermal and mechanical hyperalgesia as compared to mice treated with control

HSV empty vector (HSV-EV). A single carrageenan injection in one paw induces a reduction

in weight bearing of the affected paw that normalizes within 9 days. However, in mice overex-

pressing hFAM173B in sensory neurons, the reduction in weight bearing remained for at least

19 days after carrageenan (Fig 2F). Moreover, sensory FAM173B expression induced sponta-

neous pain, measured using a conditioned place preference (CPP) test [34, 35], that was pres-

ent 1 month after intraplantar carrageenan injection (Fig 2G). Overall, these results indicate

that FAM173B in sensory neurons promotes development of chronic pain. Next, we tested

whether endogenous mFam173b mRNA expression levels are increased in the DRG during the

persistent phase of CFA-induced inflammatory pain. At 1 week after intraplantar CFA injec-

tion, mFam173b mRNA expression in the DRG was increased compared to naive animals. In

contrast, during acute inflammation at day 1 and 3 after CFA injections, mFam173b expression

levels were indistinguishable from controls (S1N Fig), consistent with our previous findings

[22].

Characterization of FAM173B as a mitochondrial lysine-specific

methyltransferase

Bioinformatic analysis of FAM173B protein sequences show that FAM173B harbors character-

istic motifs involved in binding of the methyl donor S-adenosyl-L-methionine (SAM). More-

over, it shows similarities for a subclass of methyltransferases characterized by a topology of 7

β-strands (7BS) (Fig 3A/3B) [36]. Human and mouse FAM173B are ubiquitously expressed

(S2A/S2B Fig). An archaeal lysine-specific methyltransferase shows some homology with

human FAM173B [37], therefore we explored whether hFAM173B specifically methylated

lysine residues. To this end, we incubated a radioactive methyl donor, [3H]-SAM, with protein

extracts of human embryonic kidney 293 cells (HEK293) together with purified recombinant

hFAM173BΔ55 (without its putative transmembrane domain) and detected methyltransferase

activity by fluorography. These experiments revealed hFAM173B-mediated methylation of

high–molecular weight proteins (Fig 3C). To assess specificity of the enzyme, we evaluated

homopolymers of lysine and arginine, the 2 most commonly methylated amino acid residues

in proteins, as artificial substrates. When incubating recombinant hFAM173BΔ55 (Fig 3D) or

full-length hFAM173B (S2C Fig) with [3H]-SAM and lysine or arginine homopolymers,

hFAM173B displayed significant methyltransferase activity on poly-L-lysine but not on poly-

L-arginine (Fig 3D). Importantly, a putatively enzymatically inactive mutant of hFAM173B

(hFAM173B-D94A), generated by mutating a key conserved residue (Asp94) in the SAM-

and 10 after CFA (mFam173b-AS n = 8; MM-ODN n = 4 mice). (D, E) Intraplantar HSV-hFAM173B injections at 3

and 1 day prior to intraplantar carrageenan injection prolonged transient inflammatory (D) thermal and (E)

mechanical hypersensitivity (carrageenan: n = 10, vehicle: n = 6 mice). (F) Intraplantar HSV-hFAM173B injections at 3

and 1 day prior to a unilateral intraplantar carrageenan injection reduced weight bearing of the affected paw that

persisted at least until day 19 in HSV-FAM173B–injected but not HSV-EV–injected mice (n = 6 mice). (G) Ongoing

spontaneous pain measured with gabapentin-induced place preference in HSV-hFAM173B– but not HSV-EV–treated

mice 1 month after intraplantar carrageenan injection (n = 6 mice). Data are represented as mean ± SEM. � = P< 0.05;
�� = P< 0.01; ��� = P< 0.001. Statistical analyses were performed by unpaired two-tailed t tests (G) or by two-way

repeated measures ANOVA followed by a post-hoc Holm-Sidak multiple comparison test (B–F). Underlying data can

be found in S1 Data. CFA, complete Freund’s adjuvant; DAPI, 40,6-diamidino-2-phenylindole; DRG, dorsal root

ganglia; GFP, green fluorescent protein; HSV, herpes simplex virus; HSV-EV, HSV empty vector; IgG,

immunoglobulin G; MM-ODN, mismatch ODN; ODN, oligodeoxynucleotide; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.2003452.g002
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Fig 3. FAM173B is a lysine-specific methyltransferase. (A) Topology diagram of archetypical 7BS methyltransferase with alpha-helices (boxes) and β-

strands (arrows). (B) Protein sequence alignment of FAM173A/B from Homo sapiens (h), Mus musculus (m), and the aKMT homolog of FAM173B

(FAM173hom) from Sulfolobus islandicus (Si). Predicted secondary structure of mFam173b above alignment, coded as in A. Red bars indicate predicted

N- and C-terminus of mFam173b. Motif I and Post I (boxed) are involved in binding of SAM. Asp94 (�) was mutated to generate an enzymatically

inactive protein. The first residue (Thr56) in recombinant truncated hFAM173B (FAM173BΔ55) is also indicated (vertical arrow). (C) Fluorography of

HEK293-extracts incubated with [3H]-SAM and recombinant hFAM173BΔ55. (D, E) WT FAM173BΔ55 (D, E) but not FAM173BΔ55-D94A (E)

methylated lysine-homopolymers (n = 3 MTase reactions). Data are represented as mean ± SEM. � = P< 0.05; �� = P< 0.01. Statistical analyses were

performed by one-way ANOVA followed by a post-hoc Holm-Sidak multiple comparison test (D) or by an unpaired two-tailed t test (E). Underlying

data can be found in S1 Data. 7BS, 7 β-strands; HEK293, human embryonic kidney 293 cells; MTase, methyltransferase; SAM, S-adenosyl-L-

methionine; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2003452.g003
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binding Motif I of hFAM173B (Fig 3B) [38], did not show significant methyltransferase activ-

ity (Fig 3E). The D94A mutation did not affect expression (S2D Fig).

To determine the subcellular localization of FAM173B, we expressed C-terminally GFP-

tagged hFAM173B and mFam173b in Neuro2a (N2A), a neuronal cell line. Confocal imaging

of GFP-tagged hFAM173B indicated that FAM173B colocalized with the mitochondrial dye

MitoTrackerRedCMXROS but not with the endoplasmic reticulum marker protein disulfide-

isomerase (PDI) or the Golgi scaffolding protein PGM130 (Fig 4A). The subcellular localiza-

tion of mouse Fam173b-GFP and the methyltransferase-inactive mutant hFAM173B-D94A

were also confined to mitochondria because they also colocalized with MitoTrackerRedCMX-

ROS (S2E Fig). The localization of FAM173B and the methyltransferase death mutant

Fig 4. FAM173B is localized in mitochondria. (A) hFAM173B-GFP (green) colocalized with the mitochondrial dye MitoTrackerRedCMXROS but

not with endoplasmic reticulum (PDI) or Golgi (PGM130) (all red). Scale bar 10 μm. (B) Electron microscopy of GFP-tagged, hFAM173B-expressing

HEK293. Dotted line: boundary between nontransfected (left) and transfected cell (right). Scale bar 500 nm. (C) Cultured primary sensory neurons

were stained for endogenous mFam173b and the mitochondrial marker COXIV. Right panel is the colocalization profile at the white line shown in

panel 3 of the double immunostaining for mFam173b and COXIV. Scale bar 10 μm. COXIV, cytochrome c oxidase IV; HEK293, human embryonic

kidney 293 cells; M, mitochondrion; N, nucleus; PDI, protein disulfide-isomerase.

https://doi.org/10.1371/journal.pbio.2003452.g004
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FAM173B-D94A in mitochondria was further confirmed by western blot analysis of mito-

chondrial and cytosol fractions of N2A cells (S2F/S2G Fig). Electron microscopy of immuno-

gold labeling of GFP-tagged hFAM173B showed that hFAM173B was predominantly present

in the cristae of mitochondria when expressed in HEK293 (Fig 4B) or N2A cells (S2H Fig).

Finally, endogenous mFam173b is located in mitochondria in cultured primary sensory neu-

rons (Fig 4C).

FAM173B and mitochondrial function

To determine whether FAM173B modulates mitochondrial function, we assessed mitochon-

drial membrane potential (ΔCm) [39]. Knockdown of mFam173b in N2A cells with

mFam173b-AS (S3A Fig) reduced accumulation of the ΔCm-sensitive dye MitoTracker-

RedCMXROS compared to cells treated with control mismatch ODN (MM-ODN) (Fig 5A

and S3B Fig), while overexpression of hFAM173B in N2A cells (S3D Fig) increased accumula-

tion of MitoTrackerRedCMXROS (Fig 5B and S3C Fig). These data indicate that FAM173B

promotes mitochondrial hyperpolarization. Similarly, overexpression of hFAM173B using

HSV-hFAM173B amplicons in cultured primary sensory neurons (S3E Fig) or in N2A cells

increased the difference in tetramethylrhodamine methyl ester (TMRM; a dye sequestered by

active mitochondria in a ΔCm-dependent manner [39]) fluorescence before and after the

administration of the respiratory uncoupler carbonyl cyanide p-trifluoromethoxyphenylhy-

drazone (FCCP) (sensory neurons: Fig 5C; N2A: S3F Fig). This indicates that hFAM173B

expression in sensory neurons hyperpolarizes mitochondria.

Mitochondrial hyperpolarization has been reported to cause increased ROS formation [40,

41]. Therefore, overexpression of hFAM173B may increase ROS formation in sensory neu-

rons. Human FAM173B overexpression in N2A and HEK293 cells increased fluorescence of

the ROS-sensitive dye dihydroethidium (DHE) [42], indicating that FAM173B promotes ROS

formation in these cells (S3G/S3H Fig). Similarly, overexpression of hFAM173B in primary

sensory neurons in vitro increased DHE fluorescence (Fig 5D). Stimulation of sensory neurons

with the prototypic inflammatory mediator tumor necrosis factor α (TNFα) for 6 hours,

known to promote ROS formation [43], enhanced DHE fluorescence, which was further

increased when hFAM173B was expressed in sensory neurons with HSV-FAM173B (Fig 5D).

Next, we addressed whether increased sensory neuron ROS formation also occurs during the

hFAM173B-mediated switch from transient to persistent inflammatory pain in vivo. Expres-

sion of hFAM173B in sensory neurons increased DHE fluorescence in small (<25 μm)-diame-

ter neurons that are central in inflammatory pain [44], but not in medium- and/or large-

diameter neurons (>25 μm), 5 days after intraplantar carrageenan injection (Fig 5E). Next, we

assessed whether FAM173B promotes mitochondrial superoxide production in vitro and in

vivo. Overexpression of hFAM173B significantly increased fluorescence of the mitochondrial

superoxide sensor MitoSox in N2A cells (S3I Fig). In vivo, HSV-mediated expression of

hFAM173B in sensory neurons increased MitoTrackerRedCM-H2XROS fluorescence in small

(<25 μm)-diameter neurons 3 and 6 days after intraplantar carrageenan injection (Fig 5F and

S3J/S3K Fig), indicating that hFAM173B expression in sensory neurons promotes ongoing

mitochondrial superoxide production in vivo. To assess whether the increased ROS produc-

tion in sensory neurons contributes to hFAM173B-mediated prolongation of inflammatory

pain, we administered the ROS scavenger phenyl-N-t-butylnitrone (PBN) during hFAM173B-

induced persistent inflammatory hyperalgesia. PBN administration at day 5 after intraplantar

carrageenan completely reversed the persistent carrageen-induced mechanical hyperalgesia

(Fig 5G) in mice expressing hFAM173B in sensory neurons. PBN administration did not affect

mechanical thresholds in mice treated with control HSV (Fig 5G). These data indicate that
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Fig 5. FAM173B and mitochondrial function. MitoTrackerRedCMXROS fluorescence, as a measure of mitochondrial

potential, 48 hours after (A) mFam173b knockdown (MM-ODN n = 14; mFAM173b-AS n = 16 wells) or (B) hFAM173B

overexpression (n = 7 wells) in N2A cells. (C) ΔTMRM fluorescence in HSV-mediated hFAM173B expression in cultured

primary sensory neurons increased (n = 100–145 cells, 7 cultures). (D) HSV-mediated hFAM173B expression in cultured

primary sensory neurons increased ROS production (DHE) after vehicle or 6 hours stimulation with 100 ng/ml TNFα
(n = 90–130 cells, 9 cultures). (E–F) In vivo expression of hFAM173B in sensory neurons with HSV-hFAM173B prior to
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sensory neuron FAM173B-mediated prolongation of inflammation-induced hypersensitivity

is maintained through an ROS-dependent pathway.

FAM173B-induced microglia activation

Microglia/macrophage activation and the production of proinflammatory mediators in the

spinal cord/DRG play a key role during persistent pain, including persistent inflammatory

pain [7, 10, 12, 45, 46]. ROS formation can initiate proinflammatory cascades and activate

microglia in the central nervous system [14]. As a next step, we evaluated whether FAM173B

expression in primary sensory neurons promotes the ability of sensory neurons to activate

glial cells in vitro in an ROS-dependent manner. Primary sensory neuron cultures were

stimulated with 100 ng/ml TNFα [47] for 6 hours with or without the ROS scavenger PBN.

After the 6 hours, cells were washed extensively to remove TNFα and then further cultured

overnight for 15 hours to capture sensory neuron–derived factors that could drive glial cell

activation. The supernatants of unstimulated sensory neurons with or without overexpressing

hFAM173B did not trigger microglia to release detectable levels of interleukin 6 (IL6) and

TNFα (Fig 6A). However, incubation of primary spinal microglia with the supernatant of

these TNFα-stimulated sensory neurons for 24 h promoted microglia to release IL6, which

was strongly enhanced by overexpression of hFAM173B in sensory neurons and completely

abolished by incubating sensory neurons with the ROS scavenger PBN during TNFα stimula-

tion (Fig 6A). Overexpression of hFAM173B in sensory neurons also increased TNFα release

by microglia (S4A Fig). IL6 and TNFα were not detectable in the conditioned medium or in

supernatants of unstimulated microglia, indicating that IL6 and TNFα were released by micro-

glia and not already present in sensory neuron cultures. These in vitro data indicate that

hFAM173B expression in TNFα-stimulated sensory neurons promotes the release of glial cell–

activating factors in an ROS-dependent manner. To test whether in vivo sensory neuron

FAM173B promotes the engagement of microglia and subsequent TNFα release to drive ongo-

ing inflammatory pain, we inhibited TNFα signaling and microglia activity in the spinal cord

and DRG by intrathecal injection of a neutralizing anti-TNFα antibody and glial cell inhibitor

minocycline, respectively. Intrathecal injection of the neutralizing anti-TNFα antibody at day

7 after intraplantar carrageenan inhibited the sensory neuron–specific, hFAM173B-mediated

persistent inflammatory pain (Fig 6B and S4B Fig). Intrathecal injection of minocycline at day

7 after intraplantar carrageenan completely inhibited hFAM173B-induced persistent inflam-

matory hyperalgesia (Fig 6C and S4C Fig). To further validate the contribution of microglia to

FAM173B-mediated prolongation of inflammatory pain, we investigated whether in vivo over-

expression of hFAM173B engages glial cells after induction of inflammatory pain. Expression

of hFAM173B specifically in sensory neurons increased the Iba1-positive immunofluorescence

in DRG and spinal cord at 5 and 10 days after carrageenan treatment compared to mice treated

with empty HSV amplicons (Fig 6D–6F, S4D Fig). This neuronal, FAM173B-mediated spinal

microglia activation in vivo was attenuated after scavenging ROS with PBN (S4E Fig).

intraplantar carrageenan increased (E) DHE fluorescence intensity at day 5 (n = 7 mice) and (F) MitoTrackerRedCMH2-

XROS fluorescence intensity at day 3 (n = 9 mice) and day 6 (EV n = 4, hFAM173B n = 6 mice) in small-diameter

neurons. (G) Intraperitoneal injection of the ROS scavenger PBN attenuated the hFAM173B-mediated prolongation of

carrageenan-induced mechanical hypersensitivity (n = 5 mice; HSV-FAM173B + PBN n = 6 mice). Data are represented

as mean ± SEM. � = P< 0.05; �� = P< 0.01. Statistical analyses were performed by unpaired two-tailed t tests (A-C, E/F),

by one-way (D) or two-way (G) repeated measures ANOVA followed by a post-hoc Holm-Sidak multiple comparison

test. For exemplar pictures of A, B, and F, see S3 Fig. Blue bars indicate mFam173b knockdown and red bars/lines

hFAM173B overexpression. Underlying data can be found in S1 Data. DHE, dihydroethidium; EV, empty vector; HSV,

herpes simplex virus; MM-ODN, mismatch ODN; N2A, Neuro2a; ODN, oligodeoxynucleotide; PBN, phenyl-N-t-
butylnitrone; ROS, reactive oxygen species; SEM, standard error of the mean; TNFα, tumor necrosis factor alpha.

https://doi.org/10.1371/journal.pbio.2003452.g005
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Fig 6. FAM173B-induced microglia activation. (A) IL6 release by spinal microglia after stimulation for 24 hours with supernatants of hFAM173B-

expressing sensory neurons that were previously stimulated with 100 ng/ml TNFα +/- PBN (2 mM; ROS scavenger) for 6 hours, washed, and cultured

for a subsequent 15 hours to capture sensory neuron–derived factors (EV-PBN n = 11; FAM173B-PBN n = 7; EV+PBN and FAM173B+PBN n = 3

wells; 100% = 59.4 pg/ml based on 3 independent experiments). (B) Intrathecal anti-TNFα (100 μg/mouse, HSV-FAM173B: n = 6; HSV-EV: n = 6 mice)

or (C) minocycline (30 μg/mouse, minocycline: n = 12, vehicle: n = 6 mice) injection 7 days after intraplantar carrageenan attenuates hFAM173B-

mediated prolongation of carrageenan-induced hyperalgesia. (D–E) Intraplantar HSV-hFAM173B injection prior to induction of paw inflammation

increased Iba1-positive area in (D) spinal cord and (E) DRG at day 5 (n = 4 mice) and day 10 (n = 6 mice) after intraplantar carrageenan injection. (F)

Exemplar images of quantified Iba1 staining in D and E. Scale bars 50 μm. Data are represented as mean ± SEM. � = P< 0.05; �� = P< 0.01; ��� =
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Conversely, ODN-mediated knockdown of mFam173b prevented activation of glial cells

during CFA-induced persistent pain as shown by the reversion of the CFA-induced increase

in Iba1-positive area and mRNA expression in DRG (Fig 7A–7C) and spinal cord (Fig 7D–

7F). mFam173b-AS treatment during CFA-induced persistent hyperalgesia did not affect the

astroglial GFAP mRNA expression in the spinal cord and DRG (S4F/S4G Fig). The reduced

signs of glia activation were associated with reduced expression of inflammatory mediators in

the spinal cord and DRG known to play a role in persistent pain states [8]. Knockdown of

mFam173b at day 5 to 11 after intraplantar CFA prevented the CFA-induced increase in TNFα
and IL1βmRNA expression in the spinal cord (Fig 7G). In the DRG, mFam173b knockdown

prevented the CFA-induced expression of the chemokine (C-C motif) ligand 2 (CCL2) but not

of the growth factor Brain-derived neurotrophic factor (BDNF) (Fig 7H). Overall, these data

indicate that neuronal FAM173B drives the persistence of inflammatory hyperalgesia through

an ROS-dependent activation of glial cells.

FAM173B methyltransferase activity and persistent pain

We next determined whether the methyltransferase activity of FAM173B in sensory neurons is

required to regulate chronic inflammatory pain through ROS- and glial cell–dependent mech-

anisms. Intraplantar (Fig 8A/8B) or intrathecal administration of HSV amplicons encoding

for the methyltransferase-deficient mutant hFAM173B-D94A (S5A/S5B Fig) did not prolong

carrageenan-induced thermal and mechanical hyperalgesia, while expression of wild-type

(WT) hFAM173B prolonged transient inflammatory hyperalgesia (Fig 8A/8B and S5A/S5B

Fig). In vivo overexpression of hFAM173B-D94A in sensory neurons prior to induction of

inflammatory hyperalgesia did not increase Iba1-positive area in the DRG and spinal cord at

day 5 after carrageenan injection (Fig 8C/8D and S5C Fig), indicating the requirement of

FAM173B methyltransferase activity in sensory neurons to promote chronic pain and glial cell

activity. In vitro, overexpression of hFAM173B-D94A did not affect ΔCm, in contrast to WT

hFAM173B, which increased ΔCm (Figs 8E and 5A/5C). In addition, expression of WT

hFAM173B but not hFAM173B-D94A increased the fluorescence of the ROS-sensitive dye

DHE in small (<25 μm)-diameter neurons at day 5 during carrageenan-induced inflammatory

hyperalgesia, indicating that FAM173B-mediated increase in ΔCm and ROS production is

also methyltransferase dependent (Fig 8F and S5D Fig). Finally, culturing spinal microglia

with supernatants of TNFα-stimulated sensory neurons expressing WT FAM173B increased

IL6 (Fig 8G) and TNFα (S5E Fig) release by microglia, while overexpressing hFAM173B-

D94A had no such effect. Overall, these results indicate that the methyltransferase activity of

FAM173B, and not the protein per se, is important to control the development of chronic pain

through an ROS-dependent mechanism involving the activation of glial cells (Fig 9).

Discussion

The precise mechanisms that lead to the development of persistent pain states remain to be

fully uncovered. Here, we establish an important and completely novel role for FAM173B in

sensory neurons in the development of chronic pain, identify its enzymatic function, and dem-

onstrate a novel link between chronic pain and protein lysine methylation. First, insights came

from a recent GWAS that identified a genomic region associated with chronic widespread

P< 0.001. Statistical analyses were performed by one-way ANOVA (A) or by two-way repeated measures ANOVA (B–E) followed by a post-hoc Holm-

Sidak multiple comparison test. Underlying data can be found in S1 Data. DRG, dorsal root ganglia; EV, empty vector; HSV, herpes simplex virus; Iba1,

ionized calcium binding adaptor molecule 1; IL6, interleukin 6; PBN, phenyl-N-t-butylnitrone; ROS, reactive oxygen species; SEM, standard error of

the mean; TNFα, tumor necrosis factor α.

https://doi.org/10.1371/journal.pbio.2003452.g006
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Fig 7. FAM173B knockdown prevents microglia activation. (A–H) Mice received intraplantar CFA to induce persistent hyperalgesia and

received intrathecal mFam173b-AS to knockdown mFam173b or MM-ODN as control at day 5, 6, 7, 9, and 10. At day 11 after CFA injection,

microglia activation in (A–C) DRG and (D–F) spinal cord was assessed by analysis of (A, D) fluorescent Iba1-positive area (n = 4 mice) and (B, E)

Iba1 mRNA (n = 8 mice) in the dorsal horn of spinal cord or DRG. (C, F) Exemplar images of Iba1 staining of (C) DRG and (F) spinal cord as

quantified in A and D. Scale bars 50 μm. The specific area quantified in the spinal cord is shown in S4D Fig. (G, H) Inflammatory mediator mRNA

expression 24 hours after the last intrathecal injection of mFam173b-AS to knockdown mFam173b (day 11 after CFA) in (G) spinal cord and (H)
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pain and that included the FAM173B gene, which was functionally uncharacterized [22]. We

show that mFam173b mRNA expression is increased in DRG during chronic inflammatory

pain and knockdown of mFam173b expression abrogated persistent inflammatory and neuro-

pathic pain. The localization of FAM173B in mitochondria and its effect on sensory neuron

ΔCm and ROS production highlights a unique lysine-methyltransferase–dependent pathway

that regulates inflammation-induced hyperalgesia and spontaneous pain. In addition, we show

that neuronal FAM173B methyltransferase activity promotes persistent ROS formation in sen-

sory neurons after a transient peripheral inflammation leading to the engagement of micro-

glia/macrophages in the spinal cord/DRG and persistent pain. Therefore, these data provide a

mechanism by which FAM173B contributes to a novel pain pathway in chronic pain.

The 7BS class of methyltransferases represents a large group of enzymes that target a wide

range of substrates, and several of these enzymes in humans have recently been established as

lysine-specific protein methyltransferases [48, 49]. We show here that FAM173B harbors

motifs characteristic of a 7BS methyltransferase and methylates lysine residues to promote

chronic pain. A well-studied 7BS methyltransferase in relation with pain is catechol-O-methyl-

transferase (COMT), which inactivates biological active catechols; reduced COMT enzymatic

activity contributes to reduced opioid analgesia and increased pain sensitivity [50, 51]. Other

methyltransferases, such as DNA and histone methyltransferases, modify neuronal morphol-

ogy, activity, and synaptic plasticity to induce pain hypersensitivity in chronic pain conditions

via epigenetic modifications [52, 53]. FAM173B is different from known pain-promoting

methyltransferases because it localizes to mitochondrial cristae and methylates lysine residues

in high–molecular weight proteins. Therefore, FAM173B belongs to a unique class of 7BS

mitochondrial lysine-specific methyltransferase and promotes ROS production in neurons

leading to persistent pain.

Mitochondria are essential for adenosine triphosphate (ATP) generation, calcium buffer-

ing, and ROS generation in sensory neurons [13]. Mitochondrial dysfunction plays a role in

many neurological disorders such as Parkinson disease, Alzheimer disease, and Huntington

disease [54–56], but the role of mitochondria in pain is relatively little explored [13]. Mito-

chondrial dysfunction contributes to painful peripheral neuropathies evoked by diabetes, che-

motherapy, and trauma-induced nerve injury in humans and rodents [13, 15, 57, 58]. Recent

studies also highlight a link between sensory neuron mitochondrial abnormalities and chronic

inflammatory pain development. A data-independent acquisition mass spectrometry of the

DRG proteome during CFA-induced inflammatory pain showed differential expression of a

multitude of proteins involved in mitochondrial functioning. Inhibition of mitochondrial

functioning in vivo during CFA-induced inflammatory pain using rotenone, a mitochondrial

complex I inhibitor, diminished the inflammation-induced hyperalgesia [59]. Moreover, neu-

ropathic and inflammatory pain is associated with increased mitochondrial oxygen consump-

tion in the sciatic nerve and increased superoxide production in the spinal cord, respectively

[57, 60]. Interestingly, signs of mitochondrial dysfunction and ROS production are also

observed in patients with complex regional pain syndrome and fibromyalgia, including indi-

viduals with chronic widespread pain [19, 20]. Although ROS are thought to be central in

chronic pain conditions, clinical trials with antioxidant therapies have been disappointing [61,

62]. The exact reasons why they fail are not known, but antioxidant treatments likely do not

DRG (n = 8 mice). Data are represented as mean ± SEM. � = P< 0.05; �� = P< 0.01; ��� = P< 0.001. Statistical analyses were performed by

unpaired two-tailed t tests ([A, B], [D, E]), by one-way ANOVA (G/H) followed by a post-hoc Holm-Sidak multiple comparison test. Underlying

data can be found in S1 Data. CFA, complete Freund’s adjuvant; DRG, dorsal root ganglia; Iba1, ionized calcium binding adaptor molecule 1;

MM-ODN, mismatch ODN; ODN, oligodeoxynucleotide; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.2003452.g007
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Fig 8. Methyltransferase activity requirement. WT hFAM173B but not hFAM173B-D94A expression in sensory

neurons prolonged carrageenan-induced (A) mechanical and (B) thermal hypersensitivity (n = 6 mice). (C–F)

Compared to WT hFAM173B, the methyltransferase-inactive mutant hFAM173B-D94A did not increase Iba1-positive

area in (C) DRG and (D) dorsal horn of the spinal cord (n = 5 mice) at day 5 after intraplantar carrageenan injection,

or enhance (E) ΔTMRM fluorescence in N2A in vitro (n = 115–150 cells) and (F) ROS production in small-diameter

neurons in vivo (hFAM173B n = 7; hFAM173B-D94A n = 5 mice) at 5 days after intraplantar carrageenan. (G)

Supernatants of 15 h–cultured sensory neurons expressing hFAM173B-D94A that were stimulated with 100 ng/ml
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scavenge ROS directly at the intracellular source, preventing full inhibition of ROS-dependent

pathways. Therefore, there is a need to identify critical upstream processes of ROS production

in chronic pain that may represent better targets to inhibit these ROS-dependent processes

leading to pain. Here, we identified FAM173B as a methyltransferase that, when overex-

pressed, hyperpolarizes mitochondria and promotes mitochondrial and neuronal (cytosolic)

ROS production after peripheral inflammation, leading to the engagement of microglia and

persistence of inflammatory pain. The question remains whether the observed increase in

cytosolic ROS formation after hFAM173B overexpression is a consequence of the FAM173B-

induced mitochondrial superoxide production or whether it is caused by other cytosolic

sources such as oxidants producing peroxisomes or endoplasmic reticula [63, 64]. FAM173B

may represent an important upstream factor of persistent ROS production in sensory neurons

leading to pain. As such, FAM173B could represent the long-sought therapeutic target

upstream of ROS production to treat persistent pain. However, FAM173B is ubiquitously

expressed, thus potentially dampening its potential as therapeutic target. Nevertheless,

FAM173B expression increases in sensory neurons through yet unknown mechanisms during

inflammatory pain. Moreover, a recent, large, whole-genome sequencing study of an Icelandic

population demonstrated that individuals deficient for FAM173B were healthy, suggesting

that targeting FAM173B may be feasible [65]. The requirement of methyltransferase activity of

FAM173B in chronic pain development demonstrates that inhibiting FAM173B activity is a

TNFα for 6 hours and subsequently washed did not enhance IL6 release in spinal microglia in vitro (hFAM173B n = 4;

hFAM173B-D94A n = 8 wells). Data are represented as mean ± SEM. � = P< 0.05; �� = P< 0.01; ��� = P< 0.001.

Statistical analyses were performed by unpaired two-tailed t tests (F, G), one-way ANOVA (C–E), or by a two-way

ANOVA (A, B) followed by a post-hoc Holm-Sidak multiple comparison test. Underlying data can be found in S1

Data. DRG, dorsal root ganglia; Iba1, ionized calcium binding adaptor molecule 1; IL6, interleukin 6; N2A, Neuro2a;

ROS, reactive oxygen species; SEM, standard error of the mean; TMRM, tetramethylrhodamine methyl ester; TNFα,

tumor necrosis factor α; WT, wild-type.

https://doi.org/10.1371/journal.pbio.2003452.g008

Fig 9. Proposed model of FAM173B. Inflammation increases FAM173B expression. Mitochondrial FAM173B

methylates lysine(s) on a yet unknown substrate(s), causes mitochondrial hyperpolarization (ΔCm"), and increases

superoxide and ROS production, which activates glial cells, thereby promoting persistent inflammatory pain. ΔCm,

mitochondrial membrane potential; ROS, reactive oxygen species.

https://doi.org/10.1371/journal.pbio.2003452.g009
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potential strategy to inhibit chronic pain. It will be important to identify the substrate(s) that

is/are methylated by FAM173B to modulate mitochondrial functioning, including mitochon-

drial respiration, ΔCm, and mitochondrial superoxide production in sensory neurons.

The GWAS pointed to a role of FAM173B in chronic widespread pain, and our findings

show that FAM173B plays a critical role in inflammatory and neuropathic pain. Currently, no

animal models exist for chronic widespread pain. However, chronic widespread pain may

have features of both inflammatory and neuropathic pain [66–70]. Therefore, our data indicat-

ing that FAM173B is involved in inflammatory and neuropathic pain pathways are likely to

also have relevance for chronic widespread pain. Further studies are required to develop ani-

mal models of chronic widespread pain and test for the role of FAM173B activity in these

models before clinical translation to chronic widespread pain patients should be considered.

We show here that sensory neuron FAM173B methyltransferase activity causes the engage-

ment of spinal microglia in a model of transient inflammatory pain. The contribution of

microglia to persistent pain states is well established [7, 10], and several neuron-derived signals

contributing to spinal cord microglia activation in persistent pain models have been identified,

including fractalkine, ATP, monocyte chemoattractant protein 1 (MCP1), colony-stimulating

factor 1, and several neurotransmitters [6, 11, 12]. However, the molecular determinants in

sensory neurons that trigger these cells to release substances to engage microglia are not well

known. Here, we show that FAM173B methyltransferase activity in sensory neurons deter-

mines whether spinal cord microglia are engaged during peripheral inflammatory conditions

in vivo. In vitro, the expression of FAM173B in sensory neurons promoted the release of glial

cell–activating factors in an ROS-dependent manner after stimulation of sensory neurons with

the proinflammatory cytokine TNFα.

In conclusion, we propose that the mode of action by which FAM173B promotes chronic

pain is through its lysine-specific methyltransferase activity in mitochondria, promoting ROS

production in sensory neurons, resulting in glial cell engagement. These data provide a con-

ceptual framework to explain a potential role of FAM173B as a chronic pain protein in humans

and open the possibility for inhibitors of FAM173B methyltransferase activity to treat chronic

pain.

Materials and methods

Ethics statement

All experiments were performed in accordance with international guidelines and approved by

the experimental animal committee of University Medical Center Utrecht (2012.I.05.068,

2014.I.06.042) or approved by the national Central Authority for Scientific Procedures on Ani-

mals (CCD) and the local experimental animal welfare body (AVD115002015323).

Animals

Mice were maintained in the animal facility of the University of Utrecht. Experiments were

conducted using both male and female (aged 8–12 weeks) C57BL/6 mice (Harlan Laboratories,

Indianapolis, IN, US) because we did observe not overt sex differences during pain behavior

measurements. Mice were housed in groups under a 12:12 light dark cycle, with food and

water available ad libitum. The home cages contained environmental enrichments, including

tissue papers and shelter. Mice were acclimatized for at least 1 week prior to the start of experi-

ment. Sample sizes were calculated with power analysis at the time of the design of experi-

ments. Mice received an intraplantar injection unilateral or in both hind paws of 5 μl λ-

carrageenan (1% w/v, Sigma-Aldrich, St. Louis, MO, US) to induce transient inflammatory

pain [27] or 20 μl CFA (Sigma-Aldrich, St. Louis, MO, US) to induce persistent inflammatory
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pain [29]. SNI was performed as described previously [30, 71]. Heat withdrawal latency times

were determined using the Hargreaves test (IITC Life Science, Woodland Hills, CA, US) [72,

73]. Mechanical thresholds were determined using the von Frey test (Stoelting, Wood Dale, IL,

US) with the up-and-down method as we described [72, 74]. Changes in weight bearing were

evaluated using a dynamic weight bearing (DWB) apparatus (Bioseb, Vitrolles, France) as

described [75]. The weight bearing of the affected paw was calculated as ratio of the weight

between the affected paw and total weight and expressed relative to baseline. To assess persis-

tent nonevoked pain behavior, we used the CPP test as described previously [34, 35]. In short,

CPP (Stoelting, Wood Dale, IL, US) was calculated by subtracting the mean time spent in the

white room during preconditioning (days 1 and 2) from the time spent in the white room (day

5) after 2 days of conditioning (day 3–4) with intraperitoneal injections of gabapentin (100

mg/kg, Sigma-Aldrich, St. Louis, MO, US) as has been described before. CPP was applied 1

month after induction of a transient inflammation, and hyperalgesia was followed prior to

CPP using Hargreaves and Von Frey tests. In experiments in which mice received intraplantar

injections, latency times and 50% thresholds of left and right paws were considered as an inde-

pendent measure, while in experiments with intrathecal or intraperitoneal drug administra-

tion, the average of the left and right paw were considered as an independent measure. To

minimize bias, animals were randomly assigned to the different groups prior to the start of

experiment, and all experiments were performed by experimenters blinded to treatment. After

pain behavior assessments, mice were brought back to their home cages to minimize discom-

fort. At the end of the experiments, mice were euthanized by cervical dislocation.

DNA and viral constructs

Full-length mFam173b (NM_ 026546.1) and hFAM173B (NM_199133.3) were cloned into sev-

eral vectors, including pAcGFP-N1, pIRES2-AcGFP1, bacterial expression vector pET28a, and

pCMV6 containing a myc-tag at the C-terminal of human or mouse FAM173B (Origene,

Rockville, MD, US). pIRES2-AcGFP vectors were used for functional experiments, and GFP

expression was used to verify successful transfection. The pCMV6 and pAcGFP-N1 vectors

were used for identification of cellular and subcellular localization of FAM173B, and pET28a

was used for the production of recombinant FAM173B in Escherichia coli.
We generated a bicistronic HSV construct by cloning hFAM173B or hFAM173B-D94A in

which residue (Asp94) is mutated to alanine in order to generate enzymatically inactive pro-

tein [38], under control of the α4 promotor and with GFP under control of the α22 promoter

[27]. Control HSV-EV only expresses GFP. HSV was produced as previously described [76].

Mice were inoculated twice (day −3 and day −1 prior to carrageenan or at day 5 and 7 after

CFA) with 2.5 μl of 1.4 × 107 pfu/ml (intraplantar) or 5 μl 5 × 106 pfu/ml (intrathecal).

Drug administration

For behavioral analysis, mice received an intraperitoneal injection (day 5 after carrageenan)

with 100 μl PBN (100 mg/kg, Sigma-Aldrich, St. Louis, MO, US). For spinal cord analysis,

mice received 2 PBN injections (2 hours apart) at 1 month after carrageenan. Spinal cords

were collected 2 hours after the last PBN administration. Intrathecal injections (5 μl) with min-

ocycline (6 μg/μl, Sigma-Aldrich, St. Louis, MO, US), neutralizing TNFα antibody (20 μg/μl,

Enbrel), and (Cy3-labeled, set1) ODN (3 μg/μl day 5, 6, 7, 9, and 10, Sigma Aldrich, St. Louis,

MO, US) were performed under light isoflurane anesthesia as described [72, 77]. The following

phosphorothioated ODN sequences that specifically target mFam173b and not hFAM173B
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were used:

Set 1 Fam173b : CCCgCCTgTCTTTCTTCCTC MM : CgCCTCCgTTCCTTTCTCCT

Set 2 Fam173b : gggTCCTCTTCTgTgTCgCA MM : gTgCTCgTCTTgCCgACgCT

Cell lines, primary cell cultures, and transfections

HEK293 and mouse neuroblastoma N2A cells were kept in Dulbecco’s Modified Eagle

medium (DMEM) with Glutamax-l containing 4.5 g/L D-Glucose, pyruvate, and 10% fetal calf

serum. FAM173B expression was down-regulated (100 μM ODN) or overexpressed with plas-

mids as described above using Lipofectamin 2000 (Life Technologies, Waltham, MA, US)

according to manufacturer’s instructions. For measuring ΔCm, the cells were incubated for 20

to 30 minutes with 50 nM MitoTrackerRedCMXROS (Life Technologies, Waltham, MA, US)

or 50 nM TMRM (Sigma-Aldrich, St. Louis, MO, US) 2 days after transfection and following

manufacturer’s instructions. Cells were fixed with 4% paraformaldehyde (PFA) after Mito-

TrackerRedCMXROS or directly imaged without fixation (TMRM experiments). For the

TMRM experiments, fluorescence was captured before and after the addition of the respiratory

uncoupler FCCP that abolishes ΔCm without affecting cell membrane potential [39]. The

ΔTMRM fluorescence was calculated by measuring difference in the TMRM fluorescence

before and after FCCP administration. Fluorescence was captured using AxioCAM MRm

from Zeiss Axio Observer microscope and analyzed with ImageJ software.

DRG were collected, and primary sensory neurons were cultured as described [25]. Twenty-

four hours after plating, sensory neuron cultures were inoculated with HSV (10,000 pfu) for 3

days. The antimitotic fluoro-deoxyuridine (FDU; 13.3 μg/ml, Sigma-Aldrich, St. Louis, MO,

US) was added to inhibit satellite glial cell growth in the neuronal cultures. Sensory neurons

were stimulated with 100 ng recombinant TNFα (Peprotech, Rocky Hill, NJ, US) with or with-

out PBN (2 mM, Sigma-Aldrich, St. Louis, MO, US). Six hours after neuronal TNFα stimula-

tion (+/− PBN), the cultures were washed 3 times with media (DMEM), and new media was

added; after 15 hours, supernatants were collected. The collected supernatants were diluted 1:1

with DMEM and added to spinal microglia cultures for 24 hours. Spinal microglia were cul-

tured as described previously [78]. After collection of the supernatants, IL6 and TNFα contents

were determined by ELISA according to manufacturer’s protocol (R&D Systems, Minneapolis,

MN, US). The detection limit of IL6 was 15 pg/ml and of TNFα 31 pg/ml.

Electron microscopy

HEK293 and N2A cells were grown in 6-well plates and transfected with pCMV6-FAM173B-

myc as described above. The cells were treated as described previously [79]. Briefly, cells were

chemically fixed using 2% formaldehyde (FA), 0.2% glutaraldehyde in 0.1 M phosphate buffer

pH 7.4 (Pi) for 2 hours, and stored overnight in 1% FA in Pi. After rinsing with PBS (3 times)

and PBS 0.15 M glycine, a 1% gelatin solution was put on the cells, and the cells were removed

from the Petri dish using a cell scraper, transferred to an Eppendorf vial, and spun down. The

1% gelatin was removed, and the cells were suspended in 12% gelatin at 37˚C. After 10 min,

the cells were spun down and the gelatin was allowed to solidify at 0˚C. Small (0.5 × 0.5 × 0.5

mm) blocks were prepared and transferred to 2.3 M sucrose. After overnight infiltration of

sucrose in a rotator, the blocks were mounted on specimen holders and frozen in liquid nitro-

gen. Ultrathin sections (70 nm) were prepared on a Leica UC7/FC7 (Leica, Vienna, Austria) at

−120˚C. Immunolabeling was performed with Rabbit anti-GFP (Acris Antibodies, Herford,

Germany) and protein A-Gold (CMC, Utrecht, the Netherlands). The immunogold labeled

sections were examined with a Tecnai 12 or 20 (FEI, Eindhoven, the Netherlands).
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ROS and superoxide detection

In vivo, DHE—to measure ROS formation (50 μM, 5 μl, Life technology, Waltham, USA)—or

MitoTrackerRedCM-H2XROS, which fluoresces upon oxidation—to measure mitochondrial

superoxide production (10 μl of 100 μM, Life Technologies, Waltham, MA) [80]—was injected

intrathecal respectively at day 4 or day three/six after intraplantar carrageenan administration.

Twenty-four hours later, mice were perfused with PBS and 4% PFA as described below, and

DRGs were collected [18]. DHE and MitoTrackerRedCM-H2XROS fluorescence were ana-

lyzed in small-diameter neurons<25 μm and medium- and/or large-diameter neurons

>25 μm.

For ROS or mitochondrial superoxide production measurements in vitro, primary sensory

neurons or N2A were incubated with 10 μM DHE or 5 μM MitoSoX (Life Technologies, Wal-

tham, MA) in HBSS for 20 minutes. After HBSS washes, cells were fixed with 4% PFA after

DHE incubations or directly imaged without fixation (MitoSox experiments). Fluorescence

was captured using AxioCAM MRm from Zeiss Axio Observer microscope and analyzed with

ImageJ software.

Immunostaining

Mice were deeply anesthetized with an overdose of sodium pentobarbital and transcardially

perfused with PBS followed by 4% PFA, and spinal cords and DRGs were collected. Tissues

were postfixed, cryoprotected in sucrose, embedded in OCT compound (Sakura, Zoeterwoude,

the Netherlands), and frozen at −80˚C. Cryosections (10 μm) of lumbar DRG and lumbar spi-

nal cord segments L3–L5 were stained with anti-Iba1 (1:500, Wako Chemicals, Wako, Japan).

DRGs were stained with anti-NF200 (1:200, Millipore, Bellerica, MA, US), biotinylated anti-

IB4 (1:25, Vector Laboratories, Burlingame, CA, US), anti-F4/80 (1:500, Cedarlane, Burling-

ton), and anti-GFAP (1:2000, Dako, Santa Clara, CA, US). N2A cells were stained with anti-

PD1 (1:100, Enzo Life Sciences, Farmingdale, NY) and anti-pGM130 (1:100, BD Transduction

Laboratories, San Jose, CA). Primary sensory neurons were stained with anti-FAM173B (1:500,

biorbyt) and anti-COXIV (1:100, ThermoFisher Scientific, Waltham, MA). For the DRG, sci-

atic nerves, and hind paw stainings for FAM173B (1:500, Biorbyt, Cambridge, UK), GFP

(1:3000, Abcam, Cambridge, UK), and peripherin (1:100, Sigma Aldrich, St. Louis, MO), tis-

sues were fresh frozen, cut, and post-fixed in PFA prior for staining. Stainings were visualized

by using alexafluor 488-(streptavidin) or 594-conjugated secondary antibodies. Nuclei were

stained with 40,6-diamidino-2-phenylindole (DAPI). Photographs were captured with a confo-

cal laser scanning microscope LSM700 (colocalization experiments) or with a Zeiss Axio

Observer microscope (Zeiss, Oberkochen, Germany) using identical exposure times for all

slides within one experiment. Fluorescence intensity was analyzed with ImageJ software.

Bioinformatics

Homo sapiens FAM173A (NP_076422.1) and FAM173B (NP_954584.2), Mus musculus
Fam173a (NP_663385.2) and Fam173b (NP_080822.1), and the homolog of FAM173 proteins

(FAM173hom) from the archaeal Sulfolobus islandicus (gi|227827841) were used for the align-

ment. The alignment was generated using the MUSCLE algorithm embedded in Jalview [81,

82], and prediction of protein secondary structure was performed with Jpred 3 [83].

Expression and purification of recombinant FAM173B

Human full-length FAM173B, WT FAM173BΔ55 (without the putative transmembrane

domain to avoid the formation of inclusion bodies), and FAM173BΔ55-D94A (enzymatically
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inactive) were cloned into pET28a and expressed as N-terminally hexahistidine tagged pro-

teins in E. coli BL21-CodonPlus(DE3)-RIPL cells (Agilent, Santa Clara, CA) and purified using

nickel-nitrilotriacetic acid-agarose (Qiagen, Hilden, Germany) according to manufacturer’s

instructions and as described [38]. Eluted proteins were buffer exchanged [38], and protein

purity was assessed by SDS-PAGE and Coomassie blue staining. Protein concentrations were

measured using the Pierce BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA).

Methyltransferase assay

Methyltransferase reactions contained 10 μg of homopolymers or equivalent amounts of cell

extracts from adenosine dialdehyde (AdOx)-treated HEK293 cells [84], [3H]-SAM (2 μCi),

and recombinant hFAM173B (100 pmol) in 50-μl reactions and were incubated for 1 hour at

37˚C, as described [49, 85]. Radioactivity in 10% trichloroacetic acid precipitated material was

measured by scintillation counting, or proteins were resolved by SDS-PAGE and subjected to

fluorography [49].

Western blot

Isolation of mitochondria from N2A cells was performed with the Mitochondria Isolation Kit

for Cultured Cells (ThermoFisher Scientific, Waltham, MA) according to manufacturer’s pro-

tocol. Protein concentrations of the total cell lysates or mitochondrial/cytosol fractions were

determined using a Bradford assay (Bio-Rad, Hercules, CA). Protein samples (20 μg) were sep-

arated by 12% SDS-PAGE and transferred to a PVDF membrane (Immobilon-P, Millipore,

Bellerica, MA). Membrane was stained with 1:1000 goat anti-FAM173B, 1:1000 mouse anti-

COXIV (Invitrogen, Paisley, UK), or 1:1000 goat anti–β-actin, followed by incubation with

1:5000 donkey anti goat-HRP (others all Santa Cruz Biotechnology, Santa Cruz, CA). Specific

bands were visualized by chemiluminescence (ECL, Advansta, Menlo Park, CA) and imaging

system Proxima (Isogen Life Sciences, De Meern, the Netherlands).

Real-time RT-PCR

Total RNA from freshly isolated DRGs and spinal cords was isolated using TRizol and RNeasy

mini kit (Qiagen, Hilden, Germany). cDNA was synthesized using Reverse Transcriptase (Bio-

Rad, Hercules, CA). Quantitative real-time PCR reaction was performed with an I-cycler iQ5

(Bio-Rad, Hercules, CA) as described [22]. We used the following primers:

mFam173b forward : TggTgTgCCCCAgATgAT reverse : TgCCCTCTCCAgTggTgT

TNFa forward : gCggTgCCTATgTCTCAg reverse : gCCATTTgggAACTTCTCATC

IL1b forward : CAACCAACAAgTgATATTCT reverse : gATCCACACTCTCCAgCTgCA

GFAP forward : ACAgACTTTCTCCAACCTCCAg reverse : CCTTCTgACACggATTTggT

Iba1 forward : ggATTTgCAgggAggAAAAg reverse : TgggATCATCgAggAATTg

BDNF forward : CACATTACCTTCCAgCATCT reverse : ACCATAgTAAggAAAAggATgg

CCL2 forward : ggTCCCTgTCATgCTTCTg reverse : CATCTTgCTggTgAATgAgTAg

GAPDH forward : TgAAgCAggCATCTgAggg reverse : CgAAggTggAAgAgTgggAg;

HPRT forward : TCCTCCTCAgACCgCTTTT reverse : CCTggTTCATCATCgCTAATC

Data were normalized for GAPDH and HPRT expression.
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Conventional PCR

cDNA was synthesized from 1 μg total RNA (Clontech, Mountain View, CA), and PCR was

performed using Phusion polymerase (ThermoFisher Scientific, Waltham, MA) following

manufacturing instructions. Human and mouse FAM173B were detected in a tissue panel

(Clontech, Mountain View, CA) using the following primers:

hFAM173B forward : gTAgCCACgCCgTTTgTAAC reverse : CATCATCTgAggCACACCgA

b � actin forward : CCTggCACCCAgCACAAT reverse : GggCCggACTCgTCATACT

mFam173b forward : TggTgTgCCCCAgATgAT reverse : TgCCCTCTCCAgTggTgT

HPRT forward : TCCTCCTCAgACCgCTTTT reverse : CCTggTTCATCATCgCTAATC

Statistical analysis

All data are presented as mean ± SEM and were analyzed with GraphPad Prism version 7.02

using unpaired two-tailed t tests, one-way or two-way ANOVA, or as appropriate two-way

repeated measures ANOVA, followed by post-hoc Holm-Sidak multiple comparison tests. A P
value less than 0.05 was considered statistically significant, and each significance is indicated

with � for P< 0.05, �� for P< 0.01, and ��� for P< 0.001.

Supporting information

S1 Data. Spreadsheet.

(XLSX)

S1 Fig. FAM173B in sensory neurons promotes chronic pain. (A) Left images represent

DRG of mice injected with either labeled (Cy3, red) or unlabeled mouse Fam173b antisense

ODNs (mFam173b-AS). Labeling is visible in sensory neurons as well as some cells surround-

ing the sensory neurons. Scale bar 50 μm. Right images: After intrathecal Cy3-labeled

mFam173b-AS injections (red), lumbar DRG from mice were stained for IB4, NF200, Iba1,

and GFAP (green), and the nucleus was stained with DAPI (blue). Scale bar 100 μm. (B)

mFam173b mRNA expression after intrathecal mFam173b-AS injections in vehicle (n = 5

mice)- and CFA (n = 6 mice)-treated mice. (C–D) Time course of (C) thermal and (D)

mechanical hyperalgesia following intraplantar injection of CFA (n = 8 mice) or vehicle (n = 4

mice), before and after intrathecal mFam173b-AS (set 2) or mismatch antisense ODN

(MM-ODN) injections. (E, F) Intraplantar and intrathecal HSV amplicons encoding for

hFAM173B and GFP (green) target sensory neurons. Successful sensory neuron expression of

(E) GFP and (F) hFAM173B was observed in the DRG but not in other cells in the DRG such

as F4/80-positive macrophages. Nuclei are visualized with DAPI, scale bar 20 μm. (G) Intra-

plantar HSV-hFAM173B induces expression of hFAM173B in the DRG but not in SC. Black

line is 25-kDa marker. (H–I) Expression of GFP, as indicator of successful transgene expres-

sion, was observed in (H) peripherin-positive sciatic nerve fibers (scale bar 20 μm) and (I) per-

ipherin-positive nerve endings in the plantar skin of the hind paw (scale bar 25 μm) at 2 days

after the last intraplantar HSV-FAM173B injection. (J–K) Intrathecal HSV-hFAM173B injec-

tions rescued mFam173b-AS–mediated (set 1) attenuation of CFA-induced (J) thermal and

(K) mechanical hyperalgesia (n = 8 mice). (L–M) Intrathecal HSV-hFAM173B prolonged car-

rageenan-induced (n = 4–12 mice) transient inflammatory (L) thermal and (M) mechanical

hypersensitivity. (N) mFam173b mRNA expression in DRGs after intraplantar CFA (n = 9

mice) at day 1, 3, and 7. Data are represented as mean ± SEM. � = P< 0.05; �� = P< 0.01;
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��� = P< 0.001. Statistical analyses were performed by unpaired two-tailed t tests (B), by one-

way ANOVA (N), or by two-way repeated measures ANOVA ([C, D], [J–M]) with Holm-

Sidak multiple comparison test. For Fig 1L/1M, we used a two-way ANOVA with Holm-Sidak

multiple comparison test because we combined several experiments and did not have equal

numbers to perform a two-way repeated measures ANOVA. Underlying data can be found in

S1 Data. CFA, complete Freund’s adjuvant; DAPI, 40,6-diamidino-2-phenylindole; DRG,

dorsal root ganglia; EV, empty vector; GFAP, glial fibrillary acidic protein; GFP, green fluores-

cent protein; HSV, herpes simplex virus; Iba1, ionized calcium binding adaptor molecule 1;

MM-ODN, mismatch ODN; NF200, neurofilament 200; ODN, oligodeoxynucleotide; SC, spi-

nal cord; SEM, standard error of the mean.

(TIF)

S2 Fig. FAM173B is a mitochondrial lysine-specific methyltransferase. (A) hFAM173B and

(B) mFam173b mRNA are expressed in all tissues examined. β-actin and HPRT mRNAs are

shown as controls. (C) Full-length hFAM173B methylates lysine-homopolymers (n = 3 MTase

reactions). (D) HSV-mediated expression of WT hFAM173B or hFAM173B-D94A induced

similar expression levels in N2A cells. (E) mFam173b-GFP and hFAM173B-D94A-GFP coloca-

lize with the mitochondrial dye MitoTrackerRedCMXROS. Scale bar 10 μm. (F) Western blot

analyses of mitochondrial (M) and cytosolic (C) fraction of N2A cells overexpressing control

(EV) and hFAM173B. COXIV and β-tubulin were used as mitochondrial and cytosolic loading

marker, respectively. (G) Western blot analysis of WT hFAM173B and the methyltransferase-

deficient mutant hFAM173B-D94A indicate that both are expressed in mitochondria. (H)

Electron microscopy of immunogold labeling of GFP (left panel) or GFP-tagged hFAM173B

(right panel) in N2A cells. Data are represented as mean ± SEM. � = P< 0.05. A statistical anal-

ysis was performed by a one-way ANOVA with Holm-Sidak multiple comparison test (C).

Underlying data can be found in S1 Data. COXIV, cytochrome c oxidase IV; EV, empty vector;

GFP, green fluorescent protein; HPRT, Hypoxanthine Phosphoribosyltransferase 1; HSV, her-

pes simplex virus; M, mitochondrion; MTase, methyltransferase; N2A, Neuro2a; SEM, stan-

dard error of the mean; WT, wild-type.

(TIF)

S3 Fig. FAM173B influences mitochondrial potential and promotes superoxides and ROS.

(A) mFam173b-AS efficiently reduced mFam173b mRNA expression in N2A cells (n = 6

wells). (B–C) Exemplar images of MitoTrackerRedCMXROS staining after (B) mFam173b-
AS–mediated knockdown of mFam173b or (C) overexpression of hFAM173B. Scale bar

10 μm. (D) HSV-mediated hFAM173B overexpression in N2A cells is detected by western

blot. (E) HSV amplicons encoding for hFAM173B-GFP selectively target sensory neurons in

vitro. Nuclei are visualized with DAPI. Scale bar 50 μm. (F) ΔTMRM fluorescence 48 hours

after hFAM173B overexpression in N2A cells (n = 97–110 cells). (G, H) hFAM173B overex-

pression in (G) N2A (n = 10 wells) and (H) HEK293 (n = 9 wells) cells increased DHE fluores-

cence. (I) hFAM173B overexpression in N2A cells increased MitoSox fluorescence compared

to controls (EV) (n = 8 wells). (J) MitoTrackerRedCMH2-XROS fluorescence intensity at day 3

(n = 9 mice) and day 6 (EV n = 4; hFAM173B n = 6 mice) in medium- and/or large-diameter

neurons after intraplantar carrageenan injection. (K) Exemplar images of quantified Mito-

TrackerRedCM-H2XROS fluorescence at day 3 after carrageenan. Scale bar 50 μm. Data are

represented as mean ± SEM. �� = P< 0.01; ��� = P< 0.001. Statistical analyses were performed

by unpaired two-tailed t tests (A, F, H–K). Underlying data can be found in S1 Data. DAPI,

40,6-diamidino-2-phenylindole; DHE, dihydroethidium; EV, empty vector; HEK293, human

embryonic kidney 293 cells; HSV, herpes simplex virus; MM-ODN, mismatch ODN; N2A,

Neuro2a; ODN, oligodeoxynucleotide; ROS, reactive oxygen species; SEM, standard error of
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the mean; TMRM, tetramethylrhodamine methyl ester.

(TIF)

S4 Fig. FAM173B promotes microglia/macrophage activation via an ROS-dependent path-

way. (A) Increased spinal microglia TNFα release after stimulation with supernatants of

TNFα-stimulated sensory neurons overexpressing hFAM173B (EV n = 20; hFAM173B n = 30

wells; 100% = 28 pg/ml based on the mean of 3 independent experiments). (B) Anti-TNFα
neutralizing antibody (HSV-FAM173B: n = 6; HSV-EV: n = 4 mice) and (C) minocycline

(minocycline: n = 12; vehicle: n = 6 mice) attenuated the hFAM173B-mediated prolongation

of carrageenan-induced thermal hypersensitivity. (D) Example of spinal cord and the areas

used for quantification (light grey) of Iba1 immunofluorescence. (E) Quantification of Iba1

expression in the dorsal horn of the spinal cord of mice with or without sensory neuron over-

expression of hFAM173B at 1 month after carrageenan and 24 h after inhibition of ROS using

intraperitoneal PBN injections (EV n = 7; hFAM173B n = 5 mice). (F–G) mFam173b-AS treat-

ment to knock down mFam173b did not affect GFAP mRNA expression in (F) spinal cord and

(G) DRG in the CFA model of persistent inflammatory pain (n = 8 mice). Data are represented

as mean ± SEM. ��� = P< 0.001. Statistical analyses were performed by unpaired two-tailed

t tests (A, E–G) or by two-way repeated measures ANOVA (B, C) with Holm-Sidak multiple

comparison test. Underlying data can be found in S1 Data. CFA, complete Freund’s adjuvant;

DRG, dorsal root ganglia; EV, empty vector; HSV, herpes simplex virus; Iba1, ionized calcium

binding adaptor molecule 1; PBN, phenyl-N-t-butylnitrone; ROS, reactive oxygen species;

SEM, standard error of the mean; TNFα, tumor necrosis factor α; veh, vehicle.

(TIF)

S5 Fig. FAM173B methyltransferase activity is required for development of persistent

pain. Time course of (A) thermal and (B) mechanical hypersensitivity following intraplantar

carrageenan injection in mice receiving intraplantar HSV-hFAM173B, HSV-hFAM173B-

D94A, or HSV-EV injections (EV n = 10; hFAM173B and hFAM173B-D94A n = 8 mice).

(C) Exemplar images of quantified Iba1 staining in Fig 8C/8D. Scale bar 100 μm for spinal

cord and 50 μm for DRG. (D) Exemplar images of quantified DHE staining in Fig 8F. Scale

bar 20 μm. (E) Supernatants of TNFα-stimulated sensory neurons overexpressing hFAM173B-

D94A did not increase TNFα release by spinal microglia in vitro to the same extent as superna-

tant of sensory neurons expression the WT hFAM173B (hFAM173b n = 30; hFAM173B-D94A

n = 20 wells). Data are represented as mean ± SEM. � = P< 0.05; ��� = P< 0.001. Statistical

analyses were performed by an unpaired two-tailed t test (E) or by two-way repeated measures

ANOVA (A, B) with Holm-Sidak multiple comparison test. Underlying data can be found in

S1 Data. DHE, dihydroethidium; DRG, dorsal root ganglia; EV, empty vector; Iba1, ionized

calcium binding adaptor molecule 1; SEM, standard error of the mean; TNFα, tumor necrosis

factor α; WT, wild-type.

(TIF)
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