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Abstract: Type 1 diabetes stem-cell-based therapy is one of the best therapeutic approaches for
pancreatic damage treatment due to stem cell tissue regeneration. Epigallocatechin gallate (EGCG) is
one of the active components found in green tea. Experimental results suggest that EGCG shows
beneficial effects on cell protection. This study explores whether a better pancreatic regeneration
therapeutic effect could be found in mesenchymal stem cells pretreated with EGCG compared to
stem cells without EGCG pretreatment. A cell model confirmed that adipose-derived stem cells
(ADSC) incubated with EGCG increase cell viability under high-glucose (HG) stress. This is due to
survival marker p-Akt expression. In an animal model, type 1 diabetes induced the activation of
several pathological signals, including islet size reduction, extracellular fibrotic collagen deposition,
oxidative stress elevation, survival pathway suppression, apoptosis signaling induction, and Sirt1
antioxidant pathway downregulation. Ordinary ADSC transplantation slightly improved the above
pathological signals. Further, EGCG-pretreated ADSC transplantation significantly improved the
above pathological conditions. Taken together, EGCG-pretreated ADSCs show clinical potential in
the treatment of patients with type 1 diabetes through the regeneration of damaged pancreatic tissues.

Keywords: green tea EGCG; mesenchymal stem cells; pancreatic regeneration; survival p-Akt

1. Introduction

Clinically, diabetes mellitus (DM) can be identified as a fasting blood glucose over
140 mg/dL and HbA1c (Hemoglobin A1c) over 6.5%. Three types of DM can be clinically
recognized, including type 1 DM (insulin secretion reduction due to pancreatic damage),
type 2 DM (insulin resistance due mainly to obesity), and gestational DM (developing
high blood glucose during pregnancy and usually disappearing after giving birth). Several
strategies can be used in the management of DM, including insulin injection, medication,
and the maintenance of a good lifestyle [1]. In addition to the above mentioned treatments,
stem cell transplantation could potentially be used in type 1 DM treatment due to pancreatic
tissue regeneration [2,3].

Reactive oxygen species (ROS) production plays crucial roles in triggering several
pathological signals under diabetic conditions. In hyperglycemia, ROS production is mainly
related to mitochondrial dysfunction and NADPH activation. Brownleo M. [4] pointed out
that respiratory chain overuse in mitochondria under hyperglycemia results in electron
transport chain elevation errors, leading to ROS production. On the other hand, hyper-
glycemia increases advanced glycation end products concentration (AGEs), and AGEs
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elevation is capable of activating NADPH, resulting in ROS production [5]. ROS over-
production leads to cellular apoptosis. Dehdashtian et al. [6] stated that ROS production
induced by hyperglycemia can suppress the formation of mTORC1, which then inactivates
autophagy, a process that self-degrades misfolding proteins or damages organelles. Au-
tophagy suppression leads to increased intracellular stress, resulting in programmed cell
death. Furthermore, inflammatory response induction by ROS under diabetic status also
plays a central role in promoting cell death. Dasu et al. [7] reveals that hyperglycemia
increases ROS production, and ROS elevation triggers proinflammatory receptor, TLR4
activation. TLR4 activation expresses downstream proinflammatory cytokines, including
IL-1 beta, IL-6, and IL-8, leading to apoptosis. In addition to apoptosis, fibrosis induction
is also greatly associated with ROS under hyperglycemia. Proell et al. [8] suggested that
ROS induced by hyperglycemia increase TGF beta production. TGF beta expression then
activates the fibrotic marker Smad2/3, leading to increased extracellular matrix (ECM).
ECM overproduction plays a positive role in tissue fibrosis. Tzouvelekis et al. [9] confirmed
that ROS triggers HIF1 alpha expression. HIF1 alpha expression then increases TIMP1
activity and inhibits MMP activities. The imbalance of TIMP1 and MMPs results in ECM
production, leading to fibrosis progress.

ROS production is associated with pathological signals under diabetic conditions.
Thus, scavenging ROS by antioxidants is essential in ameliorating pathological signals
under hyperglycemia. Sirtuin-1 (Sirt 1) acts as one of the deacetylases and functions as a
key mediator in antioxidant pathway activation in scavenging ROS under hyperglycemia.
Rius-Pere et al. [10] pointed out that Sirt 1 activates PGC-1 alpha expression and PGC-1
alpha expression regulates mitochondrial biogenesis, leading to reduced ROS formation
during hyperglycemia. Kobayashi et al. [11] stated that Sirt 1 deacetylates FOX1 and results
in antioxidant enzyme expression, including catalase, MnSOD, and thioredoxin, leading to
reduced ROS induction by hyperglycemia.

In general, stem cells can be classified as three types, including embryonic stem cells
(ESCs), inducible pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs).
The iPSCs are made from fibroblasts and were first mentioned by Takahashi et al. [12].
The insertion of four key genes (Oct3/4, Sox2, c-Myc, and Klf3) into adult cells enables
the transformation of adult cells into cells with pluripotency. Except pluripotency, the
insertion of these four genes may increase the risk of tumorigenesis for iPSCs. Thus,
the therapeutic effect of iPSCs has mainly been seen in animal studies [13,14]. Although
ESCs show a higher pluripotency than MSCs, some disadvantages restrict clinical ESC
applications, including ethical issues and tumorigenesis [2,3,12]. Based on the above
reasons, MSCs have become the most appropriate therapeutic approaches used in basic
and clinical studies. MSC therapeutic tissue regeneration modes can be divided into
the paracrine effect and differentiation. Sadat et al. [15] revealed that adipose-derived
stem cells (ADSC) release growth factors via the paracrine effect (such as VEGF and
IGF-1), and acceptance of these growth factors activates PI3K/Akt survival signaling in
damaged cardiomyocytes, leading to cardiac regeneration. Park et al. [16] confirmed that
ADSCs secret TGFβ, INFα, and G-CSF, and these factors ameliorate apoptosis signaling
in monocytes under deprivation. In addition to the paracrine effect, differentiation is
one of the main characteristics for stem cells in performing tissue regeneration. Some
papers suggest that direct stem cell contact with cardiomyocytes enables them to stimulate
stem cell differentiation into cardiomyocytes, resulting in cardiac regeneration [15,17].
Furthermore, Wang et al. [18] summarized clinical evidence and pointed out that stem-cell-
based therapy shows beneficial effects for DM patients. Four hundred ninety-seven DM
patients who received mesenchymal stem cells, showed significantly improved pathological
factors (including HbA1c, blood glucose level, c-peptide, and insulin requirement) in 3 to
12 months.

Although MSCs show therapeutic effects on diabetes, a stressful environment induced
by high glucose is capable of activating pathological signals in MSCs, leading to reduced
tissue regeneration capabilities. Ishizuka et al. [19] stated that culturing stem cells in a
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high-glucose environment will reduce HIF-1α expression and suppress the downstream
protein expression, including VEGF and PDGF-B, resulting in tissue regeneration capability
reduction. Similarly, a high-glucose environment elevated oxidative damage in stem cells,
and elevated oxidative stress increases aging marker p21 expression, leading to stem cell
senescence and a reduction in tissue regeneration capability [20,21].

Epigallocatechin gallate (EGCG) is one of the active components found in green tea.
Several studies indicated that EGCG exhibits beneficial effects on cell protection, compris-
ing antioxidant, anti-inflammation, anti-apoptosis, and anti-tumorigenesis effects [22–24].
Experimental results reveal that culturing stem cells with EGCG increases stem cell capa-
bilities, including increased antioxidant effects, increased differentiation, increased cell
proliferation, and increased survival rate under stress [25–27]. This study investigates if
the pancreatic regeneration capability of MSCs pretreated with green tea EGCG was better
than that of MSCs without EGCG pretreatment in diabetic rats receiving MSCs. Cell and
animal models were designed to verify the above hypothesis.

2. Results
2.1. Stemness Characterization for Adipose-Derived Stem Cells

The stemness of experimental cells collected from adipose tissues should be verified
before performing experiments. In Figure 1, we see the highly expressed positive marker
CD 90 (Figure 1a), the ability for adipogenesis (Figure 1b), and self-renewal markers
(Figure 1c) in the experimental cells. Therefore, the experimental cells showed stemness
and could be confirmed as adipose-derived stem cells (ADSCs).
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2.2. Viability and Protein Expression Investigation for ADSCs Cultured with Green Tea EGCG
under High-Glucose Stress

Figure 2 illustrates the viability and protein expression for ADSCs cultured with green
tea EGCG in the presence of high-glucose (HG) stress. The viability for ADSC (stem cells
alone), HG + ADSC (ADSC with HG) and HG + E-ADSC (EGCG-pre-conditioned ADSC
with HG) followed the order 100 ± 6, 56 ± 4 and 68 ± 5%, respectively (Figure 2a), and
statistical significance for ADSC > HG + ADSC (p < 0.001) as well as HG + ADSC < HG +
E-ADSC (p < 0.05) was observed. In addition, survival marker p-Akt expression for HG +
ADSC was lower than that for ADSC. By contrast, p-Akt expression for HG + E-ADSC was
higher than that for HG + ADSC (Figure 2b).
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Figure 2. Investigation of survival for ADSC in the presence of high glucose (33 mM). (a) Cell viability
and (b) expression of survival protein marker for ADSC. (*** p < 0.001, # p < 0.05).

2.3. Exploring Serum Glucose, Serum TBARS, and Pancreatic TBARS Levels for
Experimental Animals

The serum glucose level was proportional to the pancreatic damage level. In Figure 3a,
the serum glucose levels for the sham, DM (diabetic rats), DM + ADSC (diabetic rats with
receiving ADSC), and DM + E-ADSC (diabetic rats receiving EGCG-preconditioned ADSC)
were 103 ± 10, 540 ± 49, 503 ± 23, and 418 ± 28 mg/dL, respectively. Significance was
observed in groups including DM > sham (p < 0.001), DM > DM + E-ADSC (p < 0.01),
and DM + ADSC > DM + E-ADSC (p < 0.01). The TBARS level positively correlated with
oxidative damage. In Figure 3b, the serum TBARS levels for the sham, DM, DM + ADSC,
and DM + E-ADSC were 100 ± 0, 127 ± 8, 119 ± 9, and 108 ± 6% of the sham group,
respectively. Significance was observed in groups including DM > sham (p < 0.001) and
DM > DM + E-ADSC (p < 0.01). Similar results were shown for pancreatic TBARS levels.
The pancreatic TBARS levels for the sham, DM, DM + ADSC, and DM + E-ADSC were
100 ± 0, 129 ± 8, 121 ± 7, and 113 ± 9% for the sham group, respectively. Significance was
observed in groups including DM > sham (p < 0.001) and DM > DM + E-ADSC (p < 0.05).
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2.4. Screening Survival Protein Markers for Pancreatic Tissues

Western blotting analysis was applied to investigate the survival protein expression
for pancreatic tissues, including p-IGF1R, PI3K, p-PI3K, Akt, p-Akt, p-Bad, and Bcl-xL.
Compared to the sham group, all survival protein markers were suppressed in the DM
group. On the other hand, both treatment groups (DM + ADSC and DM + E-ADSC) showed
increased survival protein marker expression (Figure 4a). Furthermore, survival marker
p-Bad expression in the DM + E-ADSCgroup was significantly higher than that in the DM
+ ADSC group (DM + E-ADSC > DM + ADSC, p < 0.01 shown in Figure 4b).
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2.5. Screening the Antioxidant Sirt1 Pathway for Pancreatic Tissues

The Sirt1 antioxidant pathway, including the AMPK, p-AMPK, and Sirt1 protein
markers was investigated in this study. In Figure 5a, we see that p-AMPK and Sirt1 were
downregulated in the DM group when compared to the sham group. By contrast, both
treatment groups (DM + ADSC and DM + E-ADSC) were capable of increasing p-AMPK
and Sirt1 expression, and significant Sirt1 expression was indicated in the DM + E-ADSC
group (DM + ADSC < DM + E-ADSC, p < 0.05 shown in Figure 5b).
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2.6. Screening Apoptotic Protein Markers for Pancreatic Tissues

Apoptotic protein markers, including Fas-L, FADD, caspase 8, Bax, cytochrome C,
and caspase 3, were screened in this study. Compared to the sham group, all apoptotic
protein markers were upregulated in the DM group. By contrast, the treatment groups (DM
+ ADSC and DM + E-ADSC) could suppress these apoptotic protein markers (Figure 6a).
Among the apoptotic protein markers, FADD, caspase 8, cytochrome C, Bax, and caspase 3
were significantly suppressed in the DM + E-ADSC greater than the DM + ADSC group
(shown in Figure 6b).
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2.7. Investigation of Islet Size for Pancreatic Tissues

The islet size for pancreatic tissues was observed using HE staining (Figure 7a). From
Figure 7b, we see that the islet sizes for the sham, DM, DM + ADSC, and DM + E-ADSC
groups were 18.1 ± 0.2, 14.1 ± 0.2, 15.1 ± 0.5, and 16.2 ± 0.4 µm, respectively. Statistical
significance was found in the sham vs. DM (sham > DM, p < 0.001), DM + ADSC vs. DM
(DM + ADSC > DM, p < 0.05), DM + E-ADSC vs. DM (DM + E-ADSC > DM, p < 0.01), and
DM + E-ADSC vs. DM + ADSC (DM + E-ADSC > DM + ADSC, p < 0.05).

2.8. Exploring Fibrosis Level for Pancreatic Tissues

Masson’s trichrome stain was one of the experimental procedures used for collagen
deposition visualization in pancreatic tissues. The collagen deposition level was positively
associated with the tissue fibrosis level. Compared to the sham group, a large collagen
deposition area (blue area) was found in the DM group. By contrast, collagen deposition
was improved for both treatment groups (Figure 8a). Furthermore, TGF-beta expression
was found in the DM group when compared to the sham group. On the other hand,
significant TGF-beta suppression was observed in the DM + E-ADSC group (Figure 8b).
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3. Discussion

Pancreatic damage is the main causative agent for type 1 diabetes. Thus, pancreatic
damage recovery is critical for type 1 diabetes treatment. Stem cell therapy was applied in
this study to regenerate the damaged pancreas, leading to a decrease in serum glucose level
through pancreatic damage recovery. Before performing experiments, flow cytometry and
commercial differentiation kits were applied to confirm the stemness of the experimental
cells isolated from adipose tissues (Figure 1a–c). Further, stem cell co-culturing with green
tea EGCG confirmed that green tea EGCG is capable of increasing stem cell viability under
high-glucose stress through the survival marker p-Akt expression (Figure 2a,b). We needed
to confirm if damaged pancreas regeneration by stem cells pretreated with green tea EGCG
(called E-ADSC) was better than that from stem cells without green tea EGCG pretreatment
(called ADSC).

In order to investigate the therapeutic effect of E-ADSC (EGCG-pretreated ADSC) on
pancreatic damage, STZ was applied to animals, and type 1 diabetes was induced through
the pancreatic damage induced by STZ. Compared to the sham group, we found that
elevated serum glucose level, elevated serum oxidative stress, elevated pancreatic oxidative
stress (Figure 3a–c), suppressed survival markers (Figure 4), suppressed antioxidant Sirt1
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pathway (Figure 5), expressed apoptotic markers (Figure 6), reduced islet size (Figure 7),
and increased fibrotic signaling (Figure 8) were observed in the DM group. On the other
hand, both therapeutic groups (including DM + ADSC and DM + E-ADSC) showed
improved pathological signals, leading to recovered pancreatic damage and lowered serum
glucose level. Furthermore, E-ADSC showed significantly greater improvement in several
pathological conditions than ADSC, including lowered serum glucose level (Figure 3a),
lowered serum oxidative stress as well as pancreatic oxidative stress (Figure 3b,c), expressed
survival marker p-Bad (Figure 4a,b), expressed antioxidant marker Sirt1 (Figure 5a,b),
suppressed apoptotic markers caspase 8, Bax, cytochrome C, and caspase 3 (Figure 6a,b),
and increased islet size (Figure 7a,b). Therefore, these findings suggest that pretreating
green tea EGCG with ADSC shows better therapeutic regeneration effects on the damaged
pancreas than ADSC without green tea EGCG pretreatment.

Based on a literature review, we know that elevated oxidative stress can be observed
in the diabetic environment, and elevated oxidative stress can trigger various pathological
signals in beta cells, including apoptosis and fibrosis. El-Huneidi et al. [28] stated that
elevated ROS suppresses the survival marker p-Akt in INS-1 ells (rat beta cell line) under
a high-glucose environment, leading to apoptosis in INS-1 cells. By contrast, increased
INS-1 cell viability was observed by decreasing ROS through p-Akt upregulation. In
addition, Nahdi AMTA et al. [29] stated that streptozotocin (STZ) induces beta cell apoptosis
through oxidative stress elevation. Thus, STZ inducing ROS production should be the
upstream apoptosis marker activator as well as survival marker suppressor and should be
downstream of the cellular signals associated with beta cell damage induced by STZ or the
diabetic condition. Furthermore, Roy et al. [30] revealed that ROS triggers TGFβ pathway
activation in pancreatic cells, leading to fibrosis in pancreatic tissue in diabetic rats. ROS
blockage increases pancreatic cell viability and suppresses the fibrosis status in diabetic
rats via TGFβ pathway downregulation. Similar results were found in the following study.
Leung PS. [31] indicated that the diabetic condition changes the local renin-angiotensin
system (RAS) in the pancreas, and changes in local RAS causes oxidative stress, leading to
pancreatic tissue fibrosis. From the above, we conclude that hyperglycemia elevates ROS
production (Figure 3), and increased ROS activates pancreatic cell apoptosis (Figure 6) as
well as fibrosis formation (Figure 8). These findings are consistent with previous studies,
and a suggestive signal pathway is shown in Figure 9.

Elevated ROS plays a crucial role in triggering pathological signals in hyperglyce-
mia/diabetic status. Thus, ROS neutralization should be critical in preventing pancreatic
tissue damage. Chen et al. [32] pointed out that high glucose causes beta cell damage
through ROS production and Sirt1 suppression. Neutralizing ROS by adding antioxidant
berberine is capable of expressing Sirt1, leading to beta cell survival. Therefore, this
study demonstrates that ROS is the upstream signal and Sirt1 is the downstream signal
in high-glucose-induced beta cell damage. From Figure 3c, a significant ROS reduction
was found in DM + E-ADSC. Furthermore, Figure 5a illustrates that significant Sirt1
expression upregulation was found in DM + E-ADSC. These findings may imply that
E-ADSC transplantation upregulates Sirt1 expression in pancreatic tissue in diabetic rats.
Chen et al. [33] stated that ADSC precondition with resveratrol increases stem cell functions,
including migration and paracrine effects. Increased ADSC function accelerates cardiac
regeneration in diabetic rats with cardiomyopathy through Sirt1/p-Akt axis activation.
The above mentioned findings may imply that ADSC is capable of upregulating Sirt1
expression in damaged cardiomyocytes through the paracrine effect. This study speculates
that ADSC pretreatment with EGCG increases the stem cell paracrine effect. This increased
stem cell paracrine effect can accelerate Sirt1 expression in damaged pancreatic cells. Sirt1
upregulation leads to antioxidant gene expression, such as SOD and HO-1, resulting in
neutralizing ROS and pathological signaling blockage, including apoptosis and fibrosis
(shown in Figure 10).
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In summary, although ADSC preincubation with green tea EGCG shows clinical
potential in the treatment of pancreatic tissue damage through increased stem cell paracrine
effect and ROS blockage by antioxidant Sirt1 expression, the mediators associated with the
paracrine effect and Sirt1 expression should be further studied in the future to elucidate the
signaling between stem cells and pancreatic cells.
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4. Materials and Methods
4.1. Chemicals and Reagents

All chemicals and reagents used in this study were purchased from Merck (Merck
KGaA, Darmstadt, Germany). The antibodies used in this study were purchased from
different manufactures including CD90 and CD45 (BD Biosciences, East Rutherford, NJ,
USA); p-Akt, p-IGF1R, PI3K, p-PI3K, Akt, p-Bad, Bcl-xL, Fas-L, and FADD (Cell Signal-
ing Technology, Danvers, MA, USA); b-actin, AMPKa, p-AMPKa, and Sirt1 (Santa Cruz
Biotechnology, Dallas, TX, USA); and Caspase-8 and TGF-b (Promega-US).

4.2. Isolation and Culture of Adipose-Derived Stem Cells (ADSCs)

The stem cells used in this study were collected from rat adipose tissues. Briefly,
epididymal fat tissues were minced and digested with digestion solution containing 0.2%
type 2 collagenase (in phosphate-buffered saline) under 37 ◦C for 3 h. After digestion,
the mixture solution was centrifugated and the pellet was collected. The pellet was then
resuspended and cultured in a medium containing 10% fetal bovine serum, 2 mM L-
glutamine, 100 U/mL penicillin, and 100 ug/mL streptomycin at 37 ◦C with 5% CO2.

4.3. Stem Cell Characterization

The pluripotency of stem cells under passage 1 to 2 used in this study was analyzed
using surface markers, self-renewal proteins, and differentiation capability. In this study,
CD 90 served as the positive marker and CD 45 served as the negative marker. The surface
marker analysis was conducted using flowcytometry (FACSAria III, BD Biosciences, East
Rutherford, NJ, USA). The determination of the differentiation capability of stem cells was
performed using the mesenchymal adipogenesis kit (Merck KGaA, Darmstadt, Germany)
based on the manufacturer’s instructions. Briefly, cells were cultured in adipogenesis
medium at less than 37 ◦C for 21 days. After culturing, cells were stained with Oil Red O
staining solution, and the appearance of red cells indicated that the stem cells showed the
capability to differentiate into adipocytes.

4.4. MTT Cell Viability

The MTT assay determined cell viability. Briefly, cells were cultured in MTT solution
under 37 ◦C for 3 h. After incubation, cells with purple color were formed due to the
reaction between the MTT reagent and mitochondria in viable cells. The purple cells were
then extracted by adding isopropyl alcohol and the optical density (OD) was read using
an ELISA reader with a wavelength of 570 nm. The OD value was proportional to the
cell viability.

4.5. Animal Model

Male Wistar rats (8 weeks old, 200~250 g) were purchased from BioLASCO (Ilan
city, Ilan, Taiwan). The experimental rats were divided into four groups, including sham
(without treatment), DM (rats with STZ 50 mg/kg treatment), DM + ADSC (DM rats
with transplantation of adipose-derived stem cells, ADSC), DM + E-ADSC (DM rats with
transplantation of EGCG-preincubated ADSC, E-ADSC). In the DM, DM + ADSC, and DM
+ E-ADSC groups, all the diabetic rats were selected in accordance with blood glucose over
200 mg/dL. ADSC or E-ADSC (1 × 106 cells/rat) were dispensed in 0.5 mL of phosphate-
buffered saline (PBS) and injected using a 1 mL injection syringe with 27G (1/2” inch)
needle via the tail vein for 2 months. All rats were housed at the experimental animal center
(China Medical University) with a constant temperature and light cycle (light provided
from 7:00~18:00). Food and water were provided ad libitum. The animal model in this
study was designed according to the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and was approved by the Institutional Animal Care and Use
Committee of China Medical University (IACUC-2016–208).
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4.6. Blood Glucose Determination

Blood samples taken from the animal tail vein were measured for blood glucose
level using examination chips (Accu-Chek Active, F. Hoffmann-La Roche Ltd., Little Falls,
NJ, USA).

4.7. Oxidative Stress for Plasma and Tissue Determination

Thiobarbituric acid (TBA) can react with oxidized lipoproteins or lipids to form TBA-
reactive substances (TBARS). Briefly, cell lysates were mixed with TBA solution in vials
and incubated at 85 ◦C for 90 min. After incubation, n-butanol was added to each vial and
mixed. The vials were then centrifuged at less than 3000 rpm for 10 min and 150 uL of
n-butanol was transferred into a 96-well plate. The optical density (OD) was read using an
ELISA reader with a wavelength of 520 nm. The OD values were proportional to the level
of oxidative stress.

4.8. Western Blotting Analysis

The purpose of Western blotting analysis was to identify and quantify the target
protein expression. Briefly, 40 µg of protein samples were transferred into SDS gel and
separated under constant voltage (70 V). The SDS gel was then placed onto a polyvinylidene
difluoride (PVDF) membrane with a constant voltage to perform the protein transfer. After
the protein was transferred, the PVDF membrane was placed in an albumin solution. The
membrane was then incubated in a solution containing primary and secondary antibodies.
Finally, the protein bands on the membrane were visualized using a fluorescent detector
(Fujifilm LAS-3000, GE Healthcare). The protein band intensity was measured using
ImageJ software.

4.9. HE Stain for Pancreatic Tissues

The tissue morphology was observed using HE staining. Briefly, the protocol for
HE-stained tissue slides included dewaxing the slides using xylene, rehydrating the slides
using distilled water, staining nuclei using hematoxylin solution, differentiating the nuclei
using acid alcohol, staining the background using eosin solution, and dehydrating the
slices using xylene. After dehydration, the tissue slides were observed using a microscope.

4.10. Masson’s Trichrome Stain for Pancreatic Tissues

Fibrotic collagen deposition in the tissues was observed as a blue color using Masson’s
trichrome stain. Briefly, tissue slides were dehydrated using alcohol, washed using distilled
water, stained using Weigert’s working solution, washed using distilled water, stained
using Biebrich scarlet-acid fuchsin solution, washed using distilled water, differentiated
using phosphomolybdic-phosphotungstic acid solution, incubated in Aailine blue solution,
washed using distilled water, incubated in acetic acid solution, and dehydrated using
alcohol. After dehydration, the tissue slides were observed using a microscope.

4.11. Statistical Analysis

All data were expressed as means (n = 3) ± SD (standard deviations). A one-way
ANOVA was applied to calculate the significance between groups. Statistical significance
was considered at the level of p < 0.05.
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