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Abstract

A new disease, termed severe acute respiratory syndrome (SARS), emerged at the end of 2002 and caused profound disturbances in over
30 countries worldwide in 2003. A novel coronavirus was identified as the aetiological agent of SARS and the 30 kb viral genome was
deciphered with unprecedented speed in a coordinated manner by the global community. Since then, much progress has been made in the
virological and molecular characterization of the proteins encoded by SARS-coronavirus (SARS-CoV) genome, which contains 14 potential
open reading frames (ORFs). These investigations can be broadly classified into three groups: (a) studies on the replicase1a/1bgene products
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hich are important for viral replication, (b) studies on the structural proteins, spike, nucleocapsid, membrane and envelope, w
omologues in all coronaviruses, and are important for viral assembly and (c) expression and functional studies of the “accesso

hat are specifically encoded by SARS-CoV. A comparison of the properties of these three groups of SARS-CoV proteins with the
hat coronavirologists have generated over more than 30 years of research can help us in the prevention and treatment of SARS
f the re-emergence of this new infectious disease.
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. Introduction

The recent severe acute respiratory syndrome (SARS) epi-
emic, which affected over 30 countries across five conti-
ents, has profoundly disturbed social and economic activ-

ties regionally, as well as globally. By the end of the epi-
emic, which was essentially controlled by isolation, more

han 8000 cases have been reported with more than 800 fa-
alities (World Health Organization,http://www.who.int/csr/
ars/country/en/). The concerted efforts of the scientific com-
unity led to an extraordinarily rapid identification of a
ovel coronavirus as the aetiological agent of SARS and the

ull genome sequencing of the virus (Drosten et al., 2003;
ouchier et al., 2003; Ksiazek et al., 2003; Marra et al., 2003;
eiris et al., 2003; Rota et al., 2003; Ruan et al., 2003). The
ARS-coronavirus (SARS-CoV) genome is∼30 kb in length

∗ Corresponding author. Tel.: +65 65869625; fax: +65 67791117.
E-mail address:mcbtanyj@imcb.a-star.edu.sg (Y.-J. Tan).

and contains 14 potential open reading frames (ORFs) (Marra
et al., 2003; Thiel et al., 2003).

Coronaviruses are positive-strand RNA viruses and
virion consists of a nucleocapsid core surrounded by a
velope containing three membrane proteins, spike (S), m
brane (M) and envelope (E) that are common to all m
bers of the genus (Siddell, 1995; Lai and Holmes, 200).
The RNA is packaged by the nucleocapsid (N) protein
a helical nucleocapsid. The S protein, which forms morp
logically characteristic projections on the virion surface,
diates binding to host receptors and membrane fusion. T
protein is a triple-spanning integral membrane protein w
short ectodomain and a large carboxyl-terminus endodom
More recently, the E protein was shown to play a major
in coronavirus assembly (Bos et al., 1996; Vennema et a
1996). The genes for these structural proteins and
replicase1a/1b gene, that is located at the 5′ end of the
genome and constitute 2/3 of it, are conserved am
the subgroups of coronavirus so is their relative p
166-3542/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.antiviral.2004.10.001
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tion in the genome (Siddell, 1995; de Vries et al., 1997;
Lai and Cavanagh, 1997; Lai and Holmes, 2001). In addition,
there are group-specific “accessory” proteins, which are usu-
ally dispensable for viral replication but may be important
for viral–host interactions. These accessory proteins vary in
size and position in the genome.

This review summarizes present knowledge on the SARS-
CoV viral proteins: their expression, cellular localization and
effects on cellular functions. Expeditious research on SARS-
CoV resulted in simultaneous publications from independent
laboratories and this leads to a confusing array of nomencla-
tures used for the various viral proteins. In order to consoli-
date the information from different publications, this review
will adopt the nomenclatures used bySnijder et al., 2003and
Thiel et al., 2003, as they are most consistent with those used
for other coronaviruses. Alternate names that have been used
in specific publications will be noted in parentheses.

2. Replicase gene (ORFs1aand 1b)

Analogous to other coronaviruses, the first 2/3 of the
SARS-CoV genome encodes the viral replicase genes (ORFs
1aand1b), which translates into two large polyproteins, pp1a
(486 kDa) and pp1ab (790 kDa) (Thiel et al., 2003). Expres-
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et al., 2003). Recombinant SARS-CoV helicase has multiple
enzymatic activities, including RNA helicase, DNA helicase,
NTPase, dNTPase and an RNA 5′-triphosphatase activities
(Tanner et al., 2003; Thiel et al., 2003; Ivanov et al., 2004).
In addition, the crystal structure of SARS-CoV nsp9, which
has no designated function, has been solved and it has been
shown to bind RNA as well as another non-structural pro-
tein, SARS-CoV nsp8 (Campanacci et al., 2003; Sutton et
al., 2004). The SARS-CoV nsp9 may have a similar func-
tion as the nsp9 protein of mouse hepatitis virus (MHV), a
Group 2 coronavirus, which colocalized and interacted with
other proteins of the replication complex (Bost et al., 2000;
Brockway et al., 2003). For the remaining non-structural pro-
teins produced from pp1a or pp1ab, putative activities have
been predicted based on the presence of functional domains
in their sequences or by their structural similarities to other
proteins (Gao et al., 2003a; Snijder et al., 2003; von Grotthuss
et al., 2003; Fig. 1A).

3. Structural proteins (S, E, M and N)

The S protein of coronavirus is important for binding to
cellular receptor and for mediating the fusion of viral and host
membranes, both of these processes being critical for virus
e
s une
r ,
2 t
h otec-
t sfer
o hem
f s
n re-
i like
t toni-
t o-
t nses
a ,
2 r vi-
r as
a arrier
v ;
B al.,
2 onse
a ring
S

ase
a es-
s d (
e bse-
q rox-
i ain
( 04
I iral
r an-
ion of the ORF 1b-encoded region of pp1ab involves r
omal frameshifting into the−1 frame just upstream of th
RF 1a translation termination codon (Thiel et al., 2003).
roteolytic processings of these polyproteins are med
y viral cysteine proteinases and produces a minimum
on-structural proteins (also called nsp’s), some of which
esponsible for replicating the viral genome and/or gen
ng a nested set of subgenomic mRNAs to express a
RFs downstream of ORF 1b (Ziebuhr et al., 2000). Unlike
ost coronaviruses, which uses three proteinases for po

ein processing (Ziebuhr et al., 2000; Gorbalenya, 200),
ARS-CoV is predicted only to have two proteinases, w
re a papain-like (accessory) cysteine proteinase (term
L2pro), which cleaves at 3 sites, and a 3C-like (main) p

einase (termed 3CLpro or Mpro), which cleaves at 11 sit
Rota et al., 2003; Gao et al., 2003a; Snijder et al., 2003;
t al., 2003). As a result, 16 non-structural proteins (Fig. 1A)
re predicted but which of these are essential for the r
ation of the virus remain to be determined. The protei
ctivity of 3CLpro was also experimentally demonstrated
urified 3CLpro was shown to cleave peptides covering

he 11 predicted cleavage sites (Fan et al., 2004). In addition,
he three-dimensional structure of 3CLpro was also solve
y both crystallography and NMR spectroscopy (Yang et al.
003; Shi et al., 2004). Both studies reported that 3CLpro ex-

sts as a dimer and revealed fine conformational details
nteraction with substrates, thus providing a basis for rati
rug design.

Another protein that is likely to be important for vir
eplication is the SARS-CoV helicase (also called nsp1
nijder et al., 2003or nsp10 inGao et al., 2003aandTanner
ntry into host cells (Gallagher and Buchmeier, 2001). As
uch, S is known to be responsible for inducing host imm
esponses and virus neutralization by antibodies (Holmes
003; Navas-Martin and Weiss, 2003). For SARS-CoV, i
as been demonstrated that prior infection provided pr

ive immunity in a mouse model and the passive tran
f neutralizing antibodies to naive mice also protected t

rom infection (Subbarao et al., 2004). Importantly, there wa
o enhancement of SARS-CoV infection in mice upon

nfection or after the administration of immune serum, un
he case for one coronavirus, the feline infectious peri
is virus (Olsen, 1993). A DNA vaccine encoding the S pr
ein alone induced T cell and neutralizing antibody respo
nd protected mice from SARS-CoV infection (Yang et al.
004), suggesting the S is indeed the primary target fo
al neutralization in SARS-CoV infection. This finding w
lso confirmed by several studies that use surrogate/c
iruses to express S in mice or primates (Gao et al., 2003b
isht et al., 2004; Buchholz et al., 2004; Bukreyev et
004). From these studies, it is clear that humoral resp
gainst S plays an important role in controlling and clea
ARS-CoV infection.
In addition, a host cell receptor, the carboxypeptid

ngiotensin-converting enzyme-2 (ACE-2), which is an
ential regulator of heart function, has also been identifieLi
t al., 2003). At least three independent laboratories su
uently showed that a domain in the N-terminus of S, app

mately 300–510 amino acids, is the receptor binding dom
Xiao et al., 2003; Babcock et al., 2004; Wong et al., 20).
mportantly, syncytia formation/membrane fusion and v
eplication can be specifically inhibited by an anti-ACE-2
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tibody (Li et al., 2003) or a fragment containing the receptor
binding domain (Wong et al., 2004) or antibodies recogniz-
ing the receptor binding domain (Sui et al., 2004; Chou et al.,
2004).

The coronavirus S protein is a class I virus fusion protein
and contains two regions with a 4, 3 hydrophobic (heptad)
repeat in S2 domain or C-terminus half of the protein (de
Groot et al., 1987; Bosch et al., 2003). These domains (termed
as HR1 and HR2) are thought to play an important role in
defining the oligomeric structure of S and hence mediating
the fusion between viral and cellular membranes (Eckert and
Kim, 2001). For the SARS-CoV, HR2 is located close to the
transmembrane anchor (1148–1193 amino acids) and HR1
is ∼140 amino acids upstream of it (900–1005 amino acids)

(Ingallinella et al., 2004). Biochemical studies have shown
that peptides corresponding to the HR1 and HR2 of SARS-
CoV S protein can associate into an anti-parallel six-helix
bundles with structural features typical of class I fusion pro-
teins, suggesting that the membrane fusion and cell entry
mechanisms exploited by SARS-CoV are similar to that for
other coronaviruses (Bosch et al., 2004; Ingallinella et al.,
2004; Liu et al., 2004b; Tripet et al., 2004; Yuan et al., 2004;
Zhu et al., 2004). In the full-length S protein, the HR1–HR2
structure brings the fusion peptide, predicted to be near the
N-terminus of HR1 (Bosch et al., 2004), in close proximity
to the transmembrane domain and this drives the fusion be-
tween viral and cellular membranes, and allows the virus to
entry the cell. Indeed, peptides from HR1 or HR2 can inhibit
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as N. The expression of 3b, 7b and 9b may be via “leaky scanning” by ribosomes
rule out that they may also be expressed from the synthesis of yet undetected
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Fig. 1. (Continued).

viral replication in Vero E6 culture, presumably by interfer-
ing with the formation of the six-helix bundle (Bosch et al.,
2004; Liu et al., 2004b; Yuan et al., 2004; Zhu et al., 2004).

Studies on the profile of antibodies in SARS patients
showed that antibodies against M and E are generally low
or not present in SARS patient’s sera (Wang et al., 2003;
Guo et al., 2004; Leung et al., 2004; Tan et al., 2004b) as
these proteins are embedded in the viral envelope. However,
it is clear that M and E are important for viral assembly as
demonstrated by the formation of virus-like particles in insect
cells expressing these proteins (Ho et al., 2004). This result
is consistent with previous studies on coronaviruses, which
showed that M and E are sufficient for the assembly of viral
particles (Bos et al., 1996; Vennema et al., 1996). By using
a proteomic approach, a novel phosphorylated site of M was
also identified (Zeng et al., 2004a), but the importance of this
for the function of M has not been defined.

The N protein has been shown to be very abundant in
SARS-CoV infected Vero E6 cells (Krokhin et al., 2003; Rota
et al., 2003) and several independent studies have shown that
>90% of sera obtained from convalescent SARS patients have
antibodies against N (Shi et al., 2003; Wang et al., 2003; Guo
et al., 2004; Leung et al., 2004; Tan et al., 2004b). In addi-
tion, as N is not glycosylated, easily expressed in bacteria and
highly immunogenic, it is an ideal candidate for development

of enzyme-linked immunosorbent assays for the detection of
SARS-CoV infection, either for detection of anti-N antibod-
ies (Shi et al., 2003; Guan et al., 2004a) or for direct antigen
detection (Che et al., 2004; Lau et al., 2004). In addition, it
was reported that the SARS-CoV N can induce specific T-
cell responses (Gao et al., 2003b; Kim et al., 2004), as have
been observed with other coronaviruses (Siddell, 1995), but
how important is this for protective immunity remains to be
determined.

Other molecular aspects of N have also been reported,
including self-dimerization (He et al., 2004; Surjit et al.,
2004a), RNA-binding capabilities (Huang et al., 2004), cleav-
age by caspase 3 (Ying et al., 2004) and its ability to activate
signal transduction pathways (He et al., 2003). In addition,
the N protein of SARS-CoV was shown to induce apoptosis
and actin reorganization in mammalian cells under stressed
conditions (Surjit et al., 2004b). Interestingly,Mizutani et al.
(2004)showed that the p38MARK pathway is activated in
SARS-CoV infected Vero E6 cells, but it is not clear if this is
directly/entirely due to the expression of N. The N proteins
of other coronaviruses, including avian infectious bronchitis
virus, porcine transmissible gastroenteritis virus and mouse
hepatitis virus, are localized to both cytoplasm and nucleolus,
and the presence of N in the nucleolus may be important for
the synthesis of viral RNA (Hiscox et al., 2001; Wurm et al.,
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2001). For SARS-CoV N protein, it has been reported to be
found in the cytoplasm and nucleus of SARS-CoV infected
cells (Chang et al., 2004; Zeng et al., 2004a).

4. Group-specific genes

Eight subgenomic mRNAs are produced in SARS-CoV
infected Vero E6 cells and these are used to express the ORFs
besides the replicase 1a/1b (Snijder et al., 2003; Thiel et al.,
2003). These include the S (ORF 2), E (ORF 4), M (ORF
5) and N (ORF 9) and another eight ORFs that encode puta-
tive proteins with no significance sequence homology to viral
proteins of other coronaviruses (ORF 3a, 3b, 6, 7a, 7b, 8a, 8b
and 9b) (Fig. 1B). Of these SARS-CoV-unique ORFs, two
of them (3a and 7a) have been shown to be expressed during
SARS-CoV infection (Fielding et al., 2004; Tan et al., 2004c;
Yu et al., 2004; Zeng et al., 2004b) and antibodies against an-
other four of them (3b, 7b, 8a and 9b which were termed as
ORF 4, 9, 10 and 13, respectively, inGuo et al., 2004) have
been detected in the sera of convalescent patients, suggesting
that these proteins were expressed during infection in vivo.

3a (also termed as ORF 3 inMarra et al., 2003andGuo et
al., 2004, as X1 inRota et al., 2003and as U274 inTan et al.,
2004b,c) is the largest of these unique ORFs and consists of
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al., 1990; Vennema et al., 1990). Indeed,Zeng et al. (2004b)
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ing with highly purified SARS-CoV virions as viral proteins
could also be released into the medium through cells lysis.
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omains. Three groups independently reported the ex
ion of 3a in SARS-CoV infected cells (Tan et al., 2004c
u et al., 2004; Zeng et al., 2004b) and it is also detecte

n a SARS-CoV infected patient’s lung specimen (Yu et al.,
004). Antibodies against 3a were also found in convales
atients (Guo et al., 2004; Tan et al., 2004b; Yu et al., 20
eng et al., 2004b). 3a is localized in the perinuclear reg
nd is also transported to the cell surface, where it can
ergo internalization (Tan et al., 2004c; Yu et al., 2004). It is

ntriguing to find that SARS-CoV has evolved to expre
iral protein with endocytotic properties, as endocytosis
een shown to play important roles in the replication
umber of viruses as well as their adaptation to the host
Marsh and Pelchen-Matthews, 2000). The transportation o
a to the cell surface depends on a region in the cytopla
omain that contains two different sorting motifs, a Yx�
where x is any amino acids and� is an amino acid with
ulky hydrophobic sidechain) upstream of a ExD (diaci
otif (Tan et al., 2004c). The diacidic motif is required fo
fficient ER export (Nishimura and Balch, 1997) while the
xx� motif has been implicated in directing protein loc

zation to various intracellular compartments (Bonifacino and
raub, 2003). The juxtaposition of these two motifs appe

o be important for the transport of proteins to the pla
embrane (Bannykh et al., 1998).
The topology of 3a was determined experimentally: it

erminus is facing the extracellular matrix and its C-term
s facing the cytoplasm (Tan et al., 2004c). Interestingly, whe
iu et al. (2004a)used phage-display technology to cha

erize B cell epitopes recognized by antibodies from SA
he presence of quasi-species, as comparative analysis
ifferent isolates of SARS-CoV also showed high freque
f mutations in the3a gene (Chen et al., 2003; Tan et a
004b; Yeh et al., 2004; Zeng et al., 2004b). In fact, sequenc
omparison of isolates from different clusters of infec
howed that both S and 3a showed positive selections d
irus evolution, implying that these proteins play impor
oles in the virus life cycle and/or disease developmen
as termed as X1 inGuan et al., 2004b; Yeh et al., 200
eng et al., 2004b).

The other ORF that has been shown to be express
ARS-CoV infected cells is 7a, which contains a cleav
ignal peptide at the N-terminus and a transmembran
ain near the C-terminus (7a was also known as ORF
arra et al., 2003, as X4 inRota et al., 2003and as U122 i
ielding et al., 2004; Tan et al., 2004c). An endoplasmic retic
lum (ER) retrieval motif (KRKTE), which is important f

ransport of proteins back to the ER (Teasdale and Jackso
996), is located at the C-terminus cytoplasmic domain o
nd mediates the recycling of 7a between the ER and G
pparatus such that 7a is present in the intermediate com
ents, where coronaviruses are known to assemble an

Fielding et al., 2004). Interestingly 7a can also interact w
a, which can interact with M, E and S, suggesting that t
iral proteins may form complexes during infection (Tan et
l., 2004c).

In addition, the over-expression of 7a induces apop
ia a caspase-dependent pathway, and in cell-lines de
rom different organs, including lung, kidney and liver (Tan
t al., 2004a). Although there are other factors that contrib

o the induction of apoptosis during SARS-CoV infection,
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ability of 7a to induce apoptosis in different cell-types is con-
sistent with the clinical observation of apoptosis in different
organs infected by SARS-CoV and suggests that the expres-
sion of 7a during infection may be one of the underlying
mechanisms for the pathogenesis of SARS-CoV infection.

Group-specific genes in coronaviruses, also called “acces-
sory” proteins, are usually dispensable for viral replication
in cell culture systems but may be important for viral–host
interactions and thus contribute to viral stability and/or patho-
genesis in vivo. For example, although the7bgene of feline
coronavirus is easily lost upon virus adaptation to cell cul-
ture, it is strictly maintained in naturally occurring strains and
its loss was correlated with reduced virulence (Herrewegh et
al., 1995). Recent studies also showed that some of these
group-specific genes are not essential for viral replication in
cell culture, but their deletion, by reverse genetics, is attenu-
ating in the natural host (de Haan et al., 2002; Ortego et al.,
2003). It has not yet been established which of these SARS-
CoV-unique ORFs are essential for viral replication and/or
for viral–host interactions.

5. Future directions
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ult of this, the ORF 8a (termed as ORF 10 inGuan et al.
003) and 8b (termed as ORF 11 inGuan et al., 2003) in the
-

,

ould certainly reveal more about the contributions of
ividual viral proteins. Although SARS-CoV caused li
r no disease in mice, it is able to replicate in the res

ory tract of the mice to a high level (Subbarao et al., 200
entworth et al., 2004). Together with the technologies

reate transgenic or knockout mice, the mouse mode
ontribute to the developments of vaccines and anti-viral
peutics against SARS-CoV infection and may also he
nderstand why certain cohorts of patients are more vul
le to the disease while others only develop mild sympto

n addition, experimentally SARS-CoV infected cats, fer
nd primates can develop at least some of the clinical s

oms observed in SARS-CoV infected patients (Martina et
l., 2003; Kuiken et al., 2004). Thus, these animal mode
ill be essential for studying virus-host interactions and
elineating the precise contributions of the viral protein
ARS-CoV infection, replication and pathogenesis.
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