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Abstract
Purpose The application of automated image analyses could improve and facilitate standardization and consistency of quan-
tification in  [18F]DCFPyL (PSMA) PET/CT scans. In the current study, we analytically validated aPROMISE, a software as 
a medical device that segments organs in low-dose CT images with deep learning, and subsequently detects and quantifies 
potential pathological lesions in PSMA PET/CT.
Methods To evaluate the deep learning algorithm, the automated segmentations of the low-dose CT component of PSMA 
PET/CT scans from 20 patients were compared to manual segmentations. Dice scores were used to quantify the similari-
ties between the automated and manual segmentations. Next, the automated quantification of tracer uptake in the reference 
organs and detection and pre-segmentation of potential lesions were evaluated in 339 patients with prostate cancer, who were 
all enrolled in the phase II/III OSPREY study. Three nuclear medicine physicians performed the retrospective independent 
reads of OSPREY images with aPROMISE. Quantitative consistency was assessed by the pairwise Pearson correlations 
and standard deviation between the readers and aPROMISE. The sensitivity of detection and pre-segmentation of potential 
lesions was evaluated by determining the percent of manually selected abnormal lesions that were automatically detected 
by aPROMISE.
Results The Dice scores for bone segmentations ranged from 0.88 to 0.95. The Dice scores of the PSMA PET/CT reference 
organs, thoracic aorta and liver, were 0.89 and 0.97, respectively. Dice scores of other visceral organs, including prostate, 
were observed to be above 0.79. The Pearson correlation for blood pool reference was higher between any manual reader and 
aPROMISE, than between any pair of manual readers. The standard deviations of reference organ uptake across all patients 
as determined by aPROMISE (SD = 0.21 blood pool and SD = 1.16 liver) were lower compared to those of the manual read-
ers. Finally, the sensitivity of aPROMISE detection and pre-segmentation was 91.5% for regional lymph nodes, 90.6% for 
all lymph nodes, and 86.7% for bone in metastatic patients.
Conclusion In this analytical study, we demonstrated the segmentation accuracy of the deep learning algorithm, the consist-
ency in quantitative assessment across multiple readers, and the high sensitivity in detecting potential lesions. The study 
provides a foundational framework for clinical evaluation of aPROMISE in standardized reporting of PSMA PET/CT.

Keywords aPROMISE · Segmentation · Standardized reporting · PSMA PET/CT evaluation

Introduction

Prostate cancer is the most common solid tumor in men, 
with 1,094,916 incidence cases and 307,481 deaths esti-
mated globally in 2012 [1]. The accurate detection of the 
disease and its subsequent staging are critical for selection 
of appropriate treatment strategies. Especially the differ-
entiation between those with localized or regional disease 
who can be treated with curative intent versus those with 
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metastatic disease is crucial. Whether or not surgery, radia-
tion, and/or systemic treatments are appropriate for a given 
patient is driven in large part by the clinical stage [2]. Tar-
geted molecular imaging with positron emission tomogra-
phy/computed tomography (PET/CT) is a highly versatile 
imaging technology to inform staging and management deci-
sions for patients with a variety of cancers.

In prostate cancer, PET tracers targeting prostate-spe-
cific membrane antigen (PSMA) have demonstrated high 
diagnostic accuracy for the detection of both regional and 
distant metastatic prostate cancer [3, 4]. The higher sensi-
tivity and specificity of PSMA PET in detecting metastatic 
prostate cancer will have strong implications in management 
of patients. To demonstrate the association of PSMA imag-
ing with clinical outcome, there is an urgent need to stand-
ardize PSMA assessment. Recent efforts in standardizing 
the assessment of PSMA scans have resulted in proposals 
for lesion characterization and reporting—EANM, PSMA-
RADS, and PROMISE criteria [5–7]. While all the proposed 
criteria are focused on the characterization of individual 
PSMA lesions based on the location and the definition of 
significant uptake, the PROMISE standard is also propos-
ing a patient level classification (miTNM), which is based 
on the total burden and its location of the disease in the 
PET/CT image. A recent study comparing such standard-
ized assessments has shown that they have high inter-reader 
reproducibility [8].

However, the adoption and implementation of these 
standards in routine clinical practice is limited by the fact 
that the adherence to these guidelines is a manual and a 
labor-intensive process. The manual work can be greatly 
facilitated through automated image analysis. The struc-
tural radiological processes, including the segmentation of 
anatomical structures (from CT), can be automated to con-
textualize and characterize the functional imaging. Know-
ing the anatomical context is needed both for normal tissue 
reference uptake estimation as well as accurate detection of 
potential lesions, since uptake in the lesion as well as in the 
background may differ between tissues.

Deep learning organ segmentations in CT have been 
used in automated analyses of PSMA PET to exclude 
physiological uptake in certain high-uptake organs when 
detecting PSMA-positive lesions and estimating tumor 
burden. However, achieving high sensitivity while limiting 
the number of false positives outside these organs remains 
challenging. Previous lesion detection approaches for 
PSMA-PET [9, 10] used a liver uptake-based threshold to 
select possible lesions in patients with advanced prostate 
cancer. Such methodologies likely capture most lesions 
with tracer uptake more than the liver but cannot be used 
to detect PSMA avid disease in general, as many lesions 
have a  SUVmax below the threshold of mean liver uptake. 
Others have presented deep learning-based methods for 

detection and segmentation of possible lesions [11, 12]. In 
automated image analysis, blob detection algorithms are 
commonly used to detect salient regions in images [13], 
and the use of such methods has the potential to capture 
lesions with maximal standardized uptake value (SUV) 
below liver uptake. Blob detection algorithms would 
also have the capacity to detect lesions in, e.g., uncom-
mon locations, or with unusual uptake patterns and could 
also be easily extended to handle a wider range of tracers, 
somethings deep learning-based methods may struggle 
with.

An additional issue with threshold-based lesion seg-
mentation is that in lesions with low or subtle uptake, a 
rigid rule of segmenting based on 50% or 30% of  SUVmax 
of the lesion, would result in inaccurate over-segmenta-
tion. High uptake adjacent to lesions, for example in intes-
tines, also confounds threshold-based segmentation. The 
fast marching method, used for segmentation in a wide 
variety of tasks [14], can be employed for lesion segmenta-
tion in this setting to avoid these problems.

To overcome the technical challenges and to assist 
readers in adhering to the standardized guidelines for the 
implementation of PSMA imaging, we have developed 
aPROMISE—automated Prostate Molecular Imaging 
Standardized Evaluation. aPROMISE is a CE marked 
software as a medical device that employs deep learn-
ing technology to automate the segmentation of organs in 
low-dose CT images and quantifies the mean tracer uptake 
in the reference organs. Subsequently, aPROMISE uses 
blob detection and fast marching methodology to detect 
and segment regions of interest as potential pathological 
lesions in PSMA PET/CT. The intent of aPROMISE is 
to reduce the laborious task and to assist the readers in 
standardizing the PSMA imaging assessment. Therefore, 
in the application, it is the physicians that still must review 
the image and make the selection for the lesions. However, 
when the physician makes the call that a lesion needs to be 
marked as suspicious, then the technology facilitates the 
standardization of assessment by automating the labori-
ous task of localization, segmentation, and quantification. 
The illustrative workflow has been demonstrated in sup-
plemental Figure 1.

The aPROMISE workflow has demonstrated low inter-
reader variability and high efficiency in the quantification 
and staging of intermediate to high-risk prostate cancer [15]. 
In the current study, we intend to analytically evaluate the 
technical performance of aPROMISE. The objective of the 
study is threefold: (1) to evaluate the accuracy of the auto-
mated organ segmentation applied to low-dose CT scans, 
(2) to evaluate the consistency of the automated quantitative 
tracer uptake in reference organs of PSMA PET/CT, and (3) 
to evaluate the sensitivity of automated detection of potential 
lesions in PSMA PET/CT.
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Materials and methods

Study data and design

The study is retrospective in nature to evaluate the per-
formance characteristics of the aPROMISE platform. The 
study data, the training and tuning data, and the study 
design are defined in detail below. The objectives and end-
point analysis for each of the three analytical studies are 
summarized in Table 1. The investigations that generated 
the PSMA PET/CT received approval from the respec-
tive local institutional review boards (detailed in sections 
below).

Study data

CT segmentation The deep learning segmentation of low-
dose CT was validated on  [18F]DCFPyL PET/CT images 
from the PyL Research Access Program. The low-dose 
CT component of the PET/CT from 20 randomly selected 
patients was used to create the manual annotations (ground 
truth) for the organ segmentations by an experienced nuclear 
medicine reader. The images were obtained under the aus-
pices of an Investigational New Drug application (IND 
#121064). The ethical permission for the  [18F]DCFPyL PET/
CT images under PyL Access Program was obtained from 
the institutional review board at Jewish General Hospital, 
Montreal, Canada, and from John Hopkins from the local 
institutional review board.

Reference quantification and detection in PSMA PET The 
evaluation of reference quantification and detection sensitiv-
ity in PSMA PET was performed on all patients with evalu-
able DICOM PET/CT images from the phase 2/3 OSPREY 
study (Clinicaltrials.gov Identifier NCT02981368). The 
study enrolled two prostate cancer patient populations able 
to provide histopathology verification: Cohort A enrolled 
252 men with newly diagnosed high-risk prostate cancer 
planned for radical prostatectomy (RP) with pelvic lymph 
node dissection (PLND), and cohort B enrolled 93 men with 
presumptive radiologic evidence of recurrent or metastatic 
prostate cancer seen on conventional imaging and consid-
ered feasible for biopsy confirmation. Of the total PET/CT 
images from the OSPREY study, six were unevaluable due 
to DICOM non-conformity and were discarded in this ana-
lytical performance study—total evaluable 339 scans, 250 
in cohort A and 89 in cohort B.

The OSPREY study was conducted across 10 sites in the 
USA and Canada, and it was approved by the institutional 
review board at each participating institution. Prior to study 
enrollment, written informed consent was obtained from all 
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patients. The study was conducted in accordance with the 
Declaration of Helsinki and the International Conference 
on Harmonization Guidelines for Good Clinical Practice.

Study design

Automated segmentation in low‑dose CT Deep learning 
segmentations of 5 bone regions defined in the OSPREY 
study, as well as 9 soft tissue organs, were compared to the 
manual segmentations in full body PSMA PET/CT scans 
from 20 patients. All images were acquired without contrast 
agents. Thirteen patients were positioned with arms above 
head and remaining seven with arms along the body. The 
manual segmentation was independently performed by an 
experienced nuclear medicine physician.

Automated reference quantification in PSMA PET Three 
readers independently generated blood-pool and liver refer-
ence values in all 89 patients from cohort B in OSPREY 
study. In the PSMA PET/CT scans, automated mediasti-
nal blood pool and liver reference values were compared 
to mediastinal and liver uptake assessed with the manual 
method of placing volume of interest (1 cm diameter) within 
the descending thoracic aorta. The standard liver uptake was 
assessed by placing volume of interest (3 cm in diameter) 
within the right lower lobe of the liver.

Automated detection of potential lesions in PSMA PET The 
performance of automated detection of potential PSMA 

positive local lymph lesions and bone and lymph metasta-
sis was validated on all 250 patients from cohort A and 45 
patients from cohort B, which was restricted to low tumor 
burden and did not contain diffuse metastatic disease. All 
images were read by three independent US Board certified 
nuclear medicine physicians through aPROMISE. All three 
readers were experienced in nuclear imaging and had prior 
experience in PSMA assessment. Two of the readers had 
extensive prior experience (approximately 5 years) in imag-
ing using multiple PSMA ligands; in comparison, one reader 
had limited experience (approximately 1 year) with expo-
sure to one PSMA ligand. The sensitivity of the automated 
detection method was evaluated as the percent of manually 
selected lesions that were automatically detected and pre-
segmented by aPROMISE. All patients in the study had con-
firmed prostate cancer, and endpoints of the study were to 
evaluate reproducibility of calls and sensitivity of detecting 
lesions outside of the prostate.

Algorithm description

Automated CT segmentation From the CT image, a cas-
caded deep learning pipeline based on the U-net architecture 
[16], segments 51 bones and 8 or 9 visceral organs, depend-
ing on whether the patient has had radical prostatectomy or 
not (Fig. 1). Training and tuning data for the pipeline were 
annotated by experienced radiologists or nuclear medicine 
readers and contained, in total, 246 patients (Supplemental 
data Table 1). For validation, the 51 bones are grouped into 
5 regions defined in the OSPREY study. The training data 

Fig. 1  Deep learning automated 
segmentation of fifty-one bones 
and nine soft tissue organs in 
the low-dose CT of PSMA PET/
CT
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consisted of CT images both with and without occurrence 
of contrast agents.

Automated reference organ uptake in PSMA PET The auto-
mated segmentations of the liver and aorta are eroded; i.e., 
the voxels close to the boundaries are removed to ensure 
that the segmentations are within the target organ in the 
PET even when there is minor misalignment. The aorta 
SUV reference is computed as the mean of the values in 
the interquartile range of the SUV within the eroded aorta 
segmentation. Due to breathing attenuation, the liver may 
contain regions with artifactually low uptake that are inap-
propriate to include as reference tissue. To account for this, 
we computed the liver reference SUV to be the largest mode 
in a two-component Gaussian Mixture Model fitted to the 
intensities in the liver segmentation. An illustrative example 
of automated segmentation of reference organ to compute 
the mean tracer uptake is demonstrated in Fig. 2.

Automated detection in PSMA PET A data set with 235 
PSMA PET/CT scans annotated by experienced nuclear 
medicine readers was used to develop and tune an algo-
rithm for potential lesion detection and segmentation (Sup-
plemental data Table 1). The detection is based on the ana-
tomic segmentations fused to the PET image, and search for 
potential lesions in bones, lymph nodes, and prostate is done 
by independently tuned blob detectors [13]. To reduce the 
number of false positives, a model of normal uptake in the 
liver, kidneys, and bladder, based on the organ segmentation 
and the PET intensities, is fitted to the PET image so that 
this uptake can be suppressed before search for potential 
lymph node and prostate lesions. To the same end, filtering 
potential lesions based on SUVmax, SUVmean, uptake vol-
ume, and location follows the search. Lesions are segmented 
by the fast marching method [14], whereby high uptake in 

proximity to the original blob is included. An illustrative 
example of lesion detection and segmentation is demon-
strated in Fig. 3. From the lesion segmentations, important 
lesion characteristics can be quantified such as SUVmax, 
SUVpeak, SUVmean, and uptake volume.

Statistical methods

The automated organ segmentations were compared to 
the manual segmentations, and accuracy was evaluated by 
using Dice score; the mean and its 95% confidence interval 
were reported. The Dice score between two segmentations, 
A and B, is a measure of relative overlap and is defined 
as follows (24):

Accuracy and consistency of automated measurements 
of liver and aorta reference values were evaluated for 
each reader using intra-reader Pearson correlation and 
inter-reader standard deviation. For automated lesion pre-
segmentation, the sensitivity was evaluated as the percent 
of manually selected lesions that were automatically pre-
segmented by aPROMISE. Intraclass correlation (ICC2) 
was used to evaluate the quantitative reproducibility of 
the lesions detected by aPROMISE. As an analytical 
evaluation study, no prior assumptions were made for the 
aPROMISE performance to render power calculations. All 
statistical analyses were made using Python 3.6 with the 
SciPy library or SPSS Build 1.0.0.1327.

DICE(A,B) =
2|A ∩ B|

|A| + |B|

Fig. 2  Manual placement of 
fixed ROI on a selected slice 
and location of liver and aorta 
to obtain SUVmean (A), against 
the automated mean reference 
organ uptake of liver and blood 
pool (aorta) (B) facilitated 
by the volumetric automated 
segmentation of the reference 
organs
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Results

Automated CT segmentation The Dice scores for the organ 
segmentations are presented in Table 2, and a representative 
image of segmentations is illustrated in Fig. 1. The average 
segmentation Dice scores of bone groups ranged from 0.88 
to 0.95. The average Dice scores of the reference organs, 
aorta (blood pool) and liver, were 0.89 and 0.97, respec-
tively. The average Dice scores of prostates and bladder were 
both observed to be 0.79.

Automated reference organ uptake in PSMA PET The 
Pearson cross-correlation for blood pool reference values 
is presented in Table 3 and for the liver reference value in 
Table 4. It was observed that for blood pool reference val-
ues, the correlation is higher between any manual reader 
and aPROMISE, than between any pair of manual readers. 

For the liver reference value, the Pearson cross-correlations 
are higher between manual readers and aPROMISE, than 
between pairs of manual readers, except between manual 
reader 1 and manual reader 2. The standard deviations of 
the reference values across all 89 patients are presented in 
Table 5 for blood pool and liver. The standard deviation is 
lowest for the aPROMISE generated reference values for 
both locations. The increased Pearson correlations together 
with the decreased standard deviation indicate greater con-
sistency of the automatic reference value estimates, com-
pared to the manually generated values.

Automated detection in PSMA PET The performance of the 
detection and pre-segmentation of lesions, demonstrated 
as the percent of manually selected lesions also detected 
by aPROMISE, for each independent reader is displayed in 
Table 6. The detection sensitivity of the automated algorithm 

Fig. 3  [18F]DCFPyL CT, PET, 
and PET/CT without (A) and 
with (B) the deep learning 
segmentation in low-dose CT 
of PET/CT. The individual 
colors represent the respective 
segmented organs, including 
the reference organs (liver and 
aorta). The aPROMISE deep 
learning algorithm performs 
automated segmentation of 
organs, which enables the 
automated localization, detec-
tion and pre-segmentation, and 
quantification of the potential 
lesions in PSMA PET/CT. The 
detection of lesions in prostate 
is identified by a red hotspot 
(demarcated in the image by 
white arrows)
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was 91.5% for regional lymph nodes in patients with high 
risk localized disease, and 90.6% for any lymph nodes and 
86.7% for bone in metastatic patients.

The number of false positive lesions detected by 
aPROMISE evaluated for each reader is presented in sup-
plemental table 2. aPROMISE detected and pre-segmented 
an average of 19.5 possible regional lymph nodes per 
patient with high-risk localized disease that the reader did 
not select. The corresponding numbers for lymph node 
and bone lesions in metastatic patients were 90.8 and 8.3, 
respectively. The quantitative reproducibility of SUVmax, 
SUVpeak, and SUVmean in the pre-segmented lesions were 
100% (ICC2 = 1). The overall quantitative performance of 
aPROMISE assisted-read, including the manually selected 

lesions, measured as ICC2 was 0.99 for SUVmax and 0.92 
for SUVmean.

Discussion

The increasing availability and use of novel imaging agents 
within nuclear medicine warrants the development and vali-
dation of technology that reliably localizes, segments, and 
quantifies the specific tracer activity in PET/CT. Addition-
ally, the functional imaging tracers are specific to the biolog-
ical activity of their respective targets. The biodistribution 
and pathophysiological uptake of PSMA-targeted imaging 
tracers is distinct from that of FDG. Our effort has been to 
apply automated image analysis to tailor anatomical con-
textualization and potential lesion detection to PSMA PET/
CT, with the aim to provide relevant structural information 
as well as high sensitivity of detecting lesions.

The deployment of automated image analysis systems 
into routine diagnostic imaging has many potential advan-
tages. First, automation can standardize interpretations 
thus improving inter-reader agreement in localization and 
quantitative assessment. Second, automation can improve 

Table 2  Segmentation: Dice score of the 14 regions

Segmented organ Dice score mean (95% CI) # Evaluated 
segmenta-
tions

Bone—femur 0.95 (0.942, 0.952) 20
Bone—pelvic region 0.95 (0.950, 0.956) 20
Bone—lumbar vertebrae 0.92 (0.910, 0.924) 20
Bone—thoracic vertebrae 0.92 (0.916, 0.925) 20
Bone—thorax 0.88 (0.877, 0.891) 20
Aorta, abdominal part 0.76 (0.727, 0.798) 20
Aorta, thoracic part 0.89 (0.862, 0.917) 20
Kidney, left 0.92 (0.908, 0.948) 20
Kidney, right 0.91 (0.834, 0.982) 20
Liver 0.97 (0.962, 0.968) 20
Lung, left 0.97 (0.956, 0.984) 20
Lung, right 0.98 (0.976, 0.980) 20
Prostate 0.79 (0.716, 0.856) 13
Urinary bladder 0.79 (0.732, 0.865) 19

Table 3  Pearson correlations 
of aPROMISE against manual 
reads in quantitative uptake in 
blood pool (N = 89)

aPROMISE Manual reader 1 Manual reader 2 Manual reader 3

Manual reader 1 0.87
(0.80, 0.91)

- 0.73
(0.62, 0.82)

0.76
(0.65, 0.84)

Manual reader 2 0.85
(0.77, 0.90)

0.73
(0.62, 0.84)

- 0.78
(0.68, 0.85)

Manual reader 3 0.82
(0.73, 0.88)

0.76
(0.80, 0.91)

0.78
(0.68, 0.85)

-

Table 4  Pearson correlations 
of aPROMISE against manual 
reads in quantitative uptake in 
the liver (N = 89)

aPROMISE Manual reader 1 Manual reader 2 Manual reader 3

Manual reader 1 0.95
(0.93, 0.97)

- 0.97
(0.96, 0.98)

0.79
(0.70, 0.86)

Manual reader 2 0.95
(0.92, 0.97) 

0.97
(0.96, 0.98)

- 0.78
(0.68, 0.85)

Manual reader 3 0.80
(0.72, 0.87)

0.79
(0.69, 0.86)

0.78
(0.68, 0.85)

-

Table 5  Standard deviation of aPROMISE and manual assessments 
in reference organs (N = 89)

Blood pool reference 
(standard deviation)

Liver reference 
(standard devia-
tion)

aPROMISE 0.21 1.16
Manual reader 1 0.23 1.29
Manual reader 2 0.26 1.21
Manual reader 3 0.24 1.38
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reader efficiency by reducing time spent evaluating obvious 
image findings, while simultaneously guiding the human 
reader’s attention to more challenging, equivocal findings. 
Third, automation can potentially accelerate the “learning 
curve” human readers must face when interpretations of new 
imaging modalities are integrated into routine care. Finally, 
automated image analysis might be used not only to identify 
abnormal lesions similar to human readers, but also extract 
additional diagnostic, prognostic, or predictive information 
contained in the raw imaging data not otherwise accessible 
to human readers.

Accurate and consistent anatomical segmentation in CT 
is essential in medical image analysis and radiation dose 
planning. The manual segmentation task is mundane, labor 
intensive, and inherently variable. There have been prior 
reports on the use of deep learning technology in seman-
tic segmentation of contrast-enhanced or diagnostic CT 
for image analysis, particularly for application in treatment 
planning [17–20]. In recent work, Liu C et al. demonstrated 
a Dice score of 0.85–0.88 for automated prostate segmen-
tation [19]; their work using the contrast enhanced CT 
achieved performance similar to that observed with MRI 
imaging in the PROMISE12 challenge [21]. However, the 
low soft tissue contrast and resolution in low-dose non-
contrast-enhanced CT images of PET/CT provide a more 
difficult challenge in obtaining a clear automated volumet-
ric segmentation of small organs. The performance of our 
aPROMISE algorithm in prostate segmentation in low-dose 
CT, without contrast, was similar to that of Nemoto T et al. 
who also demonstrated a mean Dice score of 0.79 for pros-
tate [22]. The Dice score of the bones and the visceral organ 
were observed to be 0.88 or above, indicating a much better 
performance of the algorithm in larger organs. The prostate 
data does warrant manual review of the prostate segmenta-
tion in the aPROMISE analysis of patients with localized 
disease in PSMA PET/CT.

The first step of aPROMISE, to accurately segment the 
organs in the low dose CT, enables the subsequent step 

of quantification in the reference organs of PSMA-ligand 
PET. PSMA expression in prostate cancer in relation to the 
reference organs as detected by PSMA ligand PET would 
standardize quantitative reporting [6]. Notably, quantifica-
tion of PSMA uptake in PET/CT in relation to liver and 
blood pool are likely to be critical parameters for selection 
of patients for PSMA-targeted therapeutics. In ongoing 
clinical trials, PSMA-positive lesions where SUVmax is 
above 1 or 1.5 times liver SUVmean have been used as a 
threshold for selecting patients to be treated with 177Lu-
PSMA 617 (NCT03805594) and for 177Lu-PSMA I&T 
(NCT04297410). Translating such quantitative criteria from 
clinical trials into clinical practice would require a platform 
that can provide the consistency of centralized reading at the 
local level. Our study demonstrates that aPROMISE enables 
greater reproducibility and higher consistency in reporting 
the quantitative assessment of reference organs than that of 
three experienced nuclear medicine physicians.

The overall performance of our methodology in detect-
ing sites of prostate cancer was similar to the recent work 
by Zhao et al., which employed deep learning for detecting 
PSMA lesions in the local pelvic area [12]. The independent 
evaluation of aPROMISE demonstrated that the analytical 
detection algorithm is proficient in detecting lesions (above 
90%) that are manually determined to be pathological in 
nature. In a recent study [9], a threshold above SUV 4.3 was 
used for detecting lesions. Had a threshold of SUV=4.3 been 
used in our study, the detection sensitivity of regional lymph 
nodes in high-risk localized disease would have dropped 
from 91.5 to 75.0%, the sensitivity of lymph node metasta-
sis in metastatic disease would have dropped from 90.6 to 
76.2%, and the sensitivity of bone metastases in metastatic 
disease would have dropped from 86.7 to 61.8%. With the 
lower threshold of SUV=3.0 employed for bone metasta-
ses in another study [10], the sensitivity would still have 
dropped from 86.7 to 77.1%.

The detection and pre-segmentation algorithm demon-
strated high sensitivity, also when considering lesions with 

Table 6  aPROMISE detection and segmentation of region of interest that are determined to be suspicious for metastatic disease

Detection of potential lesions in following disease settings: Sensitivity (95% CI) of aPROMISE, evaluated considering reader 1–3, as well 
as all readers, as ground truth, respectively

Reader 1 Reader 2 Reader 3 All readers

Cohort A
(Regional PSMA positive lymph node lesions)

91.9%
(84.1%, 95.5%)
N = 74

92.7%
(81.7%, 97.9%)
N = 41

90.4%
(82.1%, 95.6%)
N = 73

91.5%
(86.9%, 94.9%)
N = 188

Cohort B low burden
(All PSMA-positive lymph node lesions)

94.5%
(87.5%, 98.1%)
N = 73

93.0%
(84.2%, 97.6%)
N = 57

84.7%
(75.1%, 91.6%)
N = 72

90.6%
(86.9%, 94.0%)
N = 202

Cohort B low burden
(PSMA-positive bone lesions)

81.0%
(69.6%, 89.5%)
N = 58

91.5%
(81,0%, 97.1%)
N = 47

88.5%
(78.8%, 94.7%)
N = 61

86.7%
(81.1%, 91.3%)
N = 166
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low uptake. This is beneficial for the reader, decreasing 
the time spent on segmenting lesions and simultaneously 
mitigating inter- and intra-reader variability in quantita-
tive assessments. The detection algorithm did however also 
generate a high number of false positives. The majority of 
these false positives can be readily disregarded by a reader as 
they arise in physiological uptake, most notably in the intes-
tines. One can employ CNN for detection and segmentation. 
However, to successfully train a CNN to account for both 
soft tissue and bone lesions in uncommon locations, or with 
unusual uptake patterns, an enormous data set is required. 
Furthermore, training of CNN will also be tracer specific, so 
for tracer agnostic detection and pre-segmentation, a large 
data set comprised of all PSMA tracer will be required. In 
comparison, our approach of blob detection and fast march-
ing methodology in lesion detection and pre-segmentation 
has demonstrated a robust solution of whole-body image 
analysis.

The study also demonstrated disparity of outcome based 
on reader experience in PSMA imaging. In comparison to 
his counterparts, reader 2 was consistently conservative 
in calling the PSMA positive lesions in all tissue types 
(Table 6). Concurrently, this reader also had very limited 
experience with PSMA PET/CT. A more trust in automation 
and in algorithms that have been validated can enhance the 
consistency of patient diagnosis. We are keen to explore and 
enhance the relationship of aPROMISE with the physician 
in real-world practice.

The retrospective design without pre-defined success crite-
ria was a limitation of the current study; however, the objective 
of the study was to evaluate the performance of the novel plat-
form for its subsequent validation in specific clinical context. 
The use of three independent and experienced nuclear medi-
cine readers in the evaluation of the aPROMISE algorithms 
has mitigated some of the risk of bias. The individual organ 
segmentation is a laborious process, as an example—it takes 
an estimated 15 to 20 min to volumetrically segment a typi-
cal organ in low-dose CT, we were limited in our reliance on 
the segmentations performed by one experienced reader, and 
there was no consensus segmentation from multiple readers. 
Some studies have used overlap of multi-reader segmentations 
[23]. Such a solution of taking the intersection of multiple 
readers would result in a truncated volume and not necessar-
ily yield a more accurate standard for comparison against the 
deep learning algorithm. A limitation in the study design was 
to not evaluate detection and pre-segmentation of primary 
tumors in the prostate gland. One of the primary limitations 
of aPROMISE in analyzing PSMA PET/CT images was the 
absence of ureter segmentation. The hotspots in the ureter from 
the physiological uptake in urine are a confounding factor in 
the assessment of PSMA uptake in lymph nodes in the pelvic 
area. We are generating labeled data which can enable the 

algorithm to avoid urine uptake in subsequent versions of the 
aPROMISE platform.

Conclusion

The study demonstrated that aPROMISE accurately seg-
ments organs in low-dose CT. This segmentation algorithm 
enables the automated quantification of tracer uptake in refer-
ence organs that are more reproducible, and consistent than 
those obtained manually. Finally, aPROMISE demonstrated 
high sensitivity in detection and pre-segmentation of regions 
of interest that are determined to be suspicious for metastatic 
disease. The efficient and accurate segmentation, localization, 
detection, and quantification of PSMA PET/CT can facilitate 
standardized assessment in clinical practice. aPROMISE plat-
form warrants further validation in specific clinical contexts.
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