
correlate survival prognosis or drug treat-
ment response. We have published a study
showing that machine learning can separate
patients by expected survival better than
existing methods.3

Of course, there is interest in applying
machine learning to a wide range of medical
applications—analyzing clinical notes, look-
ing for biomarkers in the pattern of lab
tests, and analyzing genomics data. There
are many insights about basic biology and
clinical medicine undiscovered in large
databases. A current focus area is the
analysis of cancer “omics” datasets. The
genome, transcriptome, metabolome, and
proteome provide rich data reflecting the
biology of cancer cells. These datasets are
complex not only in their volume, but in
their temporal trajectory and in the make-
up of the cells that contribute to these
measurements. Machine learning methods
will recognize the key patterns that are
associated with prognosis and treatment
response. Deep learning methods can pro-
cess histone epigenetic datasets4 and pre-
dict the behavior of histones in induced
pluripotent and differentiated cells.5 Ulti-
mately, AI methods will untangle the
complex relationships between transcrip-
tion factors and gene expression. Learning
systems can predict the sequence specific-
ity of DNA- and RNA-binding proteins,
protein–chemical interactions—and even
the outcome of phase I/II trials.6

The initial demonstrations of the prom-
ise of machine learning methods come with
challenges, among the most pressing are:

1. Developing methods for integrating
heterogeneous datasets. Most methods
for collecting data are biased and reli-
able discoveries/analyses often come
from several lines of independent data.
Learning systems must improve in their
ability to work with incomplete and
heterogeneous data sources.

2. Creating curated datasets of sufficient
quality to produce trustworthy classifi-
cations. The availability of high-quality
datasets for training is often limiting.
Expert curators must spend many
hours creating datasets to train high-
quality classifiers. The availability of
large corpora of labeled radiographs
and histopathology slides spurred pro-
gress in these areas.

3. Incorporating prior knowledge into the
learning models. One way to mitigate
the absence of large high-quality data-
sets is to give the models a “head start”
by encoding human knowledge into an
initial model, and allowing the system
to refine it. A Bayesian “prior” model
requires less data to converge on an
excellent classifier.

4. Ensuring that the output of learning
systems can be explained to human
decision makers. Critical to both
regulatory approval and clinical
implementation is the ability of
complex algorithms to justify their
output: what are the key features driv-

ing the decision to classify a sample as
“malignant” or to recommend an
unusual drug? Human decision-makers
must understand the evidence used and
how it influenced the output.

A revolution in AI is being felt every-
where, including medical research and clini-
cal medicine. The ability to find patterns in
huge and complex datasets has been demon-
strated in imaging and speech—where
humans already excel. The technologies are
now developing in areas such as cancer geno-
mics, where high performance will require a
partnership between human expert decision
makers and AI systems that can find hidden
patterns within these large rich datasets.
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tive classification. Further, targeted therapy for cancer patients
(precision oncology) capitalizes on knowledge of individual
patient mutational status to deliver treatment directed against
the protein products of these mutations with the goal of reducing
toxicity and enhancing efficacy relative to traditional nontargeted
chemotherapy.

THE NEED FOR COLLABORATIVE DATA
SHARING
Subclassification and study of cancer
patients based on mutational status
presents opportunities to learn the signifi-
cance of genomic alterations (and their
combinations) and to develop additional
therapies (and combinations of therapies).
However, the large number of mutations
known to be important in cancer develop-
ment and the presence of multiple muta-
tions in any individual patient combines to
create a great diversity in populations of
patients with a specific tumor type. Shrager
and Tenenbaum note that cancer is “in
effect, a large number of rare diseases occu-
pying a very high dimensional space with
very few opportunities for action and
observation in each subtype. To efficiently
search a space of this nature, one needs to
capture the learnings from as many
patients and treatment experiments as pos-
sible in a continuously updated knowledge
base.”1

The stratification of cancer patients
by mutational status and resultant
decrease in the proportion of patients
available for study enrollment presents
serious problems for observational and
interventional research. The low preva-
lence (1–2%) of many driver mutations
in solid tumors precludes recruitment of
sufficient numbers of subjects from tra-
ditionally sized research consortia and
has led to new models of clinical
research based on interinstitution col-
laboration, community outreach, and
broad data sharing, with the goal of
learning from every treatment encoun-
ter. This article reviews the challenges
and opportunities of such collaborations
from the perspective of the Department
of Veterans Affairs Healthcare System,
the largest integrated healthcare system
in the United States.

Creating generalizable knowledge as well
as informing current individual patient
care is therefore enabled by “learning”
from all available previous treatment expe-
riences of every relevant patient in the
entire system, aggregating data across many
medical centers. Familiar challenges to this
approach include technical issues, such as
data element provenance, data quality, and
database variability across institutions,
ensuring patient protections in data sharing
related to informed consent, privacy/confi-
dentiality, and Health Insurance Portabili-
ty and Accountability Act (HIPAA)
authorization, scalability and sustainability
of aggregated databases, and cultural and
financial barriers to data sharing in a
research community.
The ability to commoditize healthcare

data has created opportunities for new con-
sortium models that enable data sharing
and patient access (for clinical trials). Data
sharing is an important element of the col-
laborations exemplified by ORIEN,2

MED-C,3 TAPUR,4 and APOLLO5 (see
Table 1). The National Cancer Institute
(NCI) has created the Genomic Data
Commons, a unified data repository6 that
enables data sharing across these and other
cancer genomic studies, in support of preci-
sion medicine. The repository houses clini-
cal health record and genomic data
(FASTQ file format) and complements
the Cancer Imaging Archive,7 another
NCI-sponsored repository that contains
radiographic and pathology images for can-
cer patients.
The Department of Veterans Affairs

(VA) has begun to move consented and
HIPAA-authorized patient data from the
VA electronic medical records to these
NCI data repositories for subsequent
sharing with the research community (see
Table 1). This approach replaces the

need for cancer patients to sign multiple
forms consenting to data sharing with a
single broad consent that satisfies the
requirements of the various project Insti-
tutional Review Boards (IRBs). It also
provides data collection and curation
that meets requirements of the individual
project aims. The “Big Data Scientist
Training and Education Program” is a
joint effort by the VA and the NCI to
provide these data to early career scien-
tists to develop analytics and other tools
in support of clinical and research
objectives.8

CLINICAL TRIALS
Clinical trialists confront obstacles unique
to precision oncology. As discussed above,
traditional recruitment approaches from
single or limited groups of institutions do
not provide sufficient numbers of eligible
study subjects to fulfill inclusion criteria
with specific tumor–mutation combina-
tion requirements. Furthermore, third-
party payers seldom reimburse for muta-
tional analysis required for patient screen-
ing prior to entry into research, thus
shifting to the research enterprise the cost
of screening large numbers of patients, of
whom only a small fraction will be found
eligible. The lack of data on the muta-

tional status of patients is the major bot-

tleneck for clinical trial execution and

slows progress in precision oncology. In

the era of precision oncology treatment,

the new standard of care requires clinical

reimbursement for expanded panel test-

ing in cancer patients, with subsequent

recruitment in clinical trials when appro-

priate for the individual patient. That stan-

dard then leads to sharing and reuse of

patient data for clinical trials and observa-

tional research.
Major efforts underway to solve these

and related problems are exemplified by
the MED-C and ORIEN initiatives. The
MED-C Program offers insurance coverage
of testing for institutions and patients who
agree to contribute clinical data to the N1
registry for subsequent analysis. The
Oncology Research Information Exchange
Network (ORIEN) is a research
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collaboration founded by the Moffitt
Cancer Center in Tampa and the Ohio
State University Comprehensive Cancer
Center to match patients to targeted treat-
ments and promote data-sharing activities.
The group engages industry partners on
sponsored projects across the clinical trials
continuum and serves as a broker between
research and healthcare communities.
These and other programs (particularly
NCI-sponsored clinical trial consortia) that
foster collaboration between clinical care
and research communities represent new
models to advance precision oncology.
Membership of VA sites in NCI Con-

sortia and programs such as MED-C,
ORIEN, and TAPUR makes data sharing
and clinical trial participation opportuni-
ties available for Veterans at participating
VA Medical Centers but leaves behind
patients at facilities that lack oncology
research programs and infrastructure. This
structural problem is not unique to the
VA, as opportunities for patients to partici-
pate in cancer clinical trials are similarly
limited in communities not located near
cancer centers.
If participation in clinical trials is consid-

ered a new standard of care, then this phe-
nomenon exposes a new and important
access disparity in a healthcare system. The
Distributed Enrollment Program under
development at the VA Cooperative Stud-
ies Program presents a model to “move
clinical trials to patients” remote from VA
cancer centers by seeking pre-approval of
cancer protocols by a central IRB, reduc-
tion of research-specific training require-
ments imposed on participating clinicians,
and centralized trial management (such as
data collection and submission). These
enhancements are engineered to deliver
“just in time” research opportunities for
patients while preserving patient safety and

data integrity. Indeed, much of the admin-
istrative overhead built into the clinical
research apparatus in the name of “quality
assurance,” while highly appropriate for
research designed primarily to benefit the
broader community (such as registration
studies for drugs where effective alterna-
tives exist), may have reduced relevance in
a precision oncology setting, where the
patient’s motivation to participate is first
and foremost to obtain study drug, wheth-
er or not alternatives exist.

BIOMARKER DISCOVERY AND
VALIDATION
By its nature, precision oncology is a
biomarker-driven field critically dependent
on acquisition of clinical biosamples and
electronic medical record data for discovery
and validation with lack of access to both
resources as a central limitation to the pace
of discovery. Collaborations to cost-share
for data and tissue procurement between
biotech, pharma, and healthcare systems, in
a “precompetitive fashion,” are emerging.4

To reach full potential, such collaborations
require more complete integration within
healthcare systems, as exemplified in the
APOLLO Program, a partnership between
the NCI, DoD, and VA. In APOLLO,
tumor tissue is made available for biomarker
analysis (proteomics in this case) and the
results transmitted back to healthcare pro-
viders if they are determined to offer incre-
mental value to patient care, beyond
mutational analysis. While observational
data is useful in this regard, randomization
accelerates learning, and results in more cer-
tain knowledge. For example, demonstra-
tion that patients randomized to genomic
augmented with proteomic analysis had
superior treatment outcomes to those ran-
domized to genomic analysis alone supports

a compelling argument to adopt this new
biomarker of response to targeted therapy.
Problematically, the introduction of ran-
domization (to biomarkers) into clinical
care using traditional clinical trial methods
is cost-prohibitive. The Department of
Veterans Affairs continues to make progress
in this area through the Point-of-Care
research9 and Precision Oncology10

Programs whereby patients are randomized
to minimal risk alternatives with relaxed
regulatory requirements appropriate with
the degree of risk (risk-based monitoring).
Data generated from these embedded studies
are derived exclusively from the EHR (real-
world evidence) and require FDA accep-
tance if used for registration of a new com-
panion diagnostic.
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