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Baseline wander elimination is considered a classical problem. In electrocardiography (ECG) signals, baseline drift can influence
the accurate diagnosis of heart disease such as ischemia and arrhythmia. We present a wavelet-transform- (WT-) based search
algorithm using the energy of the signal in different scales to isolate baseline wander from the ECG signal. The algorithm computes
wavelet packet coefficients and then in each scale the energy of the signal is calculated. Comparison is made and the branch of the
wavelet binary tree corresponding to higher energy wavelet spaces is chosen. This algorithm is tested using the data record from
MIT/BIH database and excellent results are obtained.

Copyright © 2006 M. A. Tinati and B. Mozaffary. This is an open access article distributed under the Creative Commons Attri-
bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

In recent years computer aided ECG signal analysis has
gained momentum and a tremendous amount of work has
been carried out. One area of interest has been removing arti-
facts from data records [1, 2]. Artifacts are the noise induced
to ECG signals that result from movements of electrodes.
This in turn causes deformation and change in the electrical
characteristics of the skin under and around the electrodes.
These electrical changes appear in the ECG as motion ar-
tifacts and baseline drifts. Baseline wanders are considered
as an artifact which produces inaccurate data when measur-
ing the ECG parameters. The ST-segment measures are espe-
cially strongly affected by this wandering. In most of the ECG
recordings the respiration, electrode impedance changes due
to perspiration and increased body movements are the main
causes of the baseline wandering [3]. Therefore, elimination
of the baseline drifts can very much change the clinical infor-
mation of the ECG signal.

The frequency components of the baseline wander are
usually below 0.5 Hz which is higher under stress test condi-
tion. Baseline removal has been addressed in many different
ways in literature. Ensemble averaging is a classical statisti-
cal method for baseline cancellation. This is not an accurate
way since characteristics of ECG signal change from beat to
beat. Therefore, the consequences of mean-based algorithms
are ST displacements.

In [4], baseline estimation method using cubic spline
which is a portion of the Maclaurin series (higher than the
4th derivatives are neglected) is proposed. This is a third or-
der approximation where the baseline is estimated by poly-
nomial approximations and then subtracted from the origi-
nal raw ECG signal. This is a nonlinear method, and its per-
formance is based on estimation of reference points in the PR
intervals. The main disadvantage of this method is estimat-
ing reference points that may not belong to baseline.

In [5], a linear time-varying filtering approach is under-
taken to suppress the baseline drift in the ECG signal. Beat
average is subtracted from the signal and then decimated.
Low-pass filtering is applied to estimate the baseline wan-
der and is interpolated. Then it is subtracted from the origi-
nal signal. This is a nonlinear approach so it is complex and
highly dependent to beat rate calculations and becomes less
accurate in low heart rates.

Another linear filtering method has been suggested in
[6]. In this approach a digital narrowband linear-phase FIR
filter with cut-off frequency of 0.8 Hz is applied. Although it
can be implemented in real time, this approach has many se-
rious problems. Another filtering technique using digital and
hybrid linear-phase with cut-off frequency of 0.64 Hz is used
in [7]. There are numerous problems associated with filter-
ing. First, when the FIR structure is used, the number of co-
efficients is too high and therefore results in a long impulse
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Figure 1: Filter bank representation of wavelet decomposition.

response results; second, there is an overlap on the spectral
range of ECG and baseline and any cut-off frequency above
0.05 Hz does not comply with the AHA recommendation for
ECG recordings [8], and removing them from ECG will in-
troduce distortion on the ST segment as well as the QRS
complex.

Adaptive filtering has been shown to be useful in many
areas of biomedical signal processing, where baseline wan-
der elimination is not an exception. Application of adaptive
filters in baseline drift removal can be considered as notch
filtering with lower cut-off frequency being at zero. In [9] a
single tap adaptive filter with a constant reference signal (DC
signal) is proposed. Although it effectively removes baseline,
it produces some distortion in the ST-segment due to atten-
uation of low-frequency components of the ECG signal. A
cascade of adaptive filters is used in [10]. The first stage is
the replica of the filter scheme used in [9] with a small im-
provement in the bandwidth. In the second stage, the refer-
ence input is changed to an impulse sequence obtained from
the QRS complex. Another drawback in these filters is slow
tracking properties; therefore, a smoothed ECG signal will
result.

Transform techniques have been also used to remove
baseline drifts. In [11], it is suggested to use short time
Fourier transform (STFT) to detect the presence of baseline
drifts in the ECG signal and then use a time-varying filter
similar to ones used in [5] to remove it. This method has
two problems. First, STFT cannot have good time and fre-
quency resolution at the same time. Second, it will have the
same problems that are associated with filtering that is al-
ready mentioned above. Discrete wavelet transform (DWT)
has also been used in baseline wander removal. In [12], base-
line wander is estimated from the DWT course level coeffi-
cients at level j, and then it was subtracted from the original
ECG signal. In this method Symlets wavelet of the order 10
was used. In [13], wavelet coefficients are calculated up to the
sixth resolution level. Then the energy levels of the first and
last levels are compared. Up to two stages of filtering are car-
ried out based on the energy levels of the wavelet coefficients.

In this paper, a wavelet-transform-based method to re-
move baseline wander in ECG signals is described. This
method is robust to noise and is based on estimation of the
energy of the baseline and it is removed through inverse dis-
crete wavelet transform. In Section 2 a brief introduction to
wavelets, its properties, and multiresolution analysis is given.
In Section 3, ECG signal characteristic points related to var-
ious activities of heart are explained. In Section 4 the pro-

posed method is described and its effectiveness is examined.
In Section 5 the MIT-BIH ECG database records are used to
evaluate the performance of the proposed algorithm. In Sec-
tions 6 and 7 discussions and conclusion are made.

2. WAVELETS

Wavelets are transform methods that have received great deal
of attention in the field of signal processing over the past sev-
eral years. A wavelet system is a set of building blocks from
which one can construct or represent a signal or a function.
It is a two-dimensional expansion set. The wavelet transform
is a time-scale representation method that decomposes sig-
nal f (t) into basis functions of time and scale which are di-
lated and translated versions of a basis function ψ(t) which
is called mother wavelet [14]. Translation is accomplished by
considering all possible integer translations of ψ(t) and dila-
tion is obtained by multiplying t by a scaling factor which
is usually factors of 2. The following equation shows how
wavelets are generated from the mother wavelet:

ψj,k(t) = 2 j/2ψ
(
2 j/2t − k), (1)

where j indicates the resolution level and k is the translation
in time. This is called dyadic scaling, since the scaling factor
is taken to be 2.

Wavelet decomposition is a linear expansion and it is ex-
pressed as

f (t) =
+∞∑

k=−∞
ckϕ(t − k) +

+∞∑
k=−∞

+∞∑
j=0

dj,kψ
(
2 j t − k), (2)

where ϕ(t) is called the scaling function or father wavelet and
ck and dj,k are the coarse and detail level expansion coeffi-
cients, respectively.

In the field of signal processing, most of the results of
wavelet theory are developed using filter banks. In applica-
tions one never has to deal directly with the scaling func-
tions or wavelets, only the coefficients of the filters in the fil-
ter banks are needed. In the forward wavelet transform sys-
tem, the signal is convolved with a pair of maximally deci-
mated quadrature mirror filters (QMF) [14, 15]. Let H0(z)
and H1(z) be low-pass and high-pass filters, respectively, that
split the signal’s bandwidth to half. These filters along with
decimators manipulate the forward wavelet transform. The
wavelet decomposition system is shown in Figure 1. In this
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Figure 2: Wavelet packet decomposition tree.

figure, filters F0(z) and F1(z) and the interpolator perform
the reverse process in order to reconstruct the original signal
f (t). These filters are related to wavelet and scaling functions
as expressed below [16]:

ψ(t) =
∑
k

√
2h1(k)ϕ(2t − k),

ϕ(t) =
∑
k

√
2h0(k)ϕ(2t − k).

(3)

In biorthogonal filter banks, the impulse responses of
synthesis filters are related to analysis filters as

g0(n) = (−1)nh0(1− n),

g1(n) = (−1)nh1(1− n).
(4)

Theoretically, in (2) the expansion coefficients ck and dj,k are
calculated from the inner product of f (t) with ϕ(t) and ψ(t),
respectively. The power of wavelet transform is based on the
fact that these coefficients are computed in a recursive man-
ner. Once ck is known in a starting scale J , all the coefficients
for j = J , J − 1, . . ., are found by a simple linear transform.

A wide variety of functions could be chosen as the
mother wavelet as long as (5) is satisfied:

∫ +∞

−∞
ψ(t)dt = 0. (5)

Wavelets are useful in applications such as signal de-
noising, wave detection, data compression, feature extrac-
tion, and so forth. There are many techniques based on
wavelet theory, such as wavelet packets, wavelet approxima-
tion and decomposition, discrete and continuous wavelet
transform, and so forth.

In Figure 1 only one-sided expansion of the signal using
coarse information was shown. This is not completely satis-
factory, and more flexibility is obtained in full wavelet packet
decomposition. A full binary tree for tree scale wavelet packet
transform is shown in Figure 2. The projection of the func-
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Figure 3: A typical ECG signal.

tion on the scaling functions and the wavelets are recursively
decomposed to obtain the binary tree.

As Figure 2 shows, at each level both high-pass and low-
pass filters are applied followed by decimation where both
coarse and detail level coefficients are obtained. In this figure
“c” and “d” stand for course and details of the signal, respec-
tively. This configuration gives possibility of many different
paths for decomposition.

The energy of a signal is given in terms of the wavelet
coefficients by Parsaval’s relation as

∫ ∣∣ f (t)
∣∣2
dt =

∞∑
l=−∞

∣∣cl∣∣2
+

∞∑
j=0

∞∑
k=−∞

∣∣djk∣∣2
. (6)

We will use this equation for computing the energy of the
signal in different scales, where it is explained more in later
sections.

3. ECG SIGNAL CHARACTERISTICS

In a typical ECG signal, the dominant parts are considered
as P-wave, P-R interval, QRS complex, ST-segment, T-wave,
TU-segment, U-wave, and UP-segment. In Figure 3 a typical
ECG signal is shown. The P-wave represents both of the ar-
tria activation or depolarization. The first half of the P-wave
is the activation of the right artrium, while the second half
is the activation of the artria septum and left artrium. The
QRS complex represents the ventricular depolarization. The
Q-wave is the first negative deflection right after the P-wave.
The R-wave is the first positive deflection after the P-wave.
The S-wave is the first negative deflection after the R-wave.
The T-wave is the ventricular recovery or repolarization [17].

ST-segment has clinical significance in diagnosis of my-
ocardial ischemia and infarction. Slow fluctuation of baseline
wander can influence the ST-segment and therefore incorrect
diagnosis may happen. In addition, accurate baseline detec-
tion is needed for the localization of ventricular arrhythmias
with body surface potential mappings as the major frequency
components of ST-segment and baseline drifts are close.



4 International Journal of Biomedical Imaging

ECG signal contaminated
with baseline drifts

s(n) = ecg(n) + bw(n)

Wavelet packet transform
Wj,k =WT�s(n)�

j = j + 1

Energy at level J

Edj,k =
�∑

k=��

∣∣∣dj,k∣∣∣2
, Ecj,k =

�∑
m=��

�cm�
2

Threshold level∣∣∣Emj,k � Emj�l,k

∣∣∣ � Eth

m = “c”or“d”

Yes

No

+

�
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Figure 4: Block diagram of ECG baseline remover algorithm.

4. METHOD

In this section we discuss a new algorithm that we propose
for removal of the baseline wander in ECG signals. The mor-
phological features of the ECG signal often change by various
sources, such as 50 Hz power line, motion artifacts baseline
drifts, and so forth. It is of great importance for diagnosis
purposes to remove the baseline wandering, especially in the
case of precise measurement of the ST-segment. This seg-
ment is a slow varying part of the ECG signal where parts
of its spectral components overlap with spectral components
of baseline wandering. Therefore, by simple digital filtering
it is not possible to remove baseline drifts.

Our proposed algorithm is based on the assumption that
the baseline drift and ECG signal constitute a mixture of
two independent signals, mixed in a linear fashion. Figure 4
shows the block diagram of the procedure. First, the wavelet
transform of this signal is computed. The dyadic wavelet
packet decomposition of the ECG signal is carried out using
Daub-4 mother wavelet. It is well known that high-frequency
components are mostly focused on low-level scales.

Therefore, it is expected to observe the baseline drift in
larger scales.

In each scale using the wavelet coefficients, the energies of
the signal for both the coarse and detail levels are calculated.
These energies represent the energy of the decomposed signal
in assumed scales as

Ecj,k =
∞∑

m=−∞

∣∣cm∣∣2
,

Edj,k =
∞∑

k=−∞

∣∣dj,k∣∣2
.

(7)

In the above equations, Ecj,k is the energy of the signal
in the coarse level of scale j (low-pass filtering branch), and
Edj,k is the energy in the detail level of the signal at scale j
(high-pass filtering branch). In Figure 5, the power spectrum
density of the ECG signal for the MIT-BIH record “103” is
shown. As the figure shows, concentrations of the energy at
high frequencies decrease as the scale is increased. In this fig-
ure, the wavelet coefficients d0 to d8 which are the details of
the signal at corresponding levels, and the coefficient c8 is the
coarse or the approximation at the last scale, are plotted.

The next step in the algorithm is to compare these en-
ergy levels and then choose the branch of the binary tree that
has the higher energy. In this step, best basis functions for de-
composition are chosen. The path for higher energy branches
will be followed until a point is reached where energy differ-
ences exceed a preset threshold level, Eth. In this point the
binary tree search is completed, and the baseline wander sig-
nal is retrieved by taking the inverse wavelet transform of the
wavelet packet coefficients of the last scale. In order to sup-
press the baseline drift, the estimated baseline wander is sub-
tracted from the original data record and a baseline wander
free ECG signal is identified.

Selecting the threshold level is accomplished in the fol-
lowing manner. The normalized energy and normalized
bandwidth of the signal are calculated. In every scale, the
product of bandwidth and energy is obtained. It was experi-
mentally determined that whenever this value is 0.1% of the
total energy-bandwidth product of the signal, then the last
scale has been reached.

5. SIMULATION RESULTS

In this section, examples are presented in order to illustrate
the effectiveness of the proposed algorithm. Removing the
baseline wander using the above concept was tested on ECG
data records. The test database was extracted from the MIT-
BIH database. Records “b108,” “b210,” and “b115” which
are severely distorted by baseline wandering were used. Each
data is 50 seconds in duration with 11 b/sample resolution
and 360 Hz sampling rate. Results are shown in Figures 6
to 8. This algorithm was tested on 15 other data records
from MIT-BIH, and was successfully able to remove the base-
line drifts efficiently from all of the signals. In addition to
tests carried out on these real data records, a low-frequency
sine-wave (0.01 Hz) was also added to a baseline free ECG
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Figure 5: Power spectrum density of ECG at 2−1 to 2−8 scales.
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Figure 6: The ECG record “b108-2,” (a) original ECG signal, (b)
estimated baseline drift, (c) ECG after removing the baseline.

signal with a ratio of ECG signal power to baseline power of
−5 dB, and then algorithm was applied. Results are shown
in Figure 9, which indicates that exactly the added signal was
removed. This is confirmed by calculating the PRD of the
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Figure 7: The ECG record “b210-1,” (a) original ECG signal, (b)
estimated baseline drift, (c) ECG after removing the baseline.

added sine-wave as

PRD =
√
f (t)2 − f̂ (t)2

f (t)
, (8)
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Figure 8: The ECG record “b115-1,” (a) original ECG signal, (b)
estimated baseline drift, (c) ECG after removing the baseline.
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Figure 9: Baseline removal from ECG plus sine-wave. (a) ECG sig-
nal with added sine-wave, (b) estimated baseline drift, (c) ECG after
removing the baseline.
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Figure 10: (a) 20 seconds of record “b108-2” highlighted, (b) power
spectrum density of record “b108-2,” and (c) power spectrum den-
sity of ST-segments of record “b108-2.”

where f (t) is the added sine-wave and f̂ (t) is the estimated
one. The value of the PRD is 0.0199, which show very good
estimation of f (t).

As the pictorial evaluations of the above-mentioned fig-
ures show, baseline drifts were successfully removed. In or-
der to see if the clinical features of ECG signals are dis-
torted or not, the spectrums of the ST-segments are evalu-
ated. First, ST-segments were separated from all of the test
signals. Power spectrum density (PSD) of ST-segments be-
fore and after applying the algorithm are calculated. Results
are shown in Figures 10(c) to 12(c). These figures indicate
that low-frequency power levels were reduced while the en-
ergies of ST-segments are preserved. In parts (b) of these
figures, the PSDs of whole data records before and after re-
moving the baseline are shown. As figures indicate, the high-
frequency components of signals were not affected at all. In
order to clarify the effectiveness of the algorithm, in part (a)
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Figure 11: (a) 15 seconds of record “b210-1” highlighted, (b) power
spectrum density of record “b210-1,” (c) power spectrum density of
ST-segments of record “b210-1.”

of these figures, those sections of ECG signals of Figures 6 to 8
that are corrupted mostly with baseline drift are highlighted.
Note that in these figures, both the original ECG signal and
ECG with the removed baseline drift as well as the estimated
baseline are shown. This analysis is carried out for the signal
of Figure 9 and results are shown in Figure 13.

We have also compared R-R intervals before and after ap-
plying the algorithm. Any change in R-R interval will cause
distortion in the ST-segment and as a result clinical informa-
tion of the ECG signal will change. We first identified QRS
peaks of ECG records using a peak detector scheme, and then
time differences between the peaks are evaluated. Results are
depicted in Figure 14, which shows R-R intervals exactly be-
fore and after coinciding. Note that graphs are plotted apart
from each other for comparison purposes.

In the implementation of the wavelet packet transform,
in the construction of the filter bank, Daubechies db4 mother
wavelet was used.
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Figure 12: (a) 20 seconds of record “b115-1” highlighted, (b) power
spectrum density of record “b115-1,” (c) power spectrum density of
ST-segments of record “b115-1.”

6. DISCUSSIONS

There are number of advantages in using wavelet transfer
method in the analysis of ECG signals. First, there is no need
for a priori information about the signal being processed.
The second advantage is its easy implementation. The ability
of the proposed wavelet-based algorithm was demonstrated
by test signals. This algorithm could be used in multiple ECG
recordings, especially in stress tests. An additional advan-
tage of using wavelets would be utilization of WT in high-
frequency noise cancellations. Daubechies wavelets are suit-
able for ECG signal analysis because they bear some morpho-
logical resemblance to them.

The proposed method removes the components that are
not correlated to ECG signal and has such characteristics that
somehow are added to it. Since the spectrum of the baseline
is below the spectrum of the ECG signal, therefore its en-
ergy concentration in corresponding time-scale plane does
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not change much as the scale is changed in the binary tree,
but the energy of the ECG signal decreases as the scale is
increased. Therefore, in the binary tree search, we reach the
point that the energy of the ECG signal almost vanishes (no
details in that scale) but we still have considerable energy for
baseline wander.

In removing the baseline wander from ECG signal, the
clinical information of the ECG record must be preserved.
The most important part of the ECG signal that could be af-
fected by the baseline is the ST-segment, whose spectrums
overlap. R-R interval change could be another source of
distortion. Both of these have been examined using PSD cal-
culations.

The main cause of error in our analysis could be in deter-
mining the ST-segment’s length for PSD calculations. This is
not fully solved because of the complicated structure of the
signal.

Although the proposed method is applied only for ECG
baseline suppression, it could be used in any other biologi-
cal signal processing cases for unwanted low-frequency can-
cellation. We used this method in off-line preprocessing of
the ECG signal, it could be used in real-time applications as
well.

In the current study we have used a fixed threshold level
to identify the energy level of the baseline wander in wavelet
domain (Eth in Figure 4). Further study can be carried out
for an adaptive threshold determination. Another point of
further exploration could be the use of other mother wavelets
such as biorthagonal wavelets.

7. CONCLUSION

In this paper we presented an algorithm based on WT for re-
moving baseline drifts in ECG signals. It has been shown that
the presented algorithm can eliminate baseline drifts from
ECG signals without introducing any deformation to the sig-
nal and losing any clinical information.
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