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The central component of sepsis pathogenesis is inflammatory disorder, which is related to dysfunction of the immune system.
However, the specific molecular mechanism of sepsis has not yet been fully elucidated. The aim of our study was to identify
genes that are significantly changed during sepsis development, for the identification of potential pathogenic factors.
Differentially expressed genes (DEGs) were identified in 88 control and 214 septic patient samples. Gene ontology (GO) and
pathway enrichment analyses were performed using David. A protein-protein interaction (PPI) network was established using
STRING and Cytoscape. Further validation was performed using real-time polymerase chain reaction (RT-PCR). We identified
37 common DEGs. GO and pathway enrichment indicated that enzymes and transcription factors accounted for a large
proportion of DEGs; immune system and inflammation signaling demonstrated the most significant changes. Furthermore,
eight hub genes were identified via PPI analysis. Interestingly, four of the top five upregulated and all downregulated DEGs were
involved in immune and inflammation signaling. In addition, the most intensive hub gene AKT1 and the top DEGs in human
clinical samples were validated using RT-PCR. This study explored the possible molecular mechanisms underpinning the
inflammatory, immune, and PI3K/AKT pathways related to sepsis development.

1. Introduction

Sepsis is defined as life-threatening organ dysfunction trig-
gered by a dysregulated host response to infection [1, 2].
Approximately 30 million people worldwide suffer from sep-
sis each year, which has a fatality rate of 20%-50%. Sepsis
become one of the most frequent causes of mortality in inten-
sive care units [3, 4]. Despite numerous advances in both
fundamental and clinical research, the mortality rate for sep-
sis remains high [5]. Excessive inflammation leads to multi-
ple organ failure, which is the main cause of mortality in
early sepsis [6, 7]. Diagnosing the condition early may facili-
tate appropriate treatment, thereby improving patient out-

comes. As such, urgent identification of novel sepsis-related
biomarkers is vital for its early diagnosis and monitoring
and to implement relevant therapeutic interventions.

Neutrophils are the first to arrive at sites of infection or
injury, where they play a vital role in the acute phase of
inflammation and the innate immune response [8]. Neutro-
phils can activate various signaling pathways and release
inflammatory mediators that amplify the inflammatory
response, eventually causing multiple system organ failure
[9]. Moreover, studies have shown that neutrophils play
important roles in infection control during sepsis and that
their biological activity is impaired during this time, leading
to dysregulated immune responses [10]. Neutrophil
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activation markers may be potential biomarkers for the diag-
nosis and prognosis of sepsis, with many studies showing
that their regulation is a key part of treatment [11, 12]. Rele-
vant mechanisms have been investigated, and clinical studies
conducted, to find ways through which to block neutrophil
dysfunction in patients with sepsis, which is a vital undertak-
ing for the prevention and control of sepsis.

With recent advancements in genomics, transcriptional
signature analysis has offered powerful insights into many
disease [13, 14], including sepsis. Although hundreds of dif-
ferentially expressed genes (DEGs) in sepsis were identified
in several recently performed microarray profiling studies
[15–17], few studies focus on neutrophils in sepsis. In addi-
tion, human genomic research on sepsis is limited by insuffi-
cient availability of clinical samples from a single cohort
study.

In order to identify the key and promising genes or path-
ways associated with neutrophils in sepsis, we comprehen-
sively reanalyzed a larger sample size (five previously
collected microarrays) from the gene expression omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Com-
mon DEGs were identified and further analyzed using gene
ontology (GO) annotation, pathway enrichment, and
protein-protein interaction (PPI) analyses. We found that
inflammation and immune response may be extremely
important in the process of sepsis. These genes shed light
on sepsis development, potentially providing future treat-
ment targets.

2. Materials and Methods

2.1. Gene Expression Dataset Collection and Extraction. The
National Center for Biotechnology Information (NCBI)
GEO database is a public database supporting high-
throughput gene expression data (http://www.ncbi.nlm.nih
.gov/geo/). We searched GEO for relevant studies using the
key words “sepsis,” “homo sapiens,” and “neutrophils.” A
dataset was included in our study if it met the following selec-
tion criteria: (1) it comprised of gene expression profiles and
(2) investigated neutrophils from human whole blood; five
data profiles were included: GSE49755, GSE49756,
GSE49757, GSE6535, and GSE5772 [18–20]. We excluded
animal studies and samples with obvious age differences
(ages < 18 and >80 years).

2.2. DEG Screening. DEGs were identified using GEO2R with
default parameters (http://www.ncbi.nlm.nih.gov/geo/geo2r/
). NCBI-generated annotations were used to display the DEG
list. Only genes with a nominal p value < 0.05 were consid-
ered as DEGs. Common DEGs among the five GSE datasets
were screened using R programming language. To identify
overlapping genes between both groups, we used the Venn-
Diagram function in R.

2.3. Functional and Pathway Enrichment Analysis. Common
genes in any four datasets were collected to gain insight into
their biological functions using GO and pathway enrichment
analysis (Kyoto Encyclopedia of Genes and Genomes,
KEGG). DAVID is a group of online tools that provide func-

tional annotations for understanding biological meaning
behind a large list of genes (https://david.ncifcrf.gov/) [21,
22]. We performed GO and pathway enrichment analysis
using DAVID, with p < 0:05 considered statistically
significant.

2.4. PPI Network Analysis. The online STRING 10.5 database
[23] (https://string-db.org/) and Cytoscape [24] were used to
establish a PPI network; the cut-off criterion was a combined
score > 0:4 [23]. This PPI network, in which nodes and edges
represented proteins and their interactions, respectively, was
subsequently visualized in Cytoscape. Furthermore, the
degree of a node was equal to the number of its linked edges.
Additionally, CytohHubba in Cytoscape software was used to
identify hub genes. Genes with edge degrees > 10 were
defined as hub genes in this study.

2.5. Upstream Regulators of DEGs. Upstream regulatory net-
works from signatures of DEGs were inferred using the web
application Expression2Kinases (X2K) [25] (http://X2K
.cloud). We produced inferred networks of transcription fac-
tors (TF) and intermediate proteins predicted to control the
expression of the inputted gene list, by combining TF enrich-
ment analysis with PPI network expansion.

2.6. Sample Collection and Processing. In this study, we
included patients who met the criteria for sepsis according
to the definition outlined by the Surviving Sepsis campaign
[2] in the intensive care unit of our hospital. Samples were
acquired from peripheral vein blood of three healthy volun-
teers (control group) and three septic patients. Detailed clin-
ical information was shown in Table S1. Heparinized blood
was collected via venipuncture of one forearm vein under
aseptic conditions, and all samples were processed within
1 h of collection. Following density centrifugation at 500 ×
g for 30min, neutrophils were separated from whole blood
samples using Polymorphprep (AXIS-SHIELD PoC AS,
Oslo, Norway). Cell purity and viability were determined by
Giemsa/Wright staining and trypan blue exclusion
previously described in our published paper [26].

2.7. Ethics Statement. All patients and healthy volunteers
provided informed consent before participation in the study.
The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ruijin
Hospital Ethics Committee, Shanghai Jiao Tong University
School of Medicine, China (Reference Number: 2018179
released on 20 November 2018).

2.8. RNA Isolation and Real-Time Polymerase Chain Reaction
(RT-PCR). Total RNA was extracted from neutrophils using
TRIzol reagent (Invitrogen, Grand Island, NY, USA), accord-
ing to the manufacturer’s instructions. For cDNA synthesis,
RNA (1μg) was reverse transcribed using reverse transcrip-
tase with random hexamers as primers (PrimeScript RT-
PCR Kit; Takara, Kyoto, Japan). RT-PCR was performed
using a SYBR Green PCR Master Mix (Takara) and the
7500 Fast RT-PCR System (Applied Biosystems, Foster City,
CA, USA). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as an internal control. All data were
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analyzed using the 2−ΔΔCT (CT, cycle threshold) method, and
expressed as fold changes relative to reference control sam-
ples. All primer sequences used in this study are listed in
Table S2.

2.9. Statistical Analysis. RT-PCR data were displayed as the
mean ± standard error of mean (SEM) and analyzed using
an unpaired Student’s t-test. All p values were two-sided,
with a p < 0:05 considered statistically significant. All exper-
iments were repeated at least three times. All statistical anal-
yses and figures were prepared using GraphPad Prism
version 6.0 (GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Acquisition of Gene Expression Datasets. The workflow of
this study is illustrated in Figure 1. After using the GEO data-
base to search for neutrophils in patients with sepsis, five
datasets were selected. Altogether, microarrays of neutrophils
from 88 and 214 control and septic samples, respectively,
were collected. The basic information of these datasets, such
as GEO accession number, sample source, number of cases
and controls, platform, and published articles, is shown in
Table 1.

3.2. Identification of DEGs. Each acquired GSE dataset was
analyzed using GEO2R with default parameters. There were
3437, 4755, 4285, 2036, and 2648 DEGs with a p < 0:05 in
GSE49755, GSE49756, GSE49757, GSE6535, and GSE5772,
respectively. R programming language screening identified
37 common DEGs, including 16 (43.2%) and 21 (56.8%) that
were up- and downregulated, respectively (Figure 2); we pro-
vided full length DEGs tables of each dataset with gene sym-
bol/name, probe id, logFC, p value, adj. p. val, and t value in
Table S3–S7. The top five upregulated genes were FKBP5,
SORT1, VNN1, CST7, and GADD45A, while the top five
downregulated genes were PRR5L, SH2B3, SULF2,
PLEKHO1, and PTPN6. These genes are listed in
descending order according to the average fold change of
their confirmed biological function (Table 2). Notably, the
top five regulated DEGs were involved in inflammation,
immune, and metabolism signaling. These results indicate
that genes related to inflammation and immune signaling
have a huge impact, potentially playing crucial roles in sepsis.

3.3. Functional and Pathway Enrichment Analysis. Common
DEGs identified in any four datasets were classified into the
following functional categories: biological process (BP), cel-
lular compartment (CC), and molecular function (MF),
according to the GO hierarchy and a threshold significance
of p < 0:05. DEGs were enriched in 43 GO-BP terms; the
top 10 most significant terms are exhibited in Figure 3,
including apoptotic process, intracellular signal transduction,
response to hypoxia, and the Fc-gamma receptor signaling
pathway involved in phagocytosis and the inflammatory
response. Furthermore, these DEGs played essential roles in
16 GO-CC terms, primarily the cytosol, ruffle, and mito-
chondrion. These DEGs were also observed in 9 GO-MF
terms, including protein binding, lipid binding, and signal
transducer activity. We further used DAVID to analyze the

total DEGs identified from any of the four datasets, with sig-
nificantly enriched gene pathways then submitted to KEGG
analysis; results are shown in Figure 4. As shown, these DEGs
were enriched in 26 KEGG pathways, predominantly in
autophagy regulation, Fc gamma R-mediated phagocytosis,
the TNF signaling pathway, and apoptosis.

3.4. PPI Network Analysis. Using STRING, we found 175
nodes with 215 PPI relationships (Figure 5). Among these
175 nodes, eight genes were identified as hub genes with an
edge degree > 10; according to the edge degree rank, these
eight genes were AKT1, GRB2, CASP8, PTGS2, SOD1,
ATG7, MAP2K1, and TNFRSF1B. Excluding ATG7, SOD1,
and MAP2K1, all genes were downregulated; AKT1 was the
most intensive hub gene, interacting with 37 genes in the net-
work. Interestingly, some hub genes could interact with mul-
tiple other hub genes. For example, AKT1 could interact
directly with four other hub genes, namely, ATG7, CASP8,
GRB2, and MAP2K1. Together, these results suggest that
eight hub genes, especially AKT1, may play important roles
in the development of sepsis. We further inferred networks
of transcription factors (TF) and targeted differentially
expressed genes using X2K (Figure 6). Transcription factors,
such as RELA, CEBPB, CREB1, PPARG, RUNX1, SP11, and
GATA1 have higher k-core values and are hubs. These are
more centralized in the network and have a stronger capacity
of modulating adjacent genes. Interestingly, we found that
AKT1 interacts directly with other transcription factors,
namely, CREB1 and GATA1. Together, these results suggest
AKT1may play important roles in the development of sepsis.

3.5. RT-PCR Validation. AKT1 and DEGs in Table 1 were
randomly selected for validation. AKT1, top up- (FKBP5,
SORT1, VNN1, and CST7) and downregulated (PRR5L,

Search of GEO data of sepsis, homo sapines and neutrophil

Download microarray data (http://www.ncbi.nlm.nih.gov/geo)

Data processing (GEO2R)
https://www.ncbi.nlm.nih.gov/geo/geo2r

DEGs (differentially expressed genes)

GO KEGG

GEO accession

PPI

Common DEGs 

RT–PCR validation

Figure 1: Overall study design.
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SH2B3, SULF2, PLEKHO1, and PTPN6) genes in sepsis were
validated using RT-PCR (as shown in Figure 7).

4. Discussion

Sepsis is a common cause of death in intensive care units
[27]. In the early stage of sepsis, activated innate immune

cells, such as neutrophils, initiate a significant increase in
both innate immune and inflammatory responses to clear
invading pathogens from the host. If the initial response is
not properly controlled, it may result in exaggerated innate
immune and inflammatory responses, leading to organ dam-
age and increased septic mortality [28, 29]. Consequently, a
fundamental component of sepsis pathogenesis is

Table 1: Gene expression datasets for sepsis in our study.

GEO
accession

Cell type Sepsis Control Range of ages (sepsis vs. control) Platform Published article

GSE 49755
Neutrophil
samples

n = 24 n = 12 61:08 ± 3:37 vs. 56:67 ± 0:85 GPL10558 Damien Chaussabel et al. (2014) [16]

GSE 49756
Neutrophil
samples

n = 29 n = 17 46:12 ± 1:76 vs. 65:28 ± 2:92 GPL10558 Damien Chaussabel et al. (2014) [16]

GSE 49757
Neutrophil
samples

n = 35 n = 19 53:54 ± 2:46 vs. 50:63 ± 2:42 GPL10558 Damien Chaussabel et al. (2014) [16]

GSE 6535
Neutrophil
samples

n = 55 n = 17 / GPL4274 Ruby C. Y. Lin et al. (2008) [17]

GSE 5772
Neutrophil
samples

n = 71 n = 23 / GPL4274 Ruby C. Y. Lin et al. (2007) [18]
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Figure 2: Summary of the differentially expressed genes in candidate datasets. (a) Up- and (b) downregulated genes were screened out
between sepsis and controls, as shown in the Venn diagram.

Table 2: The top five up- and downregulated genes in sepsis and their confirmed biological function.

Gene symbol Log FCA
1 Gene title (biological function)

FKBP5 1.74 FK506 binding protein 5 (inflammation and immune system)

SORT1 1.16 Sortilin 1 (metabolism and inflammation)

VNN1 0.84 Vanin 1 (metabolic pathway)

CST7 0.76 Cystatin F (immune system)

GADD45A 0.75 Growth arrest and DNA damage inducible alpha (apoptosis)

PRR5L -0.95 Proline rich protein-5 like (apoptosis)

SH2B3 -0.84 SH2B adaptor protein 3 (inflammation and immune system)

SULF2 -0.75 Sulfatase 2 (metabolism and apoptosis)

PLEKHO1 -0.69 Pleckstrin homology domain containing 01 (inflammation)

PTPN6 -0.62 Protein tyrosine phosphatase nonreceptor type 6 (inflammation)
1FCA: average fold change of gene expression value.
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inflammation, which is associated with immune system dys-
function [30]. High-throughput research may facilitate
exploration of the critical mechanisms underpinning sepsis.

In this study, we performed a comprehensive bioinfor-
matics analysis of neutrophil expression profiles collected
from microarray studies of sepsis. Five gene expression
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Figure 3: Gene Ontology (GO) analysis of differentially expressed genes (DEGs) in sepsis. The top 10 GO terms enriched by DEGs in septic
and normal control neutrophil samples in 3 GO categories. MF: molecular function; CC: cellular component; BP: biological process.
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profile datasets were analyzed, including 88 and 214 control
and septic samples, respectively. Considering the different
microarray platforms and analytical methods used in these
five datasets, we reanalyzed the data using GEO2R with a
uniform standard for DEGs. In total, 37 common DEGs were
identified and further analyzed using functional enrichment
analysis, to better understand their biological implications.
Our results suggest that inflammatory response, autophagy
regulation, Fc gamma R-mediated phagocytosis involved in

immune responses, and the apoptotic process may be critical
for the progression of sepsis. A total of 175 nodes and 215
edges were identified in the PPI network. According to PPI
network analysis, AKT1 (>30) had the highest degree of
interaction; all other genes were <30. Using clinical sepsis
samples and normal healthy controls, we identified the key
genes associated with inflammation in sepsis, including
remarkable increases in FKBP5 and SORT1 expression, as
indicated through RT-PCR studies. In addition, we identified

Up

Down

Figure 5: Protein-protein interaction (PPI) network complex. Functional network analysis of PPI networks based on neutrophil samples
from sepsis patients. Total differentially expressed genes (DEGs) (up- and downregulated genes) were filtered into the PPI network. Red
and blue nodes indicate up- and downregulated genes, respectively. Node size is proportional to edge degree. Edge color indicates
significance according to the p value (the brighter the color, the smaller the p value).
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Figure 6: Upstream regulatory networks predicted to regulate the expression of the coregulated gene signatures in sepsis vs. the normal
controls, as inferred from the Expression2Kinases (X2K) analysis. The inferred networks contain transcription factors (TFs, red nodes)
and intermediate proteins (gray nodes). Gray edges indicate the interaction between two proteins (PPI). The size of nodes is relative to the
level of expression degree.
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lower expression levels of SH2B3, PLEKHO1, and PTPN6
(Figure 7).

The key finding of this study was that the inflammation
signal and immune system play vital roles in the develop-
ment of sepsis. The impact of hyperinflammation and immu-
nosuppression on the development of sepsis has been studied
for years [31, 32]. There are a number of factors that contrib-
ute to immunosuppression, including apoptosis of innate
immune cells, resulting in a state of immune tolerance/para-
lysis in which many immune cells are reprogrammed via epi-
genetic alterations to an unresponsive phenotype [33–35]. In
our study, apoptosis, B cell receptor signaling, Fc gamma R-
mediated phagocytosis, TNF, and the VEGF signaling path-
way were significantly enriched in pathway analysis
(Figure 4). Many aspects of the immune and inflammatory
pathways were also significantly changed in our study. First,
four and five of the top five up- and downregulated genes,
respectively, were involved in inflammation and immune
response signaling (Table 2); these corresponded to several
aspects, including NF-κB signaling-driven inflammation
and immunoregulation (FKBP5) [36–38], inflammation
(SORT1, SH2B3, PLEKHO1, and PTPN6) [39–42], immune
response to differentiation of monocytes to macrophages
(CST7) [43], and apoptosis (GADD45A, PRR5L, and SULF2)
[44–46]. Second, pathway analysis indicated that half of the
top ten significantly changed sepsis pathways were related
to immune and inflammatory signaling (Figure 4). With
regard to immune response and inflammatory signaling in
sepsis, the effects of identified DEGs and pathways may be
of great interest for further study.

As the highest degree gene obtained through PPI network
analysis, AKT1 is a key regulator of the phosphoinositide 3
kinase (PI3K)/Akt signaling cascade, which controls cell
growth and survival [47, 48]. Previous reports indicate that
low molecular mass hyaluronan suppresses neutrophil apo-
ptosis to trigger pulmonary inflammation via activating the
PI3K/Akt pathway [49]. Apoptosis and phos-
phatidylinositol-3,4,5-trisphosphate (PIP3, a lipid second

messenger formed by PI3K) binding and the TNF signaling
pathway were significantly enriched in our pathway analysis.
Moreover, AKT1 has been reported functionally related with
sepsis. Ling et al. showed that inhibition of VNN1 can allevi-
ate lung injury through activation of the AKT signaling path-
way in septic shock [50]. Polymicrobial sepsis causes cardiac
dysfunction that is linked to activation of Akt signaling path-
ways [51]. What is more, expression of AKT1 in septic
patients was significantly decreased compared to healthy
controls using RT-PCR validation (Figure 7). Therefore, the
PI3K/Akt pathway in neutrophils may play a proinflamma-
tory role in patients with sepsis.

Our study identified that FKBP5 was the topmost upreg-
ulated gene in septic patients, compared to normal healthy
controls. FKBP5, also as the regulatory gene of AKT1,
encodes for a cochaperone protein that is acutely induced
by stress and which can regulate immune and basic cellular
processes involved in protein folding and trafficking [37,
38, 52]. Experiments in T immune cells showed that higher
FKBP5 promotes inflammation by strengthening the interac-
tions of NF-κB regulatory kinases [36]. The upregulation of
FKBP5 expression has been observed not only in stress expo-
sure and glucocorticoid stimulation but also in melanoma,
viral infection, depression, and some other diseases [53–
55]. However, no studies have reported the expression level
and role of FKBP5 in septic neutrophils. A dysregulated
inflammatory response is one of the major characteristics of
sepsis. Overexpression of FKBP5, as observed in our results,
may play a role in promoting inflammation signaling in
sepsis.

Although our analysis utilizes high-throughput and a
large sample size, there are still limitations in the present
work. First, molecular docking studies of hub genes would
be needed to perform for modelling the interaction between
a small molecule and a protein at the atomic level associated
with sepsis. Second, more clinical samples and further rele-
vant experimental assays, including animal models, should
be conducted to confirm the underlying biological roles of
key genes and pathways in our analysis of sepsis.

5. Conclusions

In conclusion, we offer a novel and comprehensive analysis of
neutrophil gene expression profiles in clinical sepsis samples.
Genes involved in inflammatory, immune, and PI3K/AKT
pathways were significantly changed in sepsis. Our analysis
provides valuable information for future research into the
molecular mechanisms underpinning sepsis, thereby offering
clues for the discovery of novel therapeutic strategies.

Data Availability

The datasets supporting the conclusions of this article are
within the article and its additional files.
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