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Abstract

Dengue disease is a major problem for public health surveillance entities in tropical and sub-

tropical regions having a significant impact not only epidemiological but social and economi-

cal. There are many factors involved in the dengue transmission process. We can evaluate

the importance of these factors through the formulation of mathematical models. However,

the majority of the models presented in the literature tend to be overparameterized, with

considerable uncertainty levels and excessively complex formulations. We aim to evaluate

the structure, complexity, trustworthiness, and suitability of three models, for the transmis-

sion of dengue disease, through different strategies. To achieve this goal, we perform struc-

tural and practical identifiability, sensitivity and uncertainty analyses to these models. The

results showed that the simplest model was the most appropriate and reliable when the only

available information to fit them is the cumulative number of reported dengue cases in an

endemic municipality of Colombia.

Introduction

Dengue is present in tropical and subtropical climates throughout the planet, especially in

urban and semi-urban areas [1]. There are four distinct serotypes of the virus that cause den-

gue (DEN-1, DEN-2, DEN-3 and DEN-4). Symptoms appear between three and fourteen days

(average four to seven days) after an infective bite [2]. Aedes aegypti is the principal vector for

the transmission of Dengue virus in America. The transmission cycle begins when a suscepti-

ble female mosquito bites an infectious human. After this, the infected mosquito can transmit

the pathogen throughout its life. The symptomatic and asymptomatic humans are the main

carriers and multipliers of the virus [1].

Dengue disease has become a major problem for public health surveillance entities having

a significant impact not only epidemiological but social and economical [3, 4]. In the last few

decades, there has been a surge of interest in the study of the transmission of infectious
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diseases, as dengue disease, by the formulation of mathematical models based on Ordinary

Differential Equations systems (ODEs). This approach provides us with a key instrument to

understand, to explain and to determine when an outbreak of the disease occurs and also to be

able to design control strategies [5]. For this reason, extra care must be taken to design and to

analyze epidemiological models. Although extensive research has been carried out on the for-

mulation of different models of transmission of infectious diseases, few attempts have been

made to evaluate the reliability of the results obtained from these models in real scenarios,

and the possibility of working with simpler models that answer the same questions but do not

require as much information.

Additionally, complex mathematical models can be difficult to fit to data, mainly because

they need to process detailed experimental information that is often not available (e.g., weekly

reports of mosquitoes being infected). By model complexity, we mean the number of state var-

iables together with the number of parameters. Understanding the model complexity and the

nature of its parameters is of vital importance since applying this knowledge to real scenarios

can help to develop strategies to assess and select the most appropriate model.

For the transmission of dengue disease, several mathematical models have previously been

developed, including considerations such as a variable human population [6], effects of vector

control on dengue transmission [7], and the existence of multiple serotypes [8]; a more

detailed review is provided in [9, 10]. However, the lack of articulation of these mathematical

models with the estimation of their parameters from real data has not allowed for this imple-

mentation as a useful tool in the prevention and control of this disease.

This study was designed to analyze and to determine if the parameters estimated in the cali-

bration process of the model from data, are reliable. For this, we performed a combined study

of uncertainty, sensitivity, and identifiability (structural and practical) of model parameters.

The sensitivity and uncertainty analysis will allow us to identify which parameters are the

most relevant for the model output, while the structural and practical identifiability analysis

will help us to determine if it is possible to estimate the model parameters uniquely from the

available information in two scenarios, with noise-free data, and with noisy data. Moreover,

we intend that such models explain the phenomenon under study without losing the biological

meaning of the model parameters. From the results of these analyses, we can have arguments

to choose a model instead of another.

To achieve this goal we introduced three ODE models for dengue transmission which con-

sider different developmental features of mosquito population. For our case study, given that

laboratory data is available, it is possible to define initial ranges for model parameters and ini-

tial conditions of each model. Additionally, we considered the cumulative number of reported

dengue cases of an endemic municipality of Colombia. After that, we performed sensitivity

and uncertainty analysis, and structural and practical identifiability analysis, for each model.

Moreover, we calculated and analyzed the basic reproductive number, R0, which is one of the

most important threshold values in mathematical epidemiology [11].

In the case of the structural identifiability analysis, we are able to know if it is possible,

under certain conditions (noise-free data and error-free model), to estimate the parameters

in a unique way (locally and globally) [12]. This kind of analysis does not require any experi-

mental data. There are several approaches to perform it [13] like direct methods, implicit

function based approaches, and Taylor’s generating series. For a deeper discussion, com-

parison, and details of structural identifiability analysis, we refer the reader to [14]. On the

computational approach, as far as we know, we count with various software tools designed to

perform structural identifiability analysis of non-linear models: DAISY [15], GenSSI [16],

the Identifiability Analysis package in MATHEMATICA [17], COMBOS [18], and

STRIKE-GOLDD [19]. However, we could not find a single tool that works for all
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mathematical models. The selection of a tool to work with depends on its algorithms, as they

are designed to exploit different features of the models (like their number of variables, their

number of parameters or their being of algebraic type).

On the other hand, practical identifiability analysis aims to help us determine whether the

parameters can be uniquely estimated in the presence or non presence of noisy data. The noisy

data generation is part of this analysis, from which we determine some level of error (σ0) to

work with. Then, we use this noise to assess the performance of the proposed model. Perfor-

mance comparison for parameters can be carried out when an indicator, as the average relative

estimation error (ARE), determine whether the parameters are identifiable for different levels

of noise in the data. Monte Carlo simulations and the calculation of correlation matrices are

methodologies used to perform this analysis. For details about these methodologies we refer

the reader to Section Practical identifiability analysis.

Another aspect to take into account for the parameter estimation problem is determining

when small changes in the value of some parameters have a significant impact on the model

output. To address this problem, it is necessary to perform the sensitivity and uncertainty anal-

yses [20]. According to [21], the main goal of sensitivity analysis (SA) is the quantification of

the contribution of each parameter to the model output, taking into account the possible values

within the parameter range as well as the interactions with other parameters, i.e., the parameter

relevance for the model. On the other hand, the uncertainty analysis (UA) attempts to provide

a graphical insight about the propagation of uncertainty from the parameters to the model out-

put. There are several approaches for SA, see for instance [22–24]. However, we focus on the

variance-based approach since it has proved to be versatile and effective for the relevance rank-

ing of parameters and it is widely implemented in the literature [21, 24]. The variance-based

SA is the equivalent of analyzing the model output variance through an experimental design,

though the effect of parameters is not estimated over levels but the whole distribution of each

parameter respectively, which can be achieved through Monte Carlo simulation approach [24].

However, an informative SA usually requires a large number of model simulations, which con-

stitutes a limitation of the technique.

The paper is organized as follows. First, we introduce three different models for the trans-

mission of dengue, and calculate the basic reproductive number for each model. Then, we

present the details of the methodologies to perform the sensitivity, uncertainty, and structural

and practical identifiability analyses. After that, we present the results obtained for each model.

Finally, we draw our main conclusions and discuss future work. We have added all the

MATLAB code used in this study to https://github.com/drojasd/identifiabilityPaperPlos.

Materials and methods

Mathematical model

In this section, we introduce three epidemiological models for the transmission of dengue dis-

ease. For all these models we consider two populations: mosquito population and human pop-

ulation. We use M to denote the size of mosquito population, which can vary over time, and H
to denote the size of human population, which is considered to remain constant (birth and

death rate equal to μh) over the studied time period (one year). The differences among the

models presented in this work are the number of state variables, biological considerations

about mosquito populations and parameters. We started with a model based on the work of

[25] that considers all stages of development of the vector (eggs E, larvae L, pupae P, and adult

phase M), followed by a model based on the work of [26] that considers just one aquatic phase

A (larvae and pupae) and adult phase M. For the last model, we went further with the idea of

reducing state variables leaving only the adult population of mosquito M. For all these models,
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only female mosquitoes appear in the adult phase. Moreover, this population was divided into

three sub-populations, representing susceptible Ms, exposed Me, and infectious Mi mosquitoes.

Analogously, human population in these models are of four kinds: susceptible Hs, exposed He,

infectious Hi, and recovered Hr.

In the first model (1), the development of mosquito begins with the number of eggs E at

time t, which increases with the per capita oviposition rate d 1 � E
C

� �
, where δ is the intrinsic

oviposition rate per capita, and C is the carrying capacity of the environment. The number

of eggs decreases according to the transition rate from eggs to larvae γe and the eggs’ mor-

tality rate μe. The number of larvae L at time t increases with the transition rate from eggs

to larvae γe and decreases with the transition rate from larvae to pupae γl and larvae mortal-

ity rate μl. Likewise, the number of pupae P at time t increases with the transition rate from

larvae to pupae γl, and decreases with the transition rate from pupae to adults γp and the

pupae mortality rate μp. In this manner, the population of adult mosquitoes, including

females and males, increases at rate γp. Because Dengue transmission only involves female

mosquito, we included the parameter f, which represents the fraction of female mosquitoes

produced during hatching of all eggs. Thus, the population of susceptible females Ms

increases at rate fγp, because we removed the number of males γp(1 − f)P that completed

the development cycle.

In the second model (2), for the mosquito population, we consider larval and pupal stages

collectively as the aquatic phase A, which increases with the effective per capita oviposition rate

r 1 � A
C

� �
, with ρ = kδ, where δ is the intrinsic oviposition rate per capita, and k is the fraction

of eggs hatching to larvae. The aquatic phase decreases according to the transition rate from

the aquatic phase to the adult phase γm and the mortality rate in the aquatic phase μa. Similarly

to the model (1) the population of susceptible females Ms increases at rate fγm. Finally, for the

third model (3) we only considered the adult population of female mosquitoes. In this model

we assume a constant recruitment rate Λ, independent of the actual number of adult mosqui-

toes. This assumption seems reasonable, since only a fraction of a large reservoir of eggs and

larvae matures to females, and this process does not depend directly on the size of the female

mosquito population [27].

For these models, dengue transmission begins when a susceptible Ae. aegypti female feeds on

the blood of an infectious human, thereby becoming an exposed mosquito with a transmission

rate bm
Hi
H , that depends on (a) the transmission coefficient, bm ¼ bb0m, where b represents the

mosquitoes’ biting rate (which is the average number of bites per time unit), and b
0

m is the proba-

bility of a mosquito becomes infected after biting a human with Dengue and (b) the proportion

of infectious humans, Hi/H. The exposed mosquito becomes infectious when the extrinsic incu-

bation period is completed, which occurs at a rate θm, where 1/θm is the average duration of the

extrinsic incubation period. Analogously, susceptible humans become exposed humans at a rate

bh
Mi
M , where the transmission coefficient is given by bh ¼ bb0h where βh is the probability that a

person becomes infected after being bitten by an infectious mosquito with Dengue. We followed

the scheme proposed by [25] rather than that proposed by [26] for transmission dynamics since

treating the transition rate from susceptible to exposed humans as bh
Hi
H Mi, as in [26] and other

papers, makes a dimensional issue arise, i.e., the units of the term are
mosquitoes

time , while the units of

their respective state equation are humans
time . For a better insight into the implications of dimensional

analysis, we refer the reader to [28]. When the intrinsic incubation period is completed, the

exposed human becomes infectious, which occurs at a rate θh, where 1/θh is the average duration

of the intrinsic incubation period. Finally, the infectious humans recover at a rate γh, where 1/γh
is the average duration of the recovery period [6]. Models based on these assumptions are given

PLOS ONE Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data

PLOS ONE | https://doi.org/10.1371/journal.pone.0229668 March 11, 2020 4 / 29

https://doi.org/10.1371/journal.pone.0229668


by the following systems of ordinary differential equations, where the variable t (time) is mea-

sured in weeks:

• Model (1)

dE
dt
¼ d 1 �

E
C

� �

M � ðge þ meÞE

dL
dt
¼ geE � ðgl þ mlÞL

dP
dt
¼ glL � ðgp þ mpÞP

dMs

dt
¼ f gpP � bm

Hi

H
Ms � mmMs

dMe

dt
¼ bm

Hi

H
Ms � ðym þ mmÞMe

dMi

dt
¼ ymMe � mmMi

dHs

dt
¼ mhH � bh

Mi

M
Hs � mhHs

dHe

dt
¼ bh

Mi

M
Hs � ðyh þ mhÞHe

dHi

dt
¼ yhHe � ðgh þ mhÞHi

dHr

dt
¼ ghHi � mhHr

ð1Þ

• Model (2)

dA
dt

¼ r 1 �
A
C

� �

M � ðgm þ maÞA

dMs

dt
¼ f gmA � bm

Hi

H
Ms � mmMs

dMe

dt
¼ bm

Hi

H
Ms � ðym þ mmÞMe

dMi

dt
¼ ymMe � mmMi

dHs

dt
¼ mhH � bh

Mi

M
Hs � mhHs

dHe

dt
¼ bh

Mi

M
Hs � ðyh þ mhÞHe

dHi

dt
¼ yhHe � ðgh þ mhÞHi

dHr

dt
¼ ghHi � mhHr

ð2Þ
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• Model (3)

dMs

dt
¼ L � bm

Hi

H
Ms � mmMs

dMe

dt
¼ bm

Hi

H
Ms � ðym þ mmÞMe

dMi

dt
¼ ymMe � mmMi

dHs

dt
¼ mhH � bh

Mi

M
Hs � mhHs

dHe

dt
¼ bh

Mi

M
Hs � ðyh þ mhÞHe

dHi

dt
¼ yhHe � ðgh þ mhÞHi

dHr

dt
¼ ghHi � mhHr

ð3Þ

where M(t) = Ms(t) + Me(t) + Mi(t) and H = Hs(t) + He(t) + Hi(t) + Hr(t). In S1 Fig we

include a flowgraph for each model where all transitions described above are shown.

Basic reproductive number

The basic reproductive number R0 is one of the most important quantities in the study of epi-

demics. This quantity is defined as the expected number of new cases of an infection caused by

a typical infectious individual in a population consisting of susceptible only [29].

For the computation of R0, we follow the strategy presented in [30]. We outline the strategy

to calculate R0 in the following steps.

1. Identify the ODE system that describes the production of new infections and changes in

state among infected individuals. We will refer to the set of such equations as the infected

subsystem.

2. Linearize the infected subsystem of nonlinear ODEs about the infection-free steady state.

This linear system can be described by a matrix. In this paper we refer to this matrix as the

Jacobian matrix of the infected system and we denote it by J.

3. Rewrite the matrix J as T + S, where T is the transmission part, describing the production of

new infections, and S is the transition part, describing changes in state (including removal

by death or the acquisition of immunity).

4. Finally, we compute the dominant eigenvalue, or more precisely the spectral radius ρ, of the

matrix K = −TS−1. The matrix K is called the next-generation matrix (NGM) and R0 the

dominant eigenvalue of this matrix [31].

Data and parameters values

In this study, we consider the cumulative number of reported dengue cases of Bello (Antio-

quia-Colombia) from epidemiological week 49 of 2009 (with 8 reported cases) to epidemiolog-

ical week 7 of 2011 (with 3 reported cases). The number of total cases reported during this

PLOS ONE Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data

PLOS ONE | https://doi.org/10.1371/journal.pone.0229668 March 11, 2020 6 / 29

https://doi.org/10.1371/journal.pone.0229668


period was 1880, which according to local surveillance entities, is classified as an outbreak for

Bello municipality.

To define the entomological parameters range for each model we consider the results of

life tables obtained from experimental assays performed with mosquitoes population of Bello

in the BCEI (Grupo de Biologı́a y Control de Enfermedades Infecciosas de la Universidad de

Antioquia) in 2017. For more detailed information about the experimental protocol, we refer

to [32] and [33]. Range of values for the intrinsic incubation period, extrinsic incubation

period, and recovery rate were taken from the literature [2]. The parameter ranges are summa-

rized in Table 1.

Finally, to define the ranges of initial conditions for each model we considered for the aquatic

phase of the vector, mosquitoes (susceptible, exposed and infectious), and human (susceptible,

exposed, infectious and recovered) the same ranges as in [33]. For the model (1) we defined the

initial condition for eggs, larvae and pupae between zero and the maximal value of the carrying

capacity, 95000. Initial conditions for models (1)–(3) are summarized in the Table 2.

Parameter estimation

To fit the transmission dengue models to data we first implemented them into MATLAB envi-

ronment using the Symbolic Math Toolbox [34] and the GSUA-CSB Toolbox [35]. Then, we

solved the parameter estimation problem in the least-squares sense, which is given by the opti-

mization problem:

θ̂ ¼ min
θ

Xn

i¼1

ðyi; hðxðtiÞ; θÞÞ
2

ð4Þ

where, yi with i = 1, . . ., n are the observations of cumulative reported dengue cases at time ti,
and h(x(ti), θ) are the output of the cumulative infected humans for each model for the vector

of parameters θ.

Table 1. Parameters used in the simulations of models (1)–(3), their biological descriptions, and their value ranges.

Model Parameters Meaning Values per day Values per week

Model (1) δ Per capita oviposition rate [20, 60] [20, 240]

γe Transition rate from eggs to larvae [0.2, 0.5] [1.4, 3.5]

μe Mortality rate in eggs phase [0, 0.015] [0, 0.11]

γl Transition rate from larvae to pupae [0.2, 0.2] [1.4, 1.4]

μl Mortality rate in the larvae phase [0.004, 0.03] [0.028, 0.18]

γp Transition rate from pupae to the adult phase [0.33, 0.5] [2.33, 3.5]

μp Mortality rate in pupae phase [0.008, 0.083] [0.054, 0.58]

Model (2) ρ Effective per capita oviposition rate [19, 60] [19, 240]

γm Transition rate from the aquatic phase to the adult phase [0.125, 0.143] [0.875, 1]

μa Mortality rate in the aquatic phase [0.0025, 0.023] [0.017, 0.16]

Model (3) Λ Recruitment rate [278, 6110] [1881, 42694]

Model (1) and (2) f Fraction of female mosquitoes hatched from all eggs [0.35, 0.45] [0.35, 0.45]

C Carrying capacity of the environment [6400, 95000] [6400, 95000]

Model (1)-(3) μm Mortality rate in the adult phase [0.019, 0.023] [0.16, 0.20]

μh Birth and death rate of the human population 0.00006 0.0004

βh Transmission rate from mosquito to human [0, 4] [0, 4]

βm Transmission rate from human to mosquito [0, 4] [0, 4]

θm Transition rate from exposed to infectious mosquitoes [0.08, 0.13] [0.58, 0.88]

θh Transition rate from exposed to infectious humans [0.1, 0.25] [0.7, 1.75]

γh Recovery rate [0.07, 0.25] [0.5, 1.75]

https://doi.org/10.1371/journal.pone.0229668.t001
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For the estimation process itself, we used the gsua_pe function of the GSUA-CSB

Toolbox with the following parameterization: ODE45 as the MATLAB ODEs solver (this solver

applies the so-called Dormand-Prince method with a time-step variable of which we get an

accuracy improvement during computation [36]). To solve the least-squares problem, we used

the optimization algorithm implementation lsqcurvefit with mean squared error (MSE)

as the cost function and the trust region reflective as the optimization method, setting the max-

imum number of model evaluations up to 4000 to ensure convergence (based on previous

models assessments).

On the other hand, to avoid local minima, we implemented a hybrid methodology based on

advice from [37]. This approach suggests preliminary exploration of the search space through

Monte Carlo simulations to discard non-informative regions before the estimation process.

Therefore, we did not search for space regions but perform multiple optimizations starting

from random parameter values θ. We tried to retrieve as much information as possible from

the whole search space, by sampling the random starting parameter values with a Latin-hyper-

cube design. We refer the reader to [38] for further reading about this sample scheme and its

advantages. In summary, as local minima avoiding strategy, we performed 1000 parameter

estimation tasks for each model and then, we sorted the estimations to keep those that did

not overcome the threshold given by (best cost function) × 1.01. In this way, we assumed that

there were no remarkable differences among those estimations under the threshold, i.e., those

estimations belong to the global minimum.

The aforementioned hybrid methodology allowed us to test, to some extent, the practical

identifiability of the models, as we explain in Section Practical identifiability analysis. It is

clear that getting reliable analysis, including parameter estimation, requires a large number of

samples (starting parameter values in this case). However, computing cost issues arise when

attempting to solve these optimization problems as with models (1) and (2). Bearing in mind

that for each optimization process alone it is required up to 4000 model simulations to meet

the optimization criteria, we performed a small test in order to estimate the average required

time per simulation over AMD A12-9700p Notebook, 2.4GHz and 12Gb RAM. Under these

computer settings, the average simulation time for each model was about 0.05 sec for (3), 1.59

sec for (2) and 6.91 sec for (1). Consequently, for model (1), more than seven hours would be

required per estimation. Of course, the simulation times can be less critical when high-per-

formance computing (HPC) is used. For this reason we implemented HPC for our simula-

tions through Apolo Scientific Computing Center, using 96 nodes and 384Gb of RAM; in

Table 2. Initial conditions used in the simulations of models (1)–(3), their descriptions, and their value ranges.

Model Initial condition Meaning Range

Model (1) E0 Eggs [0, 95000]

L0 Larvae [0, 95000]

P0 Pupae [0, 95000]

Model (2) A0 Aquatic phase [5755, 17265]

Model (1)-(3) Ms0
Susceptible mosquitoes [0, 1200000]

Me0
Exposed mosquitoes [0, 100]

Mi0
Infectious mosquitoes [0, 100]

Hs0
Susceptible humans [244402, 321734]

He0
Exposed humans [18, 72]

Hi0
Infectious humans [6, 24]

Hr0
Recovered humans [81405, 158809]

https://doi.org/10.1371/journal.pone.0229668.t002
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this way, we were able to perform all the estimation tasks that we required for the present

work (24000).

Uncertainty and sensitivity analyses

Uncertainty analysis (UA) and sensitivity analysis (SA) are tools to assess and to quantify the

uncertainty spread from the input factors (parameters and initial states) to the model output,

taking into account the effect of the interactions among those factors [24, 39]. In this work, we

treated UA as a graphical assessment of uncertainty propagation based on simple Monte Carlo

simulation, i.e., random sampling of factors values from previously defined ranges using a

Latin hypercube design; we refer the reader to [38] for further information about this tech-

nique. This also allows us to state a range for scalar model output in cases where it was consid-

ered relevant. On the other hand, we chose a global approach for SA instead of the local one,

because the first attempts to quantify the uncertainty contribution of the model factors in their

entire distribution range (space of factors) while the second is only informative for a single

point of the space of factors [20].

For this work, we chose a global variance-related SA method proposed in [40] and imple-

mented in the function gsua_sa from GSUA-CSB toolbox [35], which is especially useful

for time-response model outputs. Both variance-based and variance-related SA are usually

improvements of Sobol [41, 42]. The so-called Sobol method is based on decomposing the

variance of model output into terms of increasing dimensionality (HDMR). Then, it is possible

to find the contribution to output variance of each factor and its interactions. See a detailed

framework for SA in S1 File. Also, when performing SA, it is common to calculate two normal-

ized-index sets: the first-order sensitivity indices (Si) that quantify the contribution of each fac-

tor to model output; and the total-order sensitivity indices (Sti) that quantify the contribution

of each factor alone and all of its interactions. It follows that Si � Sti , and both terms tend to be

equal as the aforementioned interactions become negligible (see S1 File). When ∑i Si tends to

one, we shall say no strong interactions occur in the model, and a local approach must suffice

to give a good picture of the model behavior. Besides, we shall say, following [20] that a model

is relevant when its relevance measure, C in (5), tends to one.

C ¼
number of parameters whose Sti 6¼ 0

total number of parameters of the model
ð5Þ

Variance-based SA requires a large number of samples of the space of parameters (which is

defined by the range of the parameters): the greater the sample size, the greater the reliability

of the SA. Hence, it is necessary to establish a reliability measure. The sensitivity index estima-

tor we chose from [24] allows to get negative first-order sensitivity indices (Si). However, by

definition, the sensitivity indices can not be negative. Those negative values for Si could be

reached when trying to estimate indices for the first-order non-relevant parameters. Then,

we can define a reliability indicator in the form (∑i2θ Si/∑i2θ|Si|) × (100%). In this way, as the

reliability estimator tends to one, we can say that the sample size is large enough to estimate

reliable sensitivity indices. We consider that the reliability indicator we proposed is a good

approach indeed, since epidemiological models are usually overparameterized, and then it is

likely for several parameters to have their respective Si close to zero.

We were particularly interested in SA as a criterion for model validation since it has been

reported a link between identifiability and SA theory, see [43]. Briefly, if a factor is non-influ-

ential for model output, then it could take any value within its range during the estimation

process; hence, by definition, the factor is unidentifiable in practice. A factor can be influential

and unidentifiable, but this corresponds to another kind of identifiability that we address later.
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Summarizing, we applied global SA to achieve three different goals. First, to assess the rele-

vance of global approaches for future studies of the models we expose here. Second, as an indi-

cator of unidentifiable and non-informative factors. Third, as an indicator of those factors that

carry the most of model information and hence determine its behavior.

Structural identifiability analysis

“In many sciences, it is possible to conduct experiments to obtain information and test hypothe-
ses. However, experiments with the spread of infectious diseases in human populations are often
impossible, unethical, or expensive.” [5]. Therefore, we can not measure all parameters of the

models through experimental assays. However, indirect approaches such as parameter estima-

tion methods can help us to determine these parameters values using the available informa-

tion. To know if it is possible to estimate unique values to model unknown parameters from

the available observables (assuming noise-free data and error-free model) we have to perfor-

mance a study of structural identifiability analysis. This analysis does not require experimental

data. For that reason this analysis is called a prior analysis and can be used to help to design

experimental assays and determine which information should be collected. To set up this prob-

lem, we considered the models (1)–(3) in the following form:

_xðtÞ ¼ fðt; xðtÞ; θÞ; xð0Þ ¼ x0 ð6Þ

where θ denotes the parameters of the system, x(t) is the vector of state variables, and x0 is the

initial values. The cumulative number of dengue cases are given by the output function h(x(t),
θ). To establish what it means for a system to be structural identifiable we introduced the fol-

lowing definitions taken from [13].

Definition 1. A system structure (6) is said to be globally identifiable if for any two parame-

ter vectors θ1 and θ2 in the parameter space, h(x(t), θ1) = h(x(t), θ2) holds if and only if θ1 = θ2.

Definition 2. A system structure (6) is said to be locally identifiable if for any θ within an

open neighborhood of some point θ� in the parameter space, h(x(t), θ1) = h(x(t), θ2) holds if

and only if θ1 = θ2.

In this study, we use the Identifiability Analysis package in Mathematica software to test

for the local identifiability of the epidemiological models of dengue transmission (1)–(3). This

implementation is based on a probabilistic numerical method of computing the rank of the

identifiability (Jacobian) matrix where the matrix parameters and initial state variables are

specialized to random integers. For more detailed information, we refer to [17].

Practical identifiability analysis

In contrast to structural identifiability analysis, in the practical approach we can consider

noise in the experimental data to evaluate the reliability of the parameter estimation [13]. As

is stated in [44] we define the practical identifiability problem as follows. Given a dynamical

model described by

_x ¼ f ðxðtÞ; θÞ xðt0Þ ¼ x0

y ¼ hðxðtÞ; θÞ þ �ðtÞ≔ ŷðt; θÞ þ �ðtÞ
ð7Þ

with state xðtÞ 2 Rn
, output yðtÞ 2 Rm

, random measurement noise ∊ðtÞ2Rm
, and unknown

parameter vector θ 2 Rp
, assuming a finite set of N input-output measurements are available,
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form the average weighted square prediction error

VNðθÞ≔
1

N

XN

k¼1

½yðtkÞ � ŷðtk; θÞ�
TQk½yðtkÞ � ŷðtk; θÞ� ð8Þ

where Qk are positive semidefinite weights. One says that the system (or the parameter θ) is

practically identifiable if VN(θ) has a unique minimum. If the error terms �(t) are assumed to

be Gaussian the function VN(θ) is essentially the likelihood function of the experiment.

In this study, we applied three different approaches to determine if a parameter is practi-

cally identifiable or not. First, we perform Monte Carlo simulations which have been widely

used for practical identifiability of ODEs [13]. In general, a Monte Carlo simulation procedure

can be outlined as follows:

1. Determine the nominal parameters values θ̂, which can be obtained by fitting the epidemi-

ological models (1)–(3) to the weakly (cumulative) number of reported dengue cases.

2. Solve the epidemiological models (1)–(3) numerically with the vector of parameters θ̂ (true

parameters) to get the output hðxðtÞ; θ̂Þ at the discrete data time points ti, with i = 1, . . .n.

3. Generate N sets of simulated data set with a given measurement error (in this case we

assume the error follows a normal distribution with mean 0 and variance σ2(t).

4. Calculate the average relative estimation error (ARE) for each element of θ as

AREðyðkÞÞ ¼ 100%�
1

N

XN

i¼1

jy
ðkÞ
0
� ŷ

ðkÞ
i j

jy
ðkÞ
0
j

; ð9Þ

where y
ðkÞ
0

is the k-th element of the vector θ0 and ŷ
ðkÞ
i is the k-th element of θ̂ i.

5. Repeat steps 2 through 4 increasing the level of noise.

As in [12], we said that if the ARE of the parameter is less than the measurement error σ0,

then the parameter is practically identifiable. The ARE can be used to assess whether each of

the parameter estimates is acceptable or not [13]. However, there is not a clear way to deter-

mine from the ARE value if a parameter is practical identifiable or not. Thus the practical iden-

tifiability relies on the underlying problem and judgment of the investigators [13].

Second, we analyze the correlations between parameters. For this, we consider the parame-

ters θ̂ as in the first step in the Monte Carlo simulation. The corresponding correlation matrix,

S, for these parameters, can be calculated based on the Pearson correlation index, as men-

tioned in [45], where each component of this matrix, sij, gives the correlation coefficient

between the parameters ŷ i and ŷ j. When sij is close to 1, we say the parameters ŷ i and ŷ j are

strongly correlated, which means, these parameters can not be practically identifiable.

And third, we draw a boxplot for the filtered estimations of each model. We think this is a

good approach to practical identifiability analysis since we assume that those estimations whose

cost function are below a given threshold belong to the same minimum. In this way, a parameter

is identifiable to the extent its boxplot tends to be a single point. The higher is the boxplot for a

given parameter, the lesser would be its identifiability. Additionally, the presence of unidentifi-

able parameters in this approach also suggest that the model has multiple global minima.
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Results

Basic reproductive number

Models (1)–(3) have four infected states: exposed mosquitoes Me, infectious mosquitoes Mi,

exposed human He, and infectious human Hi. The infected subsystem associated with these

models is given by:

dMe

dt
¼ bm

Hi

H
Ms � ðym þ mmÞMe

dMi

dt
¼ ymMe � mmMi

dHe

dt
¼ bh

Mi

M
Hs � ðyh þ mhÞHe

dHi

dt
¼ yhHe � ðgh þ mhÞHi

ð10Þ

Moreover, for the model (1) the infection-free steady state is given by

P1
0
¼ ðE�; L�; P�;M�

s ;M
�
e ;M

�
i ;H

�
s ;H

�
e ;H

�
i Þ ð11Þ

where E� ¼ C 1 � 1

Rm

� �
with Rm ¼

f gp
mm

gl
gpþmp

ge
glþml

d

geþme
, L� ¼ ge

glþml
E�, P� ¼ gl

gpþmp
L�, M�

s ¼
f gp
mm
P�,

M�
e ¼ M�

i ¼ 0, H�s ¼ H, and H�e ¼ H�i ¼ 0.

For model (2) the infection-free steady state is stated as follows

P2
0
¼ ðA�;M�

s ;M
�
e ;M

�
i ;H

�
s ;H

�
e ;H

�
i Þ ¼ A�;

f gm
mm

A�; 0; 0;H; 0; 0
� �

ð12Þ

where A� ¼ C 1 � 1

Rm

� �
and Rm ¼

rf gm
mmðgmþmaÞ

.

Whereas for model (3) the infection-free steady state is given by

P3
0
¼ ðM�

s ;M
�
e ;M

�
i ;H

�
s ;H

�
e ;H

�
i Þ ¼

L

mm
; 0; 0;H; 0; 0

� �

: ð13Þ

Then, the linearization of (10) around the infection-free steady state for all three models can

be stated as

_x ¼ ðT þ SÞx

where x = [MeMi He Hi]
T, T ¼

0 0 0 bm
M�s
H

0 0 0 0

0 bh
H�s
M 0 0

0 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

is the transmission matrix, and S ¼

� ðym þ mmÞ 0 0 0

ym � mm 0 0

0 0 ðyh þ mhÞ 0

0 0 yh � ðgh þ mhÞ

0

B
B
B
B
@

1

C
C
C
C
A

is the transition matrix.
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Hence the NGM matrix K is four-dimensional and it is

K ¼ � TS� 1

¼

0 0 0 bm
M�

s

H

0 0 0 0

0 bh
H�s
M

0 0

0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

1

ðym þ mmÞ
0 0 0

ym
mmðym þ mmÞ

1

mm
0 0

0 0
1

ðyh þ mhÞ
0

0 0
yh

ðyh þ mhÞðgh þ mhÞ

1

ðgh þ mhÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

0 0
bmyh

ðyh þ mhÞðgh þ mhÞ

M�
s

H
bm

ðgh þ mhÞ

M�
s

H

0 0 0 0

bhym
mmðym þ mmÞ

H�s
M

bh
mm

H�s
M

0 0

0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

The eigenvalues of K are zero of multiplicity 2, and

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bmbhymyh

mmðym þ mmÞðyh þ mhÞðgh þ mhÞ

H�s M
�
s

HM

s

: ð14Þ

Therefore,

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bmbhymyh

mmðym þ mmÞðyh þ mhÞðgh þ mhÞ

s

ð15Þ

because in the infection-free steady state, H�s ¼ H and M�
s ¼ M.

Model fitting and parameter estimation

We fitted models (1)–(3) to the cumulative reported dengue cases in Bello municipality, start-

ing from epidemiological week 49 of 2009 (with 8 reported cases) to epidemiological week 7

of 2011 (with 3 reported cases) (Fig 1). For this, we added a new state variable, Hit
¼ yhHe

for each model that represents the number of cumulative dengue cases without taking into

account those recovered. We proceed in this way since the available information is about the

new number of reported dengue cases per week and we did not know a priori what the average

period of recovery was for this population. Thus, it is not possible to know how many humans

were infected for a given time. As stated in the methodology Section Parameter estimation,

we performed 1000 parameter estimation tasks for each model starting from different initial

points, and then, we filtered the estimations according to the proposed threshold (1% of dis-

similarity regards to the best estimation for each model). We kept 136 estimations for model

(1) with a standard deviation (std) for MSE cost function of 1.88, 158 estimations for model
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(2) with a std of 1.92, and 476 estimations for model (3) with a std of 2.12. From now on, when

we talk about estimated parameters for any of the models, we will focus on the filtered estimations

instead of the whole estimations. As it can be seen in Fig 1, these models captured the overall

behavior of reported dengue cases in this municipality. Table 3 shows the best fitted parameter

values for each model. Instead of considering the average of the estimations, we include the

median for each parameter since this is a more robust estimator [46]. It is worth pointing out

that the best fit is near to the median value in almost every parameter in each model.

For all of three models, some parameters took the same value in the best estimation such as

the transition rate from exposed to infectious mosquitoes, θm, mortality rate in mosquitoes, μm,

and the recovery rate in humans, γh. The same behavior was shown by the initial condition of

susceptible and infectious mosquitoes, Ms0
and Mi0

, but also for the initial conditions of exposed

humans, He0
. In contrast, for models (1) and (2), the fraction of female mosquitoes hatched

from all eggs, f, and the carrying capacity, C, they all took the same value in the best estimation.

However, we found that their values were on the edge of their biologically plausible ranges.

Observe that for the per capita oviposition rate, δ, and the effective per capita oviposition

rate, ρ, their values and their ranges were almost the same, since the results of experimental

Fig 1. Best fit of models (1)–(3) to reported dengue cases in Bello. The real data corresponds to the number of reported cases for the dengue outbreak

occurred in Bello in 2010. We present here two different visualizations to assess the fit of the three models to the data: in the figure to the left we show

the fit to the synthetic model state we added (Hit
), that represents the cumulative number of reported Dengue cases. On the other hand, for the figure in

right, we transform the data into cumulative Dengue cases per week, which is a friendly way to visualize the process. We fit the model to the cumulative

number of Dengue cases, but we reported the MSE cost function for both of the visualizations as follows: MSE = (value for figure in right- value for

figure in left). Cost functions (MSE): model (1) = (75.32-699.49), model (2) = (73.86-658.1), model (3) = (73.22-642.63).

https://doi.org/10.1371/journal.pone.0229668.g001
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assays with Bello’s vector population showed that the fraction of eggs hatching to larvae, k,

ranges from 97% to 100%.

Fig 2 shows that the intervals for each parameter range were wider for model (2) than for

the other two models. Note that, a few parameters for model (3) converge to a single point

value, in contrast with the other models.

Sensitivity analysis

We perform global sensitivity analysis for all three models and for the basic reproductive num-

ber, R0. Fig 3 shows that the least sensitive parameters for model (1) and model (2) are those

corresponding to the stages of vector development, (eggs, larvae, pupa and aquatic phase) (see

Fig 3(a) and 3(b)). While the most sensitive parameters in models (1)–(3) and in the produc-

tion of secondary infections of dengue in Bello municipality, R0, were the transmission rate

from mosquito to human, βh, the transmission rate from human to mosquito, βm, and the

recovery rate, γh (Figs 3 and 4(a)). Additionally, Table 4 shows the results of the relevance mea-

sure (5) for each model. Before calculating this measure we performed an standardization of

the values showed in Fig 3, to make these results comparable.

Table 3. Estimated parameters and initial condition for models (1)–(3).

Parameter Range Model (1) Model (2) Model (3)

Estimated Median Estimated Median Estimated Median

E0 0 95000 95000.000 94938.059 - - - -

L0 0 95000 95000.000 94951.047 - - - -

P0 0 95000 95000.000 94939.135 - - - -

A0 5755 17265 - - 17216.859 16273.478 - -

Ms0
0 1200000 1200000.000 1199879.050 1200000.000 1199986.954 1200000.000 1199999.996

Me0
0 100 32.938 82.656 31.839 79.411 44.600 75.460

Mi0
0 100 0.000 0.971 0.000 0.000 0 0

Hs0
244402 321734 301842.132 290732.912 304026.086 288261.994 318001.356 289123.066

He0
18 72 18.000 18.014 18.000 18.013 18.000 18.000

Hr0
81405 158809 81405.000 117887.169 81407.485 122431.455 81439.356 83824.309

δ 20 240 20.000 20.000 - - - -

γe 1.4 3.5 1.400 1.409 - - - -

γp 2.33 3.5 2.330 2.335 - - - -

μe 0 0.11 0.110 0.110 - - - -

μl 0.028 0.18 0.180 0.179 - - - -

μp 0.054 0.58 0.580 0.579 - - - -

C 6400 95000 6400.000 6595.133 6400.000 6401.212 - -

f 0.35 0.45 0.350 0.351 0.350 0.350 - -

ρ 19 240 - - 19.000 19.000 - -

γm 0.875 1 - - 0.875 0.876 - -

μa 0.017 0.16 - - 0.160 0.160 - -

Λ 1881 42694 - - - - 1881.000 1881.001

βh 0 4 2.378 0.802 2.444 0.832 1.717 1.092

βm 0 4 0.104 0.365 0.097 0.326 0.134 0.226

θh 0.7 1.75 0.969 1.177 0.850 1.110 0.790 0.827

θm 0.58 0.88 0.580 0.580 0.580 0.580 0.580 0.580

γh 0.5 1.75 1.750 1.750 1.750 1.749 1.750 1.750

μm 0.16 0.2 0.196 0.197 0.196 0.198 0.196 0.196

https://doi.org/10.1371/journal.pone.0229668.t003
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On the other hand, since the R0 model is not a system of ODEs, it is much less expensive to

calculate its value and hence, to perform UA/SA. Fig 4(b) shows the behavior of the values of R0

for 100000 parameter combinations. This result suggest that there is no significant difference

between the results obtained from performing global sensitivity analysis and local sensitivity

analysis on R0. The median of the R0 for these parameter combinations is between two and five.

While it is difficult to find combinations of parameters that produce an R0 greater than ten.

These result are consistent with the values of R0 reported in literature for dengue [47].

Structural identifiability

For models (1)–(3) we evaluated if these are locally identifiable from the number of cumulative

dengue cases reported by official entities only. Also, we fixed the values of human mortality

rate, μh, the initial condition for infectious humans, Hi0
, and the transition rate from larvae to

pupae γl according to ranges obtained from experimental assays (see Table 1).

Fig 2. Analysis of parameter intervals after estimation process for models (1)–(3). Here we compare some traditional confidence

intervals for the 12 parameters (6 initial conditions and 6 parameters) shared by the three models. To achieve these confidence

intervals we remove 5% upper and 5% lower of the results vector for each parameter after estimation process. The boxplots represent

the confidence interval of each parameter for every model: M1 is the label for model (1), M2 for model (2), and M3 for model (3). The

values estimated for the 12 parameters did not differ significantly from one model to the other, except for the case of θh whose

interval slightly differs from model (1) to model (3). It is noticeable that the intervals tend to be more punctual for the case of model

(3), followed by model (1), while model (2) has the widest of intervals.

https://doi.org/10.1371/journal.pone.0229668.g002
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Table 5 shows the parameters are not locally identifiable for any of the models. For all mod-

els, we obtained that the parameters which describes the development stages of the vector, the

recruitment rate in adult population and the initial conditions for vector population were not

identifiable from the cumulative number of dengue cases in humans. However, the number of

non-identifiable parameters, which should be assumed to be known to obtain a locally struc-

tural identifiable system for models (1), (2) and (3) are four, three and one respectively. These

numbers correspond to the minimal necessary information that makes the identifiability

matrix (Jacobian matrix) have full range.

It is possible to obtain locally structural models by using the results from the sensitivity

analysis (see Fig 3). For instance, for model (1) we can fix the parameters δ, μe, γp and the initial

condition for eggs, E0. For model (2) we can fix the parameters μa, ρ, and the initial condition

for the aquatic phase, A0. For model (3) we can fix the initial condition for exposed mosqui-

toes, Me0
.

Fig 3. Global sensitivity analysis for models (1)–(3). Here we show the total-order sensitivity indices ðSti Þ we

obtained from global sensitivity analysis exploring the space of parameters through 10000 samples for each model (up

to 125000 simulations for model (1)). We achieved a reliability indicator of 99.7% for model (1), 99.9% for model (2),

and 99.8% for model (3). It is noticeable that most of the variance can be linked to three of the parameters for the three

models, i.e., those three parameters mostly determine the behavior of the models. Besides, the ranking of relevance of

the parameters is almost the same for the models.

https://doi.org/10.1371/journal.pone.0229668.g003

Table 4. Relevance measure for models (1)–(3).

Model C1 C2 C3 C4 C5

Model (1) 0.52 0.61 0.78 0.87 0.91

Model (2) 0.67 0.72 0.83 0.83 0.89

Model (3) 0.92 1 1 1 1

The columns of this table are the relevance measure in (5) assuming that Sti < Ci implies Sti ¼ 0, over five levels of

Ci: C1 = 10−3, C2 = 10−4, C3 = 10−5, C4 = 10−6, and C5 = 10−7, respectively. A model is better than other, if its

relevance measure is closer to one, i.e., fewer non-relevant parameters.

https://doi.org/10.1371/journal.pone.0229668.t004
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Fig 4. Sensitivity and uncertainty analysis for the basic reproductive number, R0. We perform UA/SA with 100000

samples (up to 450000 simulations), getting a reliability indicator of 100%. From the SA it is noticeable that the same

three parameters that almost determine the behavior of the models (Fig 3) are also the most relevant ones here. On the

other hand, the UA shows that the range of the R0 model is approximately [0 − 12], though most of the outputs are

concentrated in low values ([0 − 5]).

https://doi.org/10.1371/journal.pone.0229668.g004

Table 5. Non-structurally identifiable parameters and initial conditions for models (1)–(3).

Model Non-structural identifiable

Parameters Initial Conditions

Model (1) δ Per capita oviposition rate E(0) Eggs

C Carrying capacity of the environment L(0) Larvae

γe Transition rate from eggs to larvae P(0) Pupae

μe Mortality rate in eggs phase Ms(0) Susceptible mosquitoes

γp Transition rate from pupae to the adult phase Me(0) Exposed mosquitoes

μp Mortality rate in pupae phase Mi(0) Infectious mosquitoes

f Fraction of female mosquitoes hatched from all eggs

Model (2) ρ Effective per capita oviposition rate A(0) Aquatic phase

C Carrying capacity of the environment Ms(0) Susceptible mosquitoes

γm Transition rate from the aquatic phase to the adult phase Me(0) Exposed mosquitoes

μa Mortality rate in the aquatic phase Mi(0) Infectious mosquitoes

f Fraction of female mosquitoes hatched from all eggs

Model (3) Λ Recruitment rate Me(0) Exposed mosquitoes

Ms(0) Susceptible mosquitoes

Mi(0) Infectious mosquitoes

https://doi.org/10.1371/journal.pone.0229668.t005
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Practical identifiability

Before performing the practical identifiability analysis through Monte Carlo simulations and

correlation matrix, we analyzed the behavior of each parameter in the filtered estimations for

each model. We show in Fig 5 a boxplot of the parameter estimations for each model after

eliminating their outliers. We normalized the result of each estimation according to the range

of each parameter. A parameter is less identifiable when the boxplot is bigger. For all three

models, these analyses showed that the initial conditions of susceptible humans and exposed

mosquitoes (Hs0
and Me0

, respectively) and the transmission rate from mosquito to human, βh,
are not identifiable. Moreover, we observed that model (3) has more less identifiable parame-

ters than model (1).

According to the results we obtained in the previous section, we fixed the value for the ini-

tial condition of exposed mosquitoes, Me0
in model (3), to obtain a locally identifiable model.

After that, we proceed in the same way as mentioned above, obtaining 257 estimations below

the threshold (1% criterion) and std = 2.13. Fig 6 shows the results obtained for each parame-

ter. In contrast to the previous result, we observed that the transmission rate from human to

mosquito, βm, became more identifiable. On the other hand, the boxplot of βh decreased, while

the boxplots of θh and Hr0
increased, that is, these parameters became less identifiable.

We compared two approaches to determine if models (1)–(3) are practical identifiable. We

performed Monte Carlo simulations by generating 1000 random data sets for different mea-

surement error levels and fitting each data set to epidemiological models (1)–(3). Additionally,

we consider the non-structural identifiable models, i.e. we estimate all parameters except μh, γl
and the initial condition for infectious humans, Hi0

. To determine which parameters are prac-

tical identifiable we compute the relative estimation errors (ARE) for each parameter of each

model.

We see from Tables 6–8 that the number of identifiable parameters remains constant when

the noise in the data increases. For all models we obtained that the AREs for the initial

Fig 5. Boxplot identifiability analysis for models (1)–(3). Parameters of each model were ordered from lowest to highest identifiability. The black

point represents the value of each parameter for the best estimation (best fit for the dengue real data of Bello municipality). We removed the outliers

using the MATLAB function filloutliers and normalized the data with respect to the estimation interval for each parameter before plotting.

Almost the same parameters ðHs0
;Me0

;bhÞ are unidentifiable for all three models. However, the initial condition of the aquatic stage of the vector (A0)

is not identifiable for model (2), while the transition rate of humans (θm) and the initial condition of the recovered humans ðHr0
Þ are less identifiable

for model (3). It is noticeable that the best estimation for vector-human transition rate (βh) from models (1) and (2) corresponds to an outlier. Also,

most of the highly identifiable parameters for the three models are attached to the inferior or superior bound of the estimation interval.

https://doi.org/10.1371/journal.pone.0229668.g005
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condition of infectious mosquitoes, Mi0
, were high showing that this parameter is sensitive to

the noise in the data. Besides, for models (1) and (2) the oviposition rate (δ), and the effective

oviposition rate (ρ), were not practical identifiable parameters, according to the results we

obtained from structural identifiability analysis.

We analyzed the behavior of the parameters in model (3) after fixing Me0
. In Table 9 we

observe that the relative errors of all parameters except for the initial condition of infectious

mosquitoes, Mi0
, are always smaller than the implemented noise. We conclude that even when

we consider the locally structural identifiable model (3), Mi0
remains unidentifiable.

In addition, we compute the correlation matrix for model (3) before and after we fixed Me0
,

as it can be seen in Fig 7. We found that only few parameters show a strong correlation

through the four scenarios we presented. Also, the most noticeable correlations for a given

Fig 6. Boxplot of parameters for model (3) after fixing the value Me0
¼ 44:6. Same as in Fig 5, we remove the

outliers and normalized the filtered estimations for model (3). The black dots correspond to the best estimation for the

model (best fit to real data, MSE = 642.63). Since the initial condition Me0
has been fixed, it has also disappeared from

the boxplot. Note that θh and Hr0
are even less identifiable for this model relative to the other models.

https://doi.org/10.1371/journal.pone.0229668.g006
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error level were not the same as in the other level. For instance, the transmission rates β
achieved the highest correlation for an error level of 40%, while Me0

, Hs0
and θh show the high-

est correlation for an error level of 1%.

Discussion

This study set out with the aim of assessing the importance of carrying out sensitivity, uncer-

tainty, and identifiability (structural and practical) analyses to dengue transmission models to

determine if all models explain the transmission in the same way or if there are differences that

help the researcher choose one model over the others. As far as we know, this is the first study

in which the performance of different models is evaluated through the aforementioned analy-

ses to determine which model is more reliable to simulate and identify the main parameters

involved in the transmission of dengue, taking into account the available information to fit the

model and to define the parameter intervals.

Numerous studies have attempted to explain the transmission of dengue disease, taking

into account several considerations such as a variable human population [6], effects of vector

control on dengue transmission [25], the existence of multiple serotypes [8], the effect of tem-

perature in the transmission and development of the vector [48–50], among others. A more

Table 6. Practical identifiability analysis for each parameter and initial condition of model (1) by Monte Carlo simulations.

Parameter Estimated value Error level σ0%

0% 1% 5% 10% 20% 40%

E0 95000 0 0.1 0.4 0.6 2 5.6

L0 95000 0 0 0.1 0.3 1.1 2.5

P0 95000 0 0 0.1 0.3 0.6 1.2

Ms0
1200000 0 0 0.1 0.3 0.5 1.0

Me0
32.938 0 0.1 0.5 1.1 2.6 5.9

Mi0
0 0 1.37 × 109 9.77 × 109 2.27 × 1010 5.34 × 1010 1.46 × 1011

Hs0
301842.132 0 0 0.1 0.1 0.3 1.3

He0
18 0 0 0.4 1.1 2.5 7.8

Hr0
81405.0 0 0.2 0.3 0.4 0.7 1.7

δ 20 0 1.5 16.8 36 81.6 217.5

γe 1.4 0 0 0.1 0.3 0.8 2

γp 2.33 0 0 0.1 0.2 0.3 0.7

μe 0.11 0 0.1 1.5 3.3 7.5 19.8

μl 0.18 0 0 0.2 0.3 0.5 1.4

μp 0.58 0 0 0.2 0.3 0.6 1.1

C 6400 0 0 0.6 1.7 4.2 10.6

f 0.35 0 0 0.1 0.2 0.4 0.8

βh 2.378 0 0.1 0.4 0.8 1.7 3.7

βm 0.104 0 0.3 1.2 2.5 5 11.3

θh 0.969 0 0.2 1.2 2.8 6.9 17.2

θm 0.58 0 0 0.3 0.5 1 2.2

γh 1.75 0 0.2 0.3 0.5 0.9 1.9

μm 0.196 0 0.1 0.4 0.9 1.7 3

ARE for each parameter of model (1) when fitted to cumulative number of reported dengue cases in Bello municipality. The values that are above the error level are

shown in gray.

https://doi.org/10.1371/journal.pone.0229668.t006
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detailed review is provided in [9, 10]. However, despite the good fitting results obtained with

these models and the biological explanation that supports the incorporation of these factors,

few studies have evaluated the relation between the model formulation and the available data

to obtain more reliable and accurate estimations. For instance, in [12, 51] the authors

Table 8. Practical identifiability analysis for each parameter and initial condition of model (3) by Monte Carlo simulations.

Parameter Estimated value Error level σ0%

0% 1% 5% 10% 20% 40%

Ms0
1200000 0 0 0.2 0.2 0.4 0.8

Me0
44.6 0 0.1 0.7 1.7 3.6 7.7

Mi0
0 0 3.54 × 1013 3.15 × 1014 5.82 × 1014 1.16 × 1015 3.85 × 1015

Hs0
318001.356 0 0 0.1 0.2 0.7 2.1

He0
18 0 0.1 0.6 1.4 3.2 7.8

Hr0
81439.356 0 0.2 0.4 0.6 1.2 2.0

Λ 1881 0 0.2 1.6 3.9 9.1 22.7

βh 1.717 0 0.1 0.5 1.3 3 5.7

βm 0.134 0 0.3 1.4 3.2 7.7 15.2

θh 0.79 0 0.3 1.8 4.6 14.1 30.8

θm 0.58 0 0.1 0.3 0.6 0.8 1.6

γh 1.75 0 0.2 0.3 0.4 0.5 0.9

μm 0.196 0 0.1 0.6 1 1.9 3.4

ARE for each parameter of model (3) when fitted to weekly reported dengue cases in Bello municipality. The values that are above the error level are shown in gray.

https://doi.org/10.1371/journal.pone.0229668.t008

Table 7. Practical identifiability analysis for each parameter and initial condition of model (2) by Monte Carlo simulations.

Parameter Estimated value Error level σ0%

0% 1% 5% 10% 20% 40%

A0 17216.859 0 0.5 1 1.9 2.7 7.3

Ms0
1200000 0 0 0.2 0.3 0.6 1.0

Me0
31.839 0 0.1 0.5 1.2 2.8 6.4

Mi0
0 0 4.51 × 1013 2.35 × 1014 5.88 × 1014 1.58 × 1015 3.89 × 1015

Hs0
304026.086 0 0 0.1 0.1 0.3 1.2

He0
18 0 0.1 0.5 1.2 2.9 8.0

Hr0
81407.485 0 0.2 0.3 0.5 0.9 2.2

C 6400 0 0.1 0.9 2.3 5.1 14.1

f 0.35 0 0 0.1 0.2 0.5 1.0

ρ 19 0 2.9 19.8 38.6 84.2 212.9

γm 0.875 0 0 0 0.1 0.1 0.3

μa 0.16 0 0.2 1.5 3.0 6.5 16.4

βh 2.444 0 0.1 0.3 0.8 1.8 3.8

βm 0.097 0 0.3 1.3 2.4 5.3 12.2

θh 0.85 0 0.3 1.3 2.8 7.6 18.9

θm 0.58 0 0 0.2 0.5 1.1 2.3

γh 1.75 0 0.2 0.3 0.5 0.9 2.1

μm 0.196 0 0.1 0.5 0.9 1.7 3.3

ARE for each parameter of model (2) when fitted to weekly reported dengue cases in Bello municipality. The values that are above the error level are shown in gray.

https://doi.org/10.1371/journal.pone.0229668.t007
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evaluated the performance and reliability of the fitting data of different models only taking

into account the results of the structural and practical identifiability analyses. While others

studies only perform sensitivity analyses on the basic reproductive number, R0, to determine

which parameters are more important in the production of secondary cases [52, 53]. However,

we found that it is necessary to carry out these analyses jointly because they are

complementary.

We show that models (1)–(3) can be fitted to the cumulative number of reported dengue

cases with almost the same cost function (Fig 1). However, models of greater complexity

(more parameters and more state variables) require more information to guarantee that the

model is locally structural identifiable, and in this way, also guarantee that the parameter esti-

mation problem can be solved in a unique way, assuming noise-free data and error-free model

(see Table 5). Additionally, since all the parameters that interact with the human population

directly are locally identifiable from the cumulative number of reported dengue cases, the

structural identifiability analysis suggests that in order to have structural identifiable models, it

is necessary to collect information about the transmission dynamics of the vector.

Another important finding was that the least sensitive parameters in the models were those

that describe the development stages of the vector (see Fig 3). This is an indicator that shows it

is unnecessary to consider more state variables when we want to explain an epidemic outbreak,

since these equations do not provide new information, and do not help to identify other param-

eters. Conversely, those state variables provide more degrees of freedom that can spread more

errors during the estimation process, also increasing the required computing time to achieve

similar results to those achieved by less complex models. Perhaps, the most significant finding

is the application of the relevance measure (5) to each model, which is a clear indicator for the

choice of one model over the others (see Table 4). We strongly believe that these results were

reliable since the reliability indicator was very close to 100% for each model (see Fig 3).

Notwithstanding, as we see from Tables 6–9, the practical identifiability analysis through

error levels does not provide interesting information about the identifiability of the models,

which turns out more evident as we contrast those results with the ones we presented in Fig 5.

Table 9. Practical identifiability analysis for each parameter and initial condition of model (3) by Monte Carlo simulations after we fixed the initial condition of

exposed mosquitoes.

Parameter Estimated value Error level σ0%

0% 1% 5% 10% 20% 40%

Ms0
1200000 0 0 0.2 0.3 0.4 0.9

Mi0
0 0 8.91 × 109 6.27 × 1010 1.38 × 1011 2.81 × 1011 6.26 × 1011

Hs0
321700.801 0 0 0.1 0.3 1.2 2.8

He0
18 0 0.1 0.6 1.6 3.8 7.8

Hr0
81405.053 0 0.1 0.2 0.4 0.8 1.4

Λ 1881 0 0.1 1.2 3.1 8.8 21.3

βh 1.697 0 0.1 0.6 2.1 5.1 8.7

βm 0.135 0 0.3 1.2 3.9 10.5 19.1

θh 0.789 0 0.2 1.4 4.8 16.8 31.3

θm 0.58 0 0 0.2 0.6 0.9 1.6

γh 1.75 0 0.1 0.3 0.5 0.7 1.1

μm 0.196 0 0.1 0.5 0.9 1.8 3

ARE for each parameter of model (3) when fitted to weekly reported dengue cases in Bello municipality after we fixed the initial condition of exposed mosquitoes

(Me0
¼ 44:6) to obtain a structural identifiable model. The values that are above the error level are shown in gray.

https://doi.org/10.1371/journal.pone.0229668.t009
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For instance, results from error levels approach suggest that the unidentifiable parameters are

the initial condition of infectious mosquitoes (Mi0
) and the oviposition rate (δ or ρ). However,

the analysis through the boxplots of filtered estimations points out that the main unidentifiable

parameters are Hs0
and Me0

, followed by the transmission rates (βm and βh) and few more

parameters for the case of models (2) and (3). We think that those contradictory results from

both approximations could be attributed, to some extent, to the fact that error levels approach

is a local method instead of a global one, as the boxplot approach. Bearing in mind the nature

of the methods, we can argue that the error levels approach constitutes an exploration of the

behavior of a given minimum. Thus, the method itself does not reveal the presence of

Fig 7. Correlation analysis for model (3) before and after being locally structural identifiable. Correlation matrices for model (3)

using the Pearson correlation index. Strong correlation (|index|> 0.8) suggest that the parameters are unidentifiable. Here we

present the correlation matrices for two noise levels, σ = 1% (ARE1) and σ = 40% (ARE40). Before we fixed Me0
we found a strong

positive correlation between Me0
and Hs0

for low noise level; on the other hand, after fixing Me0
we found strong negative correlation

between transmission rates (βh and βm), as well as between Hs0
and θh for high noise level. Those negative correlated parameters

correspond to the unidentifiable ones from Fig 6.

https://doi.org/10.1371/journal.pone.0229668.g007
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identifiability issues due to local or even global minima. On the other hand, the boxplot

approach attempts to explore the whole space of parameters, and after the filtering process, it

even yields information about the convergence of the parameters to the global minimum.

Hence, assuming that filtered estimations share an equally good cost function (i.e., that we can

not differentiate among their fit) all the parameter distributions must tend either to be punc-

tual or to have multiple global minima. We also think that the advantages we exposed about

the boxplot approach are supported by the results from the correlation matrix plots in Fig 7.

Even though the criterion for strong interactions was seldom overcome, it is noticeable that

those rows (or columns) that correspond to the less identifiable parameters for model (3) are

also the rows that present the strongest interactions for each matrix (darker or brighter colors).

A final aspect that should be mentioned is that for all models, (1)–(3), we found that the

basic reproductive number is given by the same expression (15) through the application of

Next Generation Matrix operator [30]. This result is coherent since the infected subsystem is

the same for all three models (10). Additionally, the sensitivity and uncertainty analysis of R0

suggest that different results of parameter estimation produce different model fit to real data,

while different values of parameter estimation can produce the same value of R0 (Fig 4).

In summary, Section Results allow us to conclude that if we are only interested in formulat-

ing a dengue transmission model capable of replicating the occurrence of the outbreak as the

aforementioned Bello case, taking into account that the only information available is the num-

ber of new cases per week, the most appropriate model is model (3). It is important to notice

that the election of this model does not depend only on the complexity of the model, since

model (2) had worst performance than model (1) in analyses as the relevance measure, and the

practical identifiability analysis through the boxplots.

Further research might explore the behavior of these analyses on models that consider con-

trol strategies at all stages of vector development, models that include several virus serotypes,

and models that consider the change in the parameters of the model when the temperature,

relative humidity, and precipitation change. It is important to carry out these analyses when

information about these hypotheses is available to determine which model is more appropri-

ate. Moreover, it is important to examine more closely the links between the parameters esti-

mated, the output of the other states of the model, and the expression for the basic

reproductive number, R0 to provide more biological meaning in model results. Hence, one of

the most remarkable features in the trajectory of the model states through the simulation of

the epidemic outbreak turned up as we focused on those states that simulate the vector popula-

tion. It is noticeable from S2 Fig that, for all three models, the initial condition of the vector

states (except for Mi0
) was much higher than those values the states reach at the end of the sim-

ulation, i.e., said states were starting from a point far from the stationary state. The behavior of

the vector population gains more relevance as we take into account the results from Fig 5, that

presents the distribution of the estimated parameters after the filtering process; as it can be

seen, all the parameters linked to large initial non-infective vector population are attached to

the superior bound of their intervals, while the parameters linked to the vector proliferation

(vector population renewal) are attached to the inferior bound of their intervals.

Additionally, the different death rates (μ) are attached to high values of the intervals or

directly to the superior bounds also. We think that it is possible to explain the phenomenon we

described above as an initial (not-considered) perturbation of the system, and hence, we

decided to call it the initial pulse effect. Since we did not consider variables to handle or incor-

porate such kind of phenomena to the model, we assume that it was numerically taken into

account by the solver during estimation process by setting the initial vector population large as
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possible, and then allowing a rapid transition to a stationary state determined by the lowest

values for the survival of immature vector states, the carrying capacity, and the oviposition

rate. In this way, the epidemic outbreak occurs as a secondary process linked to the transition

of the vector population to its stationary state. Our belief in this statement is based on the R0

values from the filtered estimations. As can be seen in S3 Fig, most of the R0 values for the esti-

mations fell within the range of [0.5 − 0.6] (none of the 1000 estimations achieved an R0

greater than one), which suggest, from a general interpretation of R0, that there was no epi-

demic outbreak in Bello municipality. However, it is necessary to point out that one of the

main required assumptions for calculating R0 through the next generation matrix approach is

that both of the vector and human populations are at equilibrium state, which clearly does not

hold for the scenarios we estimated. Hence, the initial pulse effect can be summarized as fol-

lows: the susceptible vector population is as high as possible considering its equilibrium at the

start of the epidemic outbreak, then, as the term
M�s
Ms

from Eq (14) suggests, the disease starts

spreading in the human population; however, as we step forward in the simulation, the suscep-

tible vector population tends to equilibrium where its respective R0 is lower than one (as we

calculated it), firstly slowing down the spread rate of the outbreak until the disease begins dis-

appearing from the human population.

The initial pulse effect points out that the next generation matrix approach could not be

appropriate for the R0 calculation of vector-borne diseases whose vector population is far from

equilibrium at the start of the simulation. Furthermore, if it is possible to trigger an outbreak

just introducing some perturbations over the vector dynamics such that the vector population

is taken away from its equilibrium state, then it should be possible to simulate several epidemic

outbreaks and even the endemic behavior through consecutive perturbations. Finally, although

we argue that the calculation of R0 through next-generation matrix approach does not seems

like an appropriate strategy, it is remarkable that the R0 interpretation from [54], which states

that R0 > 1 implies the establishment of the disease in the population while R0 < 1 implies the

disappearing of the disease, actually holds.
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