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ABSTRACT
Parkinson’s disease (PD) is a common neurodegenerative disorder arising from an interplay between genetic and environmental 
risk factors. Studies have suggested that the pathological hallmarks of intraneuronal α-synuclein aggregations may start from the 
olfactory bulb and the enteric nervous system of the gut and later propagate to the brain via the olfactory tract and the vagus 
nerve. This hypothesis correlates well with clinical symptoms, such as constipation, that may develop up to 20 years before the onset 
of PD motor symptoms. Recent interest in the gut–brain axis has led to vigorous research into the gastrointestinal pathology and 
gut microbiota changes in patients with PD. In this review, we provide current clinical and pathological evidence of gut involvement 
in PD by summarizing the changes in gut microbiota composition and gut inflammation associated with its pathogenesis.
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Parkinson’s disease (PD) is a common neurodegenerative dis-
order arising from the interplay between genetic and environ-
mental factors. In addition to the well-known motor symptoms 
of bradykinesia, rigidity, rest tremor, and postural instability, PD 
also involves various nonmotor symptoms, including constipa-
tion, depression, sleep disturbance, and hyposmia. Among these, 
constipation is the most common and can precede motor symp-
tom onset by more than a decade.1 Intraneuronal α-synuclein ag-
gregations, the pathological hallmarks of PD, were recently iden-
tified in the olfactory bulb and enteric nervous system (ENS) in 
patients with PD based on postmortem pathological examina-
tions.2-4 Given the topographical distribution of intraneuronal 
α-synuclein deposits, known as Lewy bodies (LBs), Braak and 
coworkers hypothesized that PD pathology may involve trans-
synaptic cell-to-cell transmission of α-synuclein from the ENS via 
the vagus nerve and the olfactory bulb to the substantia nigra 
and further areas of the brain.5 Combined with the fact that the 
ENS and olfactory bulb are the gateways to the environment, 
this evidence suggests an involvement of environmental factors 

in PD pathogenesis.6

Findings from several subsequent studies are in line with 
Braak’s hypothesis, although there are some conflicting results. 
Bowel inflammation triggered by rotenone, immune activation by 
Escherichia coli (E. coli)-producing amyloid protein curli or bacteri-
al products (lipopolysaccharide, LPS) induce α-synuclein aggre-
gations in the gut or both in the gut and brain.7-9 Animal studies 
have shown that α-synuclein can spread from the gut to the brain 
via the vagus nerve10,11 and that vagus nerve resection can suc-
cessfully stop this transmission.9 Recent findings point to consis-
tent gut microbiota changes in patients with PD compared to age- 
and sex-matched healthy controls.12 However, despite a plethora 
of evidence suggesting a role of the gut–brain axis in the devel-
opment of PD, some conflicting results exist. As many as 47% 
of PD cases from a UK tissue bank and 18% from a Vienna brain 
tissue bank did not show the pattern of pathological α-synuclein 
distribution proposed by Braak and colleagues.13,14 In addition, 
the results of epidemiological studies have been inconsistent 
about the risk reduction of PD in patients who have undergone 
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In this review, we provide the current clinical and pathologi-
cal evidence of gut involvement in patients with PD and the pos-
sible role of gut microbiota changes as potential environmental 
triggers in the disease process.

GASTROINTESTINAL SYMPTOMS 
IN PATIENTS WITH PD

Gastrointestinal (GI) impairments are commonly observed 
at all stages of PD, with almost 30% of patients reporting GI symp-
toms, including drooling, dysphagia, gastroparesis, and consti-
pation.18 The prevalence of drooling in PD ranges from 10% to 
84%.18-22 The presentation is related to swallowing dysfunction 
in the oropharyngeal phase19 and an increased rate of parotid 
gland secretion20 that worsens with a flexed posture, unintend-
ed mouth opening, and divided attention.21 The prevalence of 
dysphagia ranges from 9% to 82% but has been up to 97% in 
objective studies.22 Dysphagia usually develops in patients with 
advanced PD who have severe bradykinesia and rigidity, which 
is thought to contribute to oropharyngeal dysphagia.23 The prev-
alence of gastroparesis ranges from 70% to 100%, with an aver-
age half-emptying time of 46 to 149 minutes in patients with 
mild PD and 55 to 221 minutes in moderate/severe PD, com-
pared to 43 to 107 minutes in healthy controls.24 Although the 
exact pathophysiology is unclear, gastroparesis is a major player 
in the development of motor fluctuations in PD.25 

The most common GI symptom in patients with PD is con-
stipation, which is also among the most prevalent prodromal 
symptoms of PD.26 The prevalence of constipation in PD ranges 
from 8% to 70% and increases with disease progression.27 Evi-
dence suggests that this prevalence is up to 6-fold greater among 
patients with PD than among age-matched and sex-matched 
controls.28 An increasing number of studies have evaluated the 
temporal relationship between bowel movement frequency and 
PD risk. The Honolulu-Asia Aging cohort study in males, 
which had a 24-year follow-up period, showed that infrequent 
bowel movements, as assessed by a self-reported bowel habit 
questionnaire, were associated with an increased risk of PD and 
reduced neuronal density in the substantia nigra.29 Our study 
using a population-based national database also showed that the 
severity of constipation, quantitatively defined by the amount of 
laxative use, was dose-dependently associated with future PD 
risk, independent of age, sex, underlying comorbidities, or medi-
cation use.30 A case–control study reported a greater PD risk 
among individuals with a history of constipation, as early as 20 
years before the onset of motor symptoms, as assessed by a re-
view of medical records.31 PD-related constipation may be traced 
to LB deposition in the ENS or the dorsal motor nucleus of the 

vagus nerve, which are among the earliest affected regions in 
PD.32 Despite vigorous research, the precise etiology of constipa-
tion and whether constipation in PD is caused by gut or brain 
pathology remain elusive.33

GASTROINTESTINAL PATHOLOGY 
FINDINGS IN PATIENTS WITH PD

The GI tract consists of four layers: the mucosa, submucosa, 
muscular layer, and serosa (ordered from innermost to outer-
most). It contains its own intrinsic nervous system, the ENS, but 
is also modulated extrinsically by the autonomic nervous sys-
tem, which is involved in PD.34 The ENS consists of submuco-
sal plexuses and myenteric (Auerbach) plexuses (Figure 1). The 
submucosal plexuses have three layers: the inner (Meissner plex-
us), intermediate, and outer (Schabadasch or Henle) plexuses, 
which are mainly responsible for secretion and blood flow in the 
GI tract. Myenteric plexuses mostly control intestinal peristalsis.35 
Virtually every neurotransmitter produced by neurons in the 
central nervous system (CNS) have also been identified within 
the ENS, including acetylcholine, nitric oxide (NO), vasoac-
tive intestinal peptide (VIP), and catecholamines.36 Autonomic 
parasympathetic input mediates the central modulation of ENS 
function primarily from the dorsal motor nucleus of the vagus 
nerve and the sympathetic input from the para- and prevertebral 
ganglia.

The accumulation of α-synuclein is not limited to central do-
paminergic neurons, and a growing body of literature has shown 
that α-synuclein aggregation can be detected particularly in the 
ENS at postmortem and in safely accessible in vivo biopsies of 
the GI tract. Some studies have even demonstrated detectable 
α-synuclein pathology in the GI tract in the prodromal phase 
of PD. Below, we summarize the recent GI pathology findings 
in patients with PD according to the findings from postmor-
tem pathology studies, colon biopsy (only covering the muco-
sal and submucosal layers) and surgical colectomy findings 
(covering all three layers of colon) of PD patients.

Evidence from postmortem autopsy studies 
In 1984, Qualman and colleagues37 first reported the possible 

presence of LBs in the GI tract, based on the autopsies of 8 pa-
tients with achalasia, 22 with PD, and 50 controls. Using hema-
toxylin-eosin (H&E) staining, they examined multiple levels of 
the entire GI tract (esophagus, stomach, jejunum, ileum colon, 
and rectum). LB-like intraneuronal inclusions were found in the 
myenteric plexus of the esophagus in 2 of 8 patients with acha-
lasia and 1 of 3 PD patients with dysphagia, but none were found 
in the controls. This intraneuronal inclusion pathology was most 
prominent in the distal esophagus in the achalasia patient who 
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had the shortest duration of the disease and retained degenerat-
ed ganglion cells in the esophagus. The inclusions were also 
found in the myenteric plexus but not the submucosal plexus of 
the colon in one PD patient who had dysphagia. Subsequent au-
topsy reports by Wakabayashi and colleagues38,39 using H&E 
staining and electron microscopy described LB-like inclusions in 
both the myenteric plexus and submucosal plexus and through-
out the GI tract in PD patients, more numerously in the distal 
esophagus. Intriguingly, small LBs were also observed in the my-
enteric plexus of the esophagus or small intestine in 8 of 24 age-

matched controls who did not have PD.39 Further immunohis-
tochemistry staining of different types of neurons of 3 autopsied 
PD patients showed that the LBs resided in the VIP neurons in-
stead of tyrosine hydroxylase neurons in the paravertebral and 
celiac sympathetic ganglia and the ENS of the GI tract.38 

In 2006, Braak and colleagues40 investigated the gastric pathol-
ogy of 5 patients with pathologically confirmed PD using im-
munohistochemistry with an antibody against α-synuclein (an-
ti-Syn-1, clone 42). α-synuclein pathology, in the form of LBs 
and immunoreactive fibers, was identified in the myenteric plex-

Preganglionic 
fibre

Nucleus 
ambiguus

Solitary 
tract

CNS

ENS

Vagus nerve

Dorsal motor nucleus 
of vagus nerve

Myelinated special 
viscero motor fibreMyelinated viscero- 

sensory fibre

Myenteric (Auerbach) 
plexuses

Submucosal plexuses

Mucosa
Striated muscle

VIP

VIP

ACh

Figure 1. Vagal parasympathetic nerve fibers connecting the ENS and CNS. ENS: enteric nervous system, CNS: central nervous system, 
Ach: acetylcholine, VIP: vasoactive intestinal peptide.
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us, submucosal plexus, and peripheral nerves in the adventitia of 
the distal esophagus and stomach in all PD patients (5/5) but in 
no controls (0/5) (Table 1). One of the five PD patients had α- 
synuclein pathology in the ENS and dorsal motor nucleus of the 
vagal nerve without α-synuclein deposits in the substantia nigra. 
These findings, in combination with the same group’s discovery 
of an α-synuclein staging pattern in the CNS,32 led to Braak and 
colleagues’ pathology hypothesis of PD3,4 and opened the door 
to subsequent vigorous research on α-synuclein in the gut. 

The autopsy reports of immunohistochemistry staining tar-
geting α-synuclein in the GI tracts are summarized in Table 1. 
Most studies used antibodies against α-synuclein, although with 
different clones. The frequency of α-synuclein detection in PD 
patients was higher than in controls in most studies (Table 1).40-45 
One group using an antibody targeting phosphorylated Ser 129 
α-synuclein obtained positive results in 11 of 17 patients with 
PD and in 0 of 23 controls.46 In addition to patients with PD, 
α-synuclein pathology was observed in patients with diffuse LB 
dementia (DLB), comprising 5 of 9 patients with DLB in one 
study and 5 of 5 in another; on the other hand, it was rarely found 
in patients with Alzheimer’s disease44,45 and not found in 2 pa-
tients with multiple system atrophy in a study that examined 
only the esophagus.43 

These autopsy reports using immunohistochemistry to tar-
get intraneuronal α-synuclein were in agreement with a ros-
tro–caudal gradient pattern of α-synuclein distribution in the 
GI tract, with more abundant α-synuclein pathology in the 
esophagus and stomach compared to the colon.41,44,46 In addi-
tion, α-synuclein pathology was found in both the myenteric 
and submucosal plexuses but more frequently in the former. 

LBs, if present, were mostly found in the myenteric plexus. No-
tably, Annerino and colleagues41 reported that in contrast to 
earlier findings of Wakabayashi and colleagues, α-synuclein pa-
thology did not colocalize with NO-positive or VIP-positive 
neurons and did so with less than 3% of the tyrosine hydroxy-
lase–positive neurons. PD motor symptom severity also did 
not correlate with the density of enteric neurons or α-synuclein 
pathology in that study.41 

Evidence from colon biopsy studies
Following the initial autopsy reports of α-synuclein in the GI 

tract,40 many studies addressed the feasibility of detecting α- 
synuclein as a peripheral biomarker using colonic biopsy speci-
mens of living patients. The results of the biopsy reports are sum-
marized in Table 2. Overall, they were inconsistent. Because of 
safety concerns, the specimens from a biopsy procedure con-
tain only the mucosa and, at most, the submucosa. Based on im-
munohistochemistry, the frequency of α-synuclein or phospho-
α-synuclein in the stomach mucosa ranged from 31.6% to 
100% in PD patients and 4.3% to 41.7% in controls;47-49 the fre-
quency of α-synuclein or phospho-α-synuclein in the mucosal 
layer of the colon was 0% to 100% in PD patients and in con-
trols;47,48,50-53 and the frequency of α-synuclein or phospho-α-
synuclein in the submucosal layer of the colon was 5% to 100% 
in PD patients and 0% to 100% in controls.52-59 Some groups ex-
amined α-synuclein or phospho-α-synuclein in various regions 
of the mucosa or mucosal layers of the GI tract and found fre-
quencies from 9% to 100% in PD patients and 0% to 36% in 
controls.60-64 Although the findings of many studies still support-
ed a higher frequency of α-synuclein or phospho-α-synuclein in 

Table 1. Summary of staining results using immunohistochemistry methods targeting α-synuclein in GI tracts, from autopsy reports

Author (year) Region Anti-α-syn Ab 
(clone) ENS involved

PD 
(positive/ 

total number)

Control
 (positive/ 

total number)

Presence 
of LB-like 

accumulations
Braak et al. (2006)40 Distal esophagus, stomach Syn-1 (clone 42) Au, Me, Adventitia 5/5 0/5 + (Au)

Bloch et al. (2006)42 Distal esophagus α-syn (LB509) Au > Me 1/2 14/98 N.A.

Beach et al. (2010)46 Esophagus, stomach, 
duodenum, ileum, colon

P-Ser129-α-syn Au, Me 11/17 0/23 N.A.

Del Tredici et al. 
(2010)43 Distal esophagus, stomach Syn-1 (clone 42) N.A. 8/8 1/13 N.A.

Del Tredici et al. 
(2011)148 Distal esophagus, stomach Syn-1 (clone 42) Au 3/3 1/1 + (Au)

Annerino et al. 
(2012)41*

Stomach, duodenum, 
ileum, colon

α-syn (LB509) Au > Me 13/13 0/12 + (Au > Me)

Gold et al. (2013)45 Colon α-syn (KM51) Au > Me 10/10 52% N.A.

Gelpi et al. (2014)44* Esophagus, stomach, colon
α-syn (KM51)
P-α-syn 

(pSyn#64)
Au 8/10

5/5 (DLB), 
0/8 (AD)

+ (Au)

*Colocalization staining with neuronal markers was performed in only 2 studies [Annerino et al. (2012)41 and Gelpi et al. (2014)44]. Ab: antibody, GI: gas-
trointestinal, PD: Parkinson’s disease, LB: Lewy body, DLB: diffuse Lewy body dementia, α-syn: alpha-synuclein, P-α-syn: phosphorylated α-synuclein, 
Au: Auerbach plexus, Me: Meissner plexus, N.A.: not available, AD: Alzheimer’s disease.



Gut Dysbiosis in Parkinson’s Disease
Chiang HL, et al.

www.e-jmd.org  71

Ta
bl

e 
2.

 S
um

m
ar

y 
of

 s
ta

in
in

g 
re

su
lts

 u
si

ng
 im

m
un

oh
is

to
ch

em
is

try
 m

et
ho

ds
 ta

rg
et

in
g 
α -

sy
nu

cl
ei

n 
in

 g
as

tro
in

te
st

in
al

 tr
ac

ts
, f

ro
m

 b
io

ps
y 

re
po

rts

A
ut

ho
r (

ye
ar

) 
R

eg
io

n 
D

ep
th

M
et

ho
d

α -
sy

nu
cl

ei
n 

A
b 

(c
lo

ne
 o

r s
ou

rc
e)

C
os

ta
in

in
g 

ne
ur

on
al

 
m

ar
ke

r
PD

 
(p

os
iti

ve
/to

ta
l 

nu
m

be
r, 

or
 %

)

C
on

tr
ol

 
(p

os
iti

ve
/to

ta
l 

nu
m

be
r, 

or
 %

)

Le
bo

uv
ie

r e
t a

l. 
(2

00
8)

55
As

ce
nd

in
g 

co
lo

n 
S

D
IF

 (W
M

)
P-
α -

sy
n 

(p
Sy

n#
64

)
N

eu
ro

fil
am

en
t, 

H
uC

/D
, 

D
BH

4/
5

0/
5 

 

Le
bo

uv
ie

r e
t a

l. 
(2

01
0)

56
As

ce
nd

in
g 

an
d 

de
sc

en
di

ng
 

co
lo

n,
S

D
IF

 (W
M

)
P-
α -

sy
n 

(p
Sy

n#
64

)
N

eu
ro

fil
am

en
t, 

H
uC

/D
, 

D
BH

20
/2

9
0/

10

Sh
an

no
n 

et
 a

l. 
(2

01
2)

59
Si

gm
oi

d
S

IH
C

α -
sy

n 
(L

B5
09

)
C

up
ro

lin
ic

 b
lu

e 
so

lu
tio

n
9/

9
2/

24

Sh
an

no
n 

et
 a

l. 
(2

01
2)

58
La

rg
e 

in
te

st
in

e
S

IH
C

 +
 D

IF
 

α -
sy

n 
(L

B5
09

)
Su

bs
ta

nc
e 

P
3/

3
0/

23

Po
uc

le
t e

t a
l. 

(2
01

2)
57

As
ce

nd
in

g 
an

d 
de

sc
en

di
ng

 
co

lo
n,

 re
ct

um
S

D
IF

 (W
M

)
P-
α -

sy
n 

(p
Sy

n#
64

)
N

eu
ro

fil
am

en
t

As
ce

nd
in

g 
co

lo
n 

17
/2

6;
D

es
ce

nd
in

g 
co

lo
n 

11
/2

6;
R

ec
tu

m
 6

/2
6

0/
9

Po
uc

le
t e

t a
l. 

(2
01

2)
53

 
D

es
ce

nd
in

g 
co

lo
n,

 s
ig

m
oi

d
S

D
IF

 (W
M

)
P-
α -

sy
n 

(p
Sy

n#
64

)
N

eu
ro

fil
am

en
t

M
 3

/9
; S

 4
/9

 
0/

10
 

Po
uc

le
t e

t a
l. 

(2
01

2)
14

9
D

es
ce

nd
in

g 
co

lo
n

S
D

IF
 (W

M
)

P-
α -

sy
n 

(p
Sy

n#
64

)
N

eu
ro

fil
am

en
t

5/
9

M
SA

 1
/6

 

H
ilt

on
 e

t a
l. 

(2
01

4)
61

Es
op

ha
gu

s,
 s

to
m

ac
h,

 
sm

al
l a

nd
 la

rg
e 

in
te

st
in

e
M

 +
 S

IH
C

 +
 D

IF
α -

sy
n 

(K
M

51
)

P-
α -

sy
n 

(p
Sy

n#
64

)
S-

10
0

7/
62

0/
16

1

Sá
nc

he
z-

Fe
rro

 e
t a

l. 
(2

01
5)

49
St

om
ac

h
M

IH
C

α -
sy

n 
(K

M
51

)
P-
α -

sy
n 

(p
Sy

n#
64

)
S-

10
0

17
/2

0 
1/

23

Vi
sa

nj
i e

t a
l. 

(2
01

5)
51

Si
gm

oi
d,

 re
ct

um
M

IH
C

, P
ET

α -
sy

n 
(L

B5
09

)
P-
α -

sy
n 

(a
b5

92
64

)
-

α -
sy

n 
22

/2
2

P-
α -

sy
n 

22
/2

2
α -

sy
n 

9/
11

P-
α -

sy
n 

10
/1

1

Sp
re

ng
er

 e
t a

l. 
(2

01
5)

52
W

ho
le

 c
ol

on
, s

ig
m

oi
d,

 
re

ct
um

M
 +

 S
IH

C
 +

 D
IF

α -
sy

n 
(1

5G
7)

P-
α -

sy
n 

(p
Sy

n#
64

)
H

uC
/H

uD

α-
sy

n:
 

M
 2

4/
24

; S
 2

1/
21

P-
α -

sy
n:

 
M

 0
/2

4;
 S

 1
/1

9

α -
sy

n:
  

M
 2

1/
22

; S
16

/1
6

P-
α -

sy
n:

 
M

 0
/2

2;
 S

 0
/1

4

C
la

ire
m

ba
ul

t e
t a

l. 
(2

01
5)

54
D

es
ce

nd
in

g 
co

lo
n,

 s
ig

m
oi

d
S

IH
C

 +
 D

IF
P-
α -

sy
n 

(p
Sy

n#
64

)
PG

P 
9.

5
23

/3
1

0/
11

C
hu

ng
 e

t a
l. 

(2
01

6)
47

St
om

ac
h,

 la
rg

e 
in

te
st

in
e

M
IH

C
P-
α -

sy
n 

(E
P1

53
6Y

)
S-

10
0

St
om

ac
h 

31
.6

%
;

C
ol

on
 1

0.
6%

St
om

ac
h 

33
.3

%
;

C
ol

on
 1

8.
5%

M
ra

be
t e

t a
l. 

 (2
01

6)
62

Es
op

ha
gu

s,
 s

to
m

ac
h,

 
du

od
en

um
M

 +
 S

IH
C

α -
sy

n 
(m

on
oc

lo
na

l a
nt

ib
od

y)
-

30
/3

0
1/

13

St
ok

ho
lm

 e
t a

l. 
(2

01
6)

65
Es

op
ha

gu
s,

 s
to

m
ac

h,
 

sm
al

l a
nd

 la
rg

e 
in

te
st

in
e 

S
IH

C
α -

sy
n 

(M
JF

R
1)

P-
α -

sy
n 

(M
JF

-R
13

)
Sy

na
pt

op
hy

si
n

α -
sy

n:
 

Pr
e-

PD
 2

4/
39

; P
D

 1
1/

18
P-

α-
sy

n:
 

Pr
e-

PD
 2

2/
39

; P
D

 9
/1

8

α -
sy

n 
43

/9
0

P-
α -

sy
n 

23
/9

0

An
tu

ne
s 

et
 a

l. 
(2

01
6)

50
La

rg
e 

in
te

st
in

e 
M

IH
C

α -
sy

n 
(S

yn
20

4)
P-
α -

sy
n 

(a
b5

92
64

)
-

α -
sy

n 
18

/1
9

P-
α -

sy
n 

19
/1

9
α -

sy
n 

8/
8

P-
α -

sy
n 

8/
8

Ba
rre

ns
ch

ee
 e

t a
l. 

(2
01

7)
60

R
ec

tu
m

M
 +

 S
D

IF
P-
α -

sy
n 

(p
Sy

n#
64

)
PG

P 
9.

5
3/

12
4/

11

R
ou

au
d 

et
 a

l. 
(2

01
7)

15
0

La
rg

e 
in

te
st

in
e 

S
IH

C
P-
α -

sy
n 

(p
Sy

n#
64

)
PG

P 
9.

5
3/

3 
 (L

R
R

K2
-G

20
19

S)
-

Sh
in

 e
t a

l. 
(2

01
7)

64
St

om
ac

h,
 la

rg
e 

in
te

st
in

e
M

 +
 S

IH
C

P-
α -

sy
n 

(E
P1

53
6Y

)
N

eu
ro

fil
am

en
t

2/
22

4/
22

R
uf

fm
an

n 
et

 a
l. 

(2
01

8)
63

Es
op

ha
gu

s,
 s

to
m

ac
h,

 
sm

al
l a

nd
 la

rg
e 

in
te

st
in

e
M

 +
 S

IH
C

PE
T

α -
sy

n 
(K

M
51

, L
B5

09
)

O
-α

-s
yn

P-
α -

sy
n 

(p
Sy

n#
64

)

C
al

re
tin

in
 (5

A5
), 

H
u 

C
/H

uD

α -
sy

n 
0/

51
P-
α -

sy
n 

7/
51

O
-α

-s
yn

 1
0/

51

α -
sy

n 
0/

21
P-
α -

sy
n 

5/
21

O
-α

-s
yn

 5
/2

1

Le
e 

et
 a

l. 
(2

01
8)

48
St

om
ac

h,
 la

rg
e 

in
te

st
in

e
M

IH
C

P-
α -

sy
n 

(E
P1

53
6Y

)
S-

10
0

12
/3

3
20

/4
6

PD
: P

ar
ki

ns
on

’s
 d

is
ea

se
, A

b:
 a

nt
ib

od
y,

 S
: s

ub
m

uc
os

a,
 M

: m
uc

os
a,

 IH
C

: i
m

m
un

oh
is

to
ch

em
is

try
, D

IF
: d

ou
bl

e 
im

m
un

ofl
uo

re
sc

en
ce

, W
M

: w
ho

le
 m

ou
nt

, P
ET

: p
ar

af
fin

-e
m

be
dd

ed
 ti

ss
ue

 b
lo

t, 
α -

sy
n:

 
α -

sy
nu

cl
ei

n,
 P

-α
-s

yn
: p

ho
sp

ho
-α

-s
yn

uc
le

in
, O

-α
-s

yn
: o

lig
om

er
ic

 fo
rm

 o
f α

-s
yn

uc
le

in
, T

: t
ot

al
, T

H
: t

yr
os

in
e 

hy
dr

ox
yl

as
e,

 D
BH

: d
op

am
in

e-
be

ta
-h

yd
ro

xy
la

se
, M

SA
: m

ul
tip

le
 s

ys
te

m
 a

tro
ph

y,
 P

re
-P

D
: 

pr
em

ot
or

 s
ta

ge
 o

f P
D

, L
R

R
K2

-G
20

19
S:

 P
D

 p
at

ie
nt

s 
ca

rry
in

g 
th

e 
G

20
19

S 
m

ut
at

io
n 

in
 L

R
R

K2
.



72

J Mov Disord  2019;12(2):67-83
JMD
PD patients than in controls,49,53-59,61,62 others suggested similar 
frequencies between groups.47,48,50-52,60,63-65 

Despite the higher frequency of α-synuclein or phospho-α-
synuclein deposits in colonic biopsy specimens in PD patients 
versus controls in some studies, others offered conflicting re-
sults (Table 2). Some explanations for the discrepancies include 
the variable individual GI conditions of participants, different 
PD subtypes and disease durations, variable location and depth 
of the biopsies, the number of biopsies and slides examined, 
specimen size, different definitions for α-synuclein positivity, 
different neuronal markers for nerves and neurons, different an-
tibodies, and most important, different specimen preparation 
(e.g., whole-mount with microdissection vs. formalin-fixed, par-
affin-embedded) and immunohistochemistry methods. 

Although some studies uncovered a rostro–caudal gradient of 
α-synuclein deposits in colonic biopsies,47,57,62 other studies did 
not.52,61 α-synuclein pathology can also be found in the preclin-
ical stage of PD patients58,61 and in patients with idiopathic 
REM sleep behavior disorder.52 The proportion of α-synuclein 
positivity did not differ between patients with preclinical PD and 
those with motor symptoms of PD in one study (10.6% were in 
the preclinical stage, defined as up to 8 years prior to clinical di-
agnosis; 10.7% had PD motor symptoms).61 The difference be-
tween preclinical PD and controls was detected only with an an-
tibody against phospho-α-synuclein in another study (phospho-
α-synuclein positivity in PD vs. preclinical PD vs. controls: 48%, 
45%, and 26%, respectively; total α-synuclein positivity in PD 
vs. preclinical PD vs. controls: 61%, 52%, and 47%, respective-

ly).65 Additionally, biopsy positivity did not differ between pa-
tients in the early and late stages of PD.51 

Few studies have evaluated the correlation between motor 
symptom severity and α-synuclein pathology of the GI tract. 
Lebouvier and colleagues56 reported a positive correlation of axi-
al symptom subscores of the unified PD rating scale (UPDRS), 
levodopa responsiveness, and chronic constipation severity with 
LB pathology in the submucosa of the GI tract. Hilton and col-
leagues61 found that all PD patients with positive findings of 
α-synuclein pathology in colonic biopsies had early autonomic 
symptoms, although other findings conflicted with these re-
sults.49,47,63 

Evidence from surgical specimens of colectomy
Surgical specimens are superior to biopsy specimens because 

they allow for better specimen quality with adequate tissue and 
full thickness of the intestinal wall. However, the disadvantage 
of studies using surgical specimens is that only diseased speci-
mens can be obtained, which can affect the results. The results 
of reports based on surgical specimens are summarized in Table 
3. Shin and colleagues64 compared phospho-α-synuclein positiv-
ity (EP1536Y) in colonic biopsy specimens with surgical speci-
mens from patients with PD. Of interest, although the stomach 
surgical specimens had a higher positive rate for phospho-α-
synuclein immunoreactivity in PD participants (58%) than in 
controls (8.3%), the colorectal surgical specimens did not differ 
(PD patients vs. controls: 23.8% vs. 23.8%). Furthermore, the 
positivity of colorectal mucosal biopsy specimens did not differ 

Table 3. Summary of staining results using ICH methods targeting α-synuclein in gastrointestinal tracts, from surgical specimens

Authors (year) Region Method
α-syn Ab 
(clone)

Costaining 
neuronal marker 

Ab

ENS 
involved

PD 
(positive/total 
number, or %)

Control 
(positive/total 
number, or %)

Minguez-Castellanos 
et al. (2007)151

Small and large 
intestine

IHC
α-syn (KM51)
α-syn (LB509)

PGP9.5, 
TH Neurofilament

N.A. N.A. 3.9%

Böttner et al. 
(2012)69 Colon, rectum IHC + DIF

α-syn
P-α-syn (pSyn#64)

HuC/D, PGP 9.5 Au, Me N.A.

α-syn: 
Au13/13, Me13/13

P-α-syn: 
Au11/13, Me 8/13

Ito et al. (2014)67

Stomach, 
duodenum, small 
intestine, colon, 
gallbladder

IHC

P-α-syn (pSyn#64),
P-α-syn 

(serine129, 
polyclonal)

Neurofilament, TH

Au > Me, 
Subserosa 
nerve 
fascicles 

2/2 0/10, 4/6 (DLB)*

Aldecoa et al. 
(2015)66

Stomach, small and 
large intestine

IHC

α-syn (KM51)
P-α-syn (pSyn#64)
α-syn (15G7)
α-syn (505)

N.A. Au > Me 4/6 1/12

Shin et al. (2017)64 Stomach, 
large intestine

IHC P-α-syn (EP1536Y) Neurofilament Au > Me 12/33 6/33

Yan et al. (2018)68 Stomach, intestine, 
appendix

IHC
α-syn (monoclonal 

antibody)
N.A. Au, Me 17/31 7/32

*1 α-syn positive patient was preclinical. ENS: enteric nervous system, PD: Parkinson’s disease, Ab: antibody, IHC: immunohistochemistry, DIF: dou-
ble immunofluorescence, Au: Auerbach plexus, Me:  Meissner plexus, DLB: diffuse Lewy body dementia, TH: tyrosine hydroxylase, α-syn: 
α-synuclein, P-α-syn: phospho-α-synuclein, N.A.: not available.
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between PD patients (9.1%) and controls (18.2%).64 In compari-
son studies between PD patients and controls, the overall fre-
quency of α-synuclein pathology in PD patients detected using 
surgical specimens has been 36% to 100%, higher than in the 
controls (0% to 22%).64,66-68 

Yan and colleagues68 studied surgical specimens, including co-
lon and stomach, using an α-synuclein mouse monoclonal anti-
body and found that α-synuclein pathology is most frequent in 
the body of the stomach in PD patients but not in controls. Using 
different primary antibodies, Aldecoa and colleagues66 detected 
LB-like intraneuronal aggregations in the body of the stomach 
in 4 out of 6 PD patients but in only 1 out of 12 controls. Addi-
tionally, the pattern of punctate cytoplasmic staining of ganglion 
cells was observed only in staining with anti-phosphorylated 
Ser129 α-synuclein antibody.66 However, some studies have 
produced conflicting results, identifying α-synuclein pathology 
in the submucosal and muscular layers of the colon or appendi-
ceal mucosal nerve plexus in neurologically healthy controls 
who underwent partial colectomy or sigmoid resection.69,70 

These conflicting results have led to several investigations 
into the sensitivity and specificity of different conventional im-
munohistochemistry methods or to attempts with other meth-
ods to produce more consistent results. Corbillé and colleagues71  
distributed a common set of colon biopsy slides from 9 PD pa-
tients and 3 controls to four different laboratories for immuno-
histochemistry staining using different α-synuclein or phospho-
α-synuclein antibodies and epitope exposure methods. Their 
results showed that no particular single staining method or stain-
ing pattern had a sensitivity and specificity of more than 80%.
The same group further examined full-thickness sigmoid colon 
specimens from 5 pathology-confirmed PD patients and 5 con-
trols using different immunohistochemistry methods and anti-
bodies [anti-phospho-Ser129 α-synuclein, including EP1536Y 
(ab51253) and MJF-R13 (8-8) (ab168381), anti-phospho-Ala81 
α-synuclein, polyclonal p-synuclein LB509], and epitope expo-
sure methods.72 They obtained excellent accuracy with 100% 
specificity and sensitivity most frequently in the submucosa in-
stead of the muscularis layer with the combination of a specific 
staining pattern (“fibers and puncta” and “fibers only” represent-
ing neuronal distribution), a particular method with primary 
antibody targeting anti-phospho-Ser129 α-synuclein {[MFJ-R13 
(8-8)] ab168381 with a concentration of 1:5,000, and an epitope 
exposure method using proteinase K with a concentration of 
1:100 in 37°C for 20 minutes}, and raters with good interrater 
agreement.72 Therefore, an immunohistochemistry study for as-
sessing α-synuclein pathology in the colon is reliable only if ade-
quate submucosa tissue is obtained, a larger amount of α- synu-
clein pathology is present, a specific staining pattern associated 
with neuronal morphology is recognized, a suitable immuno-

histochemistry method is used, and raters are well trained.72

Punsoni and colleagues73 performed quantitative polymerase 
chain reaction (qPCR) in addition to conventional immuno-
histochemistry methods in 4 groups of participants, including 
living PD patients, PD autopsy cases, living pediatric controls, 
and living adult controls. The specimens included different re-
gions of the GI tract and of different thicknesses, including sub-
mucosa and myenteric plexuses. The expression of α-synuclein 
in neurons was confirmed by colocalization with neurofilament 
staining. Immunohistochemistry analysis showed that although 
α-synuclein staining was diffusely present in all PD patients and 
controls, LBs were observed in the myenteric plexus of 25% of 
PD patients but not in controls. Moreover, the mean α-synuclein 
expression examined by qPCR was highest in PD patients and 
lowest in controls.73 Visanji and colleagues51 used proteinase K 
to enhance antigen retrieval in immunohistochemistry analysis 
in paraffin-embedded tissues and found a lower positive rate of 
either total or phospho-α-synuclein immunoreactivity in PD 
patients than in controls. Barrenschee and colleagues60 used 
morphometric analysis followed by dual-label immunohisto-
chemistry and found that the total numbers and areas of phos-
pho- α-synuclein aggregates per neuron were increased in PD 
patients compared with controls. 

Summary of gastrointestinal pathology findings in 
patients with PD

In summary, no consensus technique has yet been established 
for detecting α-synuclein pathology in gut tissues that can reli-
ably differentiate PD patients from controls. To allow clinicians to 
use α-synuclein pathology staining in the GI tract as a biomarker 
for PD pathogenesis, the development or testing of other tech-
niques is warranted. This process should include both quanti-
tative and qualitative methods in addition to careful stratifica-
tion of PD patients into different subtypes, focusing on those 
who are most likely to be in line with Braak and colleagues’ hy-
pothesis. 

MECHANISM OF GI IMPAIRMENT AND 
GUT PATHOLOGY IN PD

Neuronal loss in the ENS in PD
In the first autopsy report of LBs in the ENS using H&E stain-

ing, degeneration of enteric ganglion cells was found in the 
myenteric plexus in the esophagus of one patient with PD who 
had dysphagia.37 A subsequent autopsy report of one patient 
with PD and acquired megacolon found well-preserved ganglia 
and ganglion cells in both the submucosal and myenteric plex-
uses of the colon using H&E staining.74 Neuron counting via im-
munohistochemistry or coimmunofluorescence staining also 
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showed variable results in both the submucosa and the muscu-
lar layer. Lebouvier and colleagues55,75 examined colonic biopsy 
specimens with the mouse pan-neuronal marker anti-Hu C/D 
and found no difference between PD patients and controls in the 
neuron number per ganglion or proportion of dopaminergic 
neurons in the submucosal layer. However, their subsequent 
study showed a decreased number of neurofilament heavy chain-
immunoreactive neurons per ganglion in patients with positive 
phosphorylated α-synuclein aggregations in the submucosa. Fur-
thermore, the LB pathology burden was negatively correlated 
with neuronal count and levodopa responsiveness but positively 
correlated with axial symptoms and constipation severity.56 On 
the other hand, a recent study examining rectal biopsy speci-
mens using the pan-neuronal marker PGP9.5 showed that pa-
tients and controls had similar mean neuronal area, ganglionic 
area, and neuron number per ganglion in the submucosa of rec-
tum.60 The divergent findings in these studies are probably the 
result of the randomly biopsied regions and different methods 
used. Therefore, although most patients with PD have constipa-
tion, it may not be directly related to neuronal loss in the ENS; 
instead, the extrinsic autonomic system probably plays a role.34 

Evidence of enteric glial cells involved in PD
Enteric glial cells (EGCs) are another population of cells in the 

ENS known for a role in neuroprotection, gut inflammation, in-
testinal epithelial barrier function, and synaptic neurotransmis-
sion regulation.76 As there was no overt neuronal loss identified 
in the ENS, another possible cause of GI dysfunction may be 
traced to the EGCs. Despite a large variation among patients, two 
studies suggested that reactive gliocytosis (severe glia reactions) 
might be present in the bowel given the general increase in the 
expression of the glial markers, glial fibrillary acidic protein and 
Sox-10.77,78 The underlying mechanism of these phenomena re-
mains elusive, and further studies are warranted to elucidate the 
involvement of EGCs in the PD process.

Evidence of leaky gut and bowel inflammation in PD
Recent animal studies have shown that bowel inflammation 

can exacerbate neuroinflammation, disrupt the blood–brain 
barrier, and promote dopaminergic neuronal loss in the substan-
tia nigra of an inflammation rat model of PD. In this model, 
substantia nigra inflammation and selective dopaminergic neu-
ronal loss were induced by LPS injection.79 In agreement, several 
studies have shown clinical evidence of bowel inflammation in 
PD patients. Devos and colleagues78 used real-time PCR to ana-
lyze the mRNA expression of pro-inflammatory cytokines and 
glial markers in the ascending colon biopsies of PD patients and 
controls. They found significantly increased expression of pro-
inflammatory cytokines [tumor necrosis factor alpha (TNF-α), 

interferon gamma (IFN-γ), interleukin (IL)-6, and IL-1β] in PD 
patients. This increase correlated with increased expression of 
glial markers (glial fibrillary acidic protein and Sox-10), indi-
cating that pro-inflammatory processes in the bowel are en-
hanced in PD patients. Of note, the authors found that expres-
sion levels of cytokines and glial markers did not correlate with 
immunostaining levels of phospho-α-synuclein and axial symp-
tom subscores on the UPDRS part III. In addition, these ex-
pression levels correlated negatively with PD duration. This ob-
servation suggests that bowel inflammation may play a role in 
PD pathogenesis.78 

Consistent with this possibility, stool immune profiles show 
elevations in proteins related to angiogenesis and in chemokines 
and cytokines such as IL-1α, IL-1β, and IL-8 in PD patients 
compared to controls.80 Another study also reported increases 
in the fecal intestinal permeability marker fecal calprotectin in 
patients with PD compared to age-matched controls; however, 
the level of fecal calprotectin did not correlate with any clinical 
parameters, including disease duration, in patients with PD.81

Recent evidence suggests that gut inflammation in PD may 
be traced to increased intestinal permeability, also known as the 
leaky gut. This status correlates with intestinal α-synuclein ac-
cumulation in patients with PD.82 Increased intestinal permea-
bility and translocation of bacteria and inflammatory bacterial 
products (e.g., LPS) might lead to inflammation in the GI tract 
and thereby initiate α-synuclein accumulation in the ENS.82 For-
syth and colleagues82 also observed increased urine sucralose 
excretion in patients with PD compared to controls, suggesting 
increased colon permeability. Furthermore, increased colon 
permeability correlates with increased α-synuclein accumula-
tion pathology and E. coli immunohistochemistry staining of 
distal sigmoid biopsy in PD patients.83 This observation supports 
the hypothesis that increased permeability-related bowel inflam-
mation with an increased chance of gut bacteria translocation 
may be involved in PD pathogenesis. 

Clairembault and colleagues54 further examined morphologi-
cal changes and expression in the intestinal epithelial barrier (in-
cluding two tight junction proteins, ZO-1 and occludin) in co-
lonic biopsy tissues of PD patients and controls. They found that 
a larger proportion of PD patients (14 of 31 patients) had dis-
rupted and irregularly distributed tight junction proteins and 
lower expression levels of occludin compared with controls (1 
of 8 controls).54 These observations provide some evidence of 
increased gut permeability and mild bowel inflammatory chang-
es observed in patients with PD.

The link between bowel inflammation and PD also comes 
from recent findings of common genetic risk variants between 
inflammatory bowel disease (IBD) and PD.84 Among these can-
didates are two genes, NOD2 and LRRK2, the latter of which is 
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the most common causative genetic variant linked to PD. They 
are of special interest because of their involvement in the innate 
immune system, which regulates the immune response.85 Ge-
netic findings have led to several epidemiological studies exam-
ining the relationship of PD risk in patients with IBD. Four large 
population studies from Taiwan (person-years: 299,900),86 Den-
mark (person-years: > 8,000,000),87 the United States (person-
years: 3,008,825),88 and Sweden (person-years: 249,784)89 have 
demonstrated increased PD risk in patients with IBD. PD inci-
dence thereby increased by 35, 22, 28, and 30% in patients with 
IBD in the Taiwanese, Danish, American, and Swedish popula-
tions, respectively.86-89 The risk was higher in patients with 
Crohn’s disease (CD) than in those with ulcerative colitis (UC) 
in the Taiwanese population but higher in those with UC than 
in those with CD in the Swedish and Danish studies.87,89 In the 
US study, the PD risk increase was similar for CD and UC.86-89 

Consistently, two US studies also showed that treatment of 
IBD, one with anti-TNF therapy88 and the other with unspeci-
fied immunosuppressants,90 reduced PD risk. In the Swedish 
study, patients with IBD who did not receive treatment were 60% 
more likely to develop PD than their matched controls, where-
as treated IBD patients had a nonsignificantly decreased risk of 
developing PD compared to nontreated patients.89 However, a 
retrospective study enrolling 876 patients with PD identified 
only 2 patients with CD prior to the PD diagnosis, an incidence 
similar to that in the general population.91 Another large popula-
tion-based, case–control study enrolling patients aged 65 years 
or older with newly diagnosed PD (n = 89,790) and controls 
(n = 118,095) identified an inverse correlation between PD and 
IBD, suggesting that patients with IBD are less likely to develop 
PD.90

Despite the inconsistent results, these recent pathological, 
genetic, and epidemiological studies have suggested a relation-
ship between bowel inflammation and PD. The exact mecha-
nism linking bowel inflammation and neurodegeneration in 
the disease process of PD is still elusive and requires further 
studies in the future, which would shed light on potential treat-
ment strategies for halting the neurodegenerative process of PD.

ALTERED GUT MICROBIOME IN 
PATIENTS WITH PD

Gastric Helicobacter pylori and small intestinal 
microbial overgrowth

Gastric Helicobacter pylori infection is a common chronic in-
fection that has been implicated in PD.92-101 Most epidemiolog-
ical studies using different detection methods (ELISA, urea 
breath test, RT-PCR, histological examination) have shown an 
increased risk of H. pylori infection in PD, ranging from 1.3- to 

2-fold (prevalence: 22% to 70%),92-101 which was also shown to be 
significant in a recently published meta-analysis.102 Meta-analy-
ses have also identified a significantly worse mean UPDRS score 
in PD patients with H. pylori infection (either UPDRS or total 
UPDRS III in “on” or “off” state)97,98,103-107 and improvement in 
UPDRS part III scores after H. pylori eradication.102-105,108,109 
The exact mechanisms of involvement of chronic H. pylori in-
fection in PD pathogenesis are unclear but possibly trace to mul-
tifactorial inputs, including the H. pylori toxin, neuroinflamma-
tion, and alterations in the gut microbiome.110

Small intestinal bacterial overgrowth (SIBO) is also more 
prevalent in patients with PD than in healthy controls in cross-
sectional studies, with a prevalence of 25% to 54%.97,111-114 Most 
studies used lactulose or glucose breath tests to detect SIBO, 
with sensitivities of 31–68% and 29–93%, respectively, and spec-
ificities of 44–100% and 30–86%, respectively.115 Bloating and 
flatulence112,113 have been reported to be associated with SIBO 
in PD in some studies, whereas constipation and tenesmus were 
reported in one study.114 The relationship between PD symp-
toms and SIBO is heterogeneous among reports. Disease dura-
tion, Hoehn and Yahr stage, UPDRS, motor scores, motor fluc-
tuations, or nonmotor symptom severity have all been mentioned 
in association with SIBO.97,112-114 Treatment of SIBO is reported 
to have improved motor fluctuation symptoms in PD patients, 
but the recurrence rate at 6 months was as high as 43%.97

Altered gut microbiota in PD
To date, 13 studies (including one published abstract) have 

compared the difference in gut microbiota composition between 
PD patients and controls (Table 4 and 5).116-128 While α-diversity 
(species diversity within a single subject) was similar in most 
studies,116,120,122,123,126,127 two showed increased121,125 and two 
showed decreased α-diversity.124 All studies revealed differences 
in microbiota composition between PD patients and controls 
(β-diversity), but the results were heterogeneous (Table 4). In 
brief, when compared with controls, the family Verrucomicro-
biaceae (phylum Verrucomicrobia) and genera Akkermansia 
(phylum Verrucomicrobia; family Verrucomicrobiaceae) and 
Lactobacillus (phylum Firmicutes; family Lactobacillaceae) were 
increased in PD patients in several studies.116,118,119,126 On the 
other hand, the families Prevotellaceae (phylum Bacteroidetes), 
Lachnospiraceae (phylum Firmicutes), and Pasteurellaceae (phy-
lum proteobacteria) and genera Blautia (phylum Firmicutes; 
family Lachnospiraceae), Roseburia (phylum Firmicutes; family 
Lachnospiraceae), Prevotella (phylum Bacteroidetes; family Pre-
votellaceae), and Faecalibacterium (phylum Firmicutes; family 
Clostridiaceae) were decreased in PD patients in three or more 
studies.116,126,128 Prevotella is abundant in humans that consume 
plant-based, fiber-rich diets, which are substrates for bacteria to 
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produce short chain fatty acids (SCFAs).129 Prevotella and Ak-
kermansia are both mucin-degraders that promote and serve as 
indicators of gut integrity;130 however, they both have also been 
linked to gut or systemic inflammatory conditions.129,131 On the 
other hand, Faecalibacterium prausnitzii has anti-inflammatory 
properties other than an effect of butyrate production.132-134 Of 
interest, similar to PD patients, Faecalibacterium prausnitzii and 
Lachnospiraceae are depleted in patients with IBDs. In contrast 
to PD patients, however, Akkermansia is decreased in patients 
with IBDs.135

Some groups have tried to delineate the relationship between 
fecal microbiota and clinical features but with heterogeneous 
results. Two studies identified a correlation of PD duration with 
the abundance of the genera Escherichia/Shigella or family En-
terobacteriaceae among other nonoverlapping bacteria.122,124 The 
abundances of Enterobacteriaceae also correlated with the se-
verity of postural instability and gait disturbance in another in-
dependent study.126 

Altered gut metabolites in PD
The metabolites of gut microbiota, SCFAs, are produced by 

nondigestible carbohydrate fermentation via different meta-
bolic pathways. The three most abundant SCFAs in the human 
colon are acetic acid, propionic acid, and butyric acid.136 Differ-
ent SCFA-producing bacteria adopt different metabolic path-
ways using different substrates and enzymes to selectively pro-
duce different SCFAs.136 Many of these altered bacteria, e.g., from 
the families Prevotellaceae and Lachnospiraceae and genera 
Akkermansia, Blautia, Roseburia, and Faecalibacterium, com-
prise species that are SCFA producers and are decreased in PD 
patients except for the genus Akkermansia. One study also iden-
tified reduced fecal SCFA concentrations in PD patients.128 

Accumulating evidence has suggested a role for SCFAs in 
maintaining gut barrier function and regulating gut motility and 
the immune response in the gut. One of the mechanisms for 
SCFAs in regulating the immune system in the gut is through 
gene expression control via histone deacetylase inhibition. This 
inhibition in colonocytes and immune cells by butyrate and pro-
pionate results in an increased expression of the anti-microbial 
cathelicidin-derived peptide of the innate immune system, IL-37, 
anti-inflammatory cytokines, IL-10, and transforming growth 
factor β.137 It is also associated with the downregulation of pro-
inflammatory cytokines, including IL-8, IL-6, IL-1β, IFN-γ, 
and TNF-α, and the promotion of colonic regulatory T cell dif-
ferentiation to control intestinal inflammation.138 Furthermore, 
butyrate, propionate, and acetate can interact with different G 
protein-coupled receptors (GPRs), including GPR41 (FFA3), 
GPR43 (FFA2), and GPR109A, located on the surface of host 
cells. There, they also exert an anti-inflammatory effect of T cell 

differentiation and modulation and NF-κB activation inhibi-
tion.138,139 Despite evidence suggesting an intestinal health ben-
efit of SCFAs, the major controversy for the role of gut microbi-
ota in PD comes from a recent study showing that microbiota 
and SCFAs in the gut exacerbate α-synuclein pathology and mi-
croglia cell activation in α-synuclein–overexpressing mice.140 
Another detrimental effect of SCFAs, in particular propionic 
acid, was also shown to be related to other neurological disor-
ders, such as autism, although the underlying mechanism re-
mains unknown.141 Different SCFAs have different effects on bi-
ological systems. To further delineate the role of SCFAs in PD, 
future studies should evaluate the individual SCFAs and their 
balance with each other instead of focusing on their effects as a 
whole.

More research is needed to determine not only bacterial com-
position in PD patients but also changes in related biochemical 
pathways. These studies can rely on methods such as metabo-
lomics, proteomics, metatranscriptomics, and shotgun metage-
nomic sequencing, which could lead to further insights into the 
role of altered gut microbiota and metabolites in the pathogen-
esis of PD. 

The effects of anti-PD medications on the gut 
microbiota

One recent study found a significant difference in the gut 
microbiome as a function of treatment with COMT inhibitors 
and anticholinergics, and a borderline significance for carbido-
pa/levodopa.119 As the growing literature on the role of the gut 
microbiome in the metabolism of medications and the pro-
found effects that the drugs can have in turn on the composition 
of the microbiome,142-145 the interaction between use of PD 
medications and the compositions of gut microbiome is not sur-
prising. Another prior study of PD also linked COMT inhibi-
tors to altered abundance of some taxa.126 Additionally, COMT 
inhibitors and anticholinergics have gastrointestinal side effects, 
which may contribute to altered gut microbiome.146,147 These 
findings lend support to the notion that there is a clinically im-
portant relationship between microbiota and drug metabolism 
throughout the lifespan of PD patients; therefore, profiling of the 
human microbiome will be essential to understand the mecha-
nisms by which these microbiota–drug interactions occur and 
the degree to which this complex interplay affects drug efficacy. 
Additional studies are needed to assess the potential utility of 
bacterial therapeutics in altering the microbiome to enhance 
therapeutic efficacy and clinical outcomes in patients with PD.
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IMPLICATIONS FOR FUTURE 
GUT-TARGETED THERAPY FOR 
EARLY-STAGE PD

Recent advances in understanding the gut–brain axis have 
linked microbiota and intestinal pathology to PD pathogenesis 
(see review148). Based on animal and clinical studies, changes 
in the composition of the gut microbiota are proposed to in-
duce a pro-inflammatory response in the gut. According to this 
conceptualization, the inflammatory response increases gut per-
meability and exposure to endotoxins or other bacterial prod-
ucts and induces α-synuclein aggregations, which in turn propa-
gate to the CNS via the vagus nerve. In addition, a systemic 
inflammatory response might disrupt the blood–brain barrier, 
which, in combination with α-synuclein delivery from the gut, 
further activates microglia and results in dopamine neuron de-
generation (Figure 2).12 However, many pieces remain missing 
from this huge puzzle of the gut–brain axis in PD. Future in-
vestigations are necessary to define specific microbe-derived 
factors, immune effector functions, and microbiota–immune 
pathways for modulating gut–brain communications. These stud-
ies will reveal fundamental biological insights into PD pathogen-
esis, with the potential to inform the development of new micro-
bial- and immune-based therapeutic strategies for treatment.  
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