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Statistical models are often fitted to obtain a concise description of the associ-
ation of an outcome variable with some covariates. Even if background knowl-
edge is available to guide preselection of covariates, stepwise variable selection
is commonly applied to remove irrelevant ones. This practice may introduce
additional variability and selection is rarely certain. However, these issues are
often ignored and model stability is not questioned. Several resampling-based
measures were proposed to describe model stability, including variable inclusion
frequencies (VIFs), model selection frequencies, relative conditional bias (RCB),
and root mean squared difference ratio (RMSDR). The latter two were recently
proposed to assess bias and variance inflation induced by variable selection.
Here, we study the consistency and accuracy of resampling estimates of these
measures and the optimal choice of the resampling technique. In particular, we
compare subsampling and bootstrapping for assessing stability of linear, logistic,
and Cox models obtained by backward elimination in a simulation study. More-
over, we exemplify the estimation and interpretation of all suggested measures
in a study on cardiovascular risk. The VIF and the model selection frequency are
only consistently estimated in the subsampling approach. By contrast, the boot-
strap is advantageous in terms of bias and precision for estimating the RCB as
well as the RMSDR. Though, unbiased estimation of the latter quantity requires
independence of covariates, which is rarely encountered in practice. Our study
stresses the importance of addressing model stability after variable selection and
shows how to cope with it.
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1 INTRODUCTION

Statistical models are often used in medical research to describe the association of an outcome of interest with several
explanatory variables by means of a simple mathematical rule. In some applications of statistical models, one may be
interested in predicting the outcome variable with the explanatory variables, for example, when predicting a person’s
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original work is properly cited.
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cardiovascular risk at a health screening. In other applications, one may want to quantify the effects of prognostic factors
on the expected value of an outcome variable, for example, when assessing the predictive value of a cardiovascular risk
factor or when estimating its causal effect on the outcome variable.1 (In the remainder, we will use the more neutral term
“covariate” exchangeably for explanatory variable, independent variable, risk factor, prognostic factor, and so on.) In any
case, at the beginning of the analysis many covariates may be available for inclusion in a model, but it is not always clear
upfront if all or just some of them should be included in the final model. Even with a fair amount of domain knowledge
to support the modeling process, researchers often apply data-driven selection procedures to determine the set of covari-
ates for their model. Statistical software packages offering such algorithms, for example, backward elimination (BE) of
variables based on iteratively assessing their “significance,” report the final model with the estimates of the regression
coefficients and their SEs, as if this model had been prespecified. Consequently, it has become common practice in the
medical literature to present models resulting from selection procedures without any adjustment or even without any note
of caution in their interpretation. However, it has been known for a long time that models derived by selection procedures
are instable and even small modifications of the data may lead to important changes in the set of included covariates, and
consequently in the magnitude of the estimated regression coefficients.2 In fact, a possibly large amount of uncertainty
is too often simply ignored.

As we explained in our recent review article on variable selection, wrong inclusion or exclusion of covariates may
become manifest in bias and (increased or decreased) variance of regression coefficients.3 However, bias and variance
due to selection may be left unnoticed as they cannot easily be assessed in real data analyses. Therefore, in addition to
reporting how “certain” the selection of each covariate is, it is desirable to be able to quantify the effect of applying a vari-
able selection algorithm on bias and variance of regression coefficients. With appropriate measures routinely reported
by software packages, decisions in favor of or against variable selection procedures would have an empirical basis. In
addition to the previously proposed variable inclusion frequency (VIF) and model selection frequency (MSF),4-6 we sug-
gested to quantify the effect of selection on bias by estimation of the relative conditional bias (RCB) and to quantify the
additional variability by the root mean squared difference ratio (RMSDR).3 These quantities are usually computed by
resampling. As a resampling scheme for VIF and MSF, the nonparametric bootstrap, that is, sampling with replacement,
is commonly applied.7 However, as outlined in several recent articles,8-10 subsampling, that is, sampling without replace-
ment, may often be more attractive. So far, no comprehensive simulation study has compared results from bootstrapping
or subsampling VIFs or MSFs with their estimands. By estimands we mean the quantities that the sample estimator of
the statistic should estimate given a well-defined population from which a random sample of a particular size is available
for estimation. (While a population quantity is a feature of the underlying population, the estimand is a feature of a sta-
tistical procedure applied to a finite sample of the population.) It is not known whether subsampling or bootstrapping is
preferable to estimate RCB and RMSDR, and how well estimates of RCB and RMSDR compare with their estimands.

The first objective of this article is to provide definitions of the estimands for VIF, MSF, RCB, and RMSDR. The second
objective is to evaluate by simulation whether bootstrapping or subsampling is preferable to estimate the four measures
in finite samples when different selection procedures are applied, and to study the large sample behavior of our estimands
of interest and their estimators. As a third objective, we show the use of VIF, MSF, RCB, and RMSDR in a real example.
We will focus on BE with the Akaike information criterion (AIC) as a stopping criterion, and report results for BE with
𝛼 = .05 and penalized likelihood estimation with the least angle shrinkage and selection operator (Lasso, using 10-fold
cross-validation to select the strength of the penalty) in the Supplementary Material. Our methodology is applicable with
any other selection algorithm. We will concentrate on linear predictor models, in particular on linear regression, logistic
regression and Cox regression, as these are the most popular statistical models applied in medical research.

The remainder of the article is organized as follows. Section 2 will define the estimands and sample estimators for
VIF, MSF, RCB, and RMSDR. Subsequently, Section 3 will describe aims, methodology and results of a comprehensive
simulation study on the four stability measures. In Section 4, a real life example will exemplify the use of these measures
to quantify the instability of data-driven variable selection. The article will conclude with a discussion and some practical
recommendations.

2 PREREQUISITES

2.1 Linear predictor models

Continuous, binary and time-to-event outcomes are often analyzed with linear, logistic, or Cox regression models, respec-
tively. The linear model is given by Y = 𝛽0 + 𝛽1X1 + … + 𝛽kXk + 𝜖, where Y is a continuous outcome, X1, … , Xk
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are covariates, 𝛽0, 𝛽1, … , 𝛽k are the regression coefficients, and 𝜖 is normally distributed with unknown variance
𝜎2. In the logistic model, the probability that the binary outcome variable Y assumes the value 1 is modeled as
Pr(Y = 1) = 𝜋 = expit(𝛽0 + 𝛽1X1 + … + 𝛽kXk), where expit(z) = exp(z)/[1+ exp(z)]. The Cox proportional hazards model
estimates the hazard function h(t) = f (t)/S(t), that is, the density divided by the survivor function. Here, t denotes time,
and the hazard is modeled as a function of time and covariates as h(X , t) = h0(t)exp(𝛽1X1 + … + 𝛽kXk), where h0(t) is an
unspecified baseline hazard function. Modelling the hazard is an elegant way to circumvent the problem of only partial
observability of the outcome, the time to the event of interest T. In fact, if C denotes the random variable of follow-up
times, only Y = min(T, C) is observable.

The three models have in common that they use a linear predictor, 𝛽1X1 + … + 𝛽kXk, and hence the interpretation
of the regression coefficients 𝛽 j; j = 1, … , k; is straightforward as the expected difference in outcome (or log odds or
log hazard) when comparing two subjects who differ in Xj by 1 unit and who have equal values in all other variables
Xl ≠Xj. In all three models, regression coefficients are estimated by maximizing the (partial) likelihood of the model given
the observed data y, L(𝛽|y) = ∏N

i=1 fi(yi|𝛽, xi). Here, we assume that a sample of size N of the outcome variable and the
covariates is observed, that y denotes the vector of observed values yi, i = 1, … , N, of the outcome variable, and that xi
is the covariate row vector for subject i. In linear regression, maximum likelihood estimation is equivalent to minimizing
the sum of the observed squared residuals. A P-value for testing the null hypothesis that 𝛽 j = 0 can be obtained either
by the Wald procedure, assuming that the test statistic zj = 𝛽j∕𝜎j follows a standard normal distribution under the null
hypothesis (a t-distribution is used for linear regression), or by employing likelihood theory, claiming that the likelihood
ratio statistic follows a 𝜒2-distribution.

2.2 Preselection of candidate covariates

Statistical methods cannot distinguish between spurious and real associations between variables. Therefore, it is impor-
tant to predefine a set of candidate covariates for which domain expertise would assume or at least hypothesize some
association with the dependent variable.3 In the sequel we will denote the model consisting of such covariates as the global
model. Model building could be concluded by estimating that global model. However, in many applications researchers
may wish to intentionally deviate from the assumed “ground truth” of the global model and report a descriptive model that
captures the main associations only and omits the negligible ones. This motivates the application of statistical variable
selection algorithms.

2.3 Selection algorithm

Given a particular significance level 𝛼B, BE starts with fitting the global model including all preselected candidate covari-
ates, and then iteratively eliminates the least significant covariate and refits the model until all P-values are lower than
the prespecified 𝛼B. Selecting 𝛼B = 0.157 is often a sensible choice and approximately equivalent to eliminating covariates
until the AIC can no longer be improved.3,11,12 We will abbreviate BE with 𝛼B = 0.157 by BE(AIC).

BE can be seen as a selection procedure which forces some regression coefficient estimates to be exactly 0. In the
following, we will denote by 𝛽 and 𝜎2 the estimates of the regression coefficients and their variances from the global model
including all covariates (X1, … , Xk), respectively, and by 𝛽 the estimates resulting from applying BE(AIC). We define by
J the set of indices of covariates with true 𝛽 j ≠ 0 (the predictors, j∈ J). Correspondingly, J′ denotes the set of indices of
covariates with no effect (the nonpredictors, 𝛽j′ = 0, j′ ∈ J′).

2.4 Resampling schemes

Bootstrap resampling consists of drawing B resamples of the original dataset, each containing N observations. This
procedure is also called the nonparametric bootstrap and requires that observations are independently and identically
distributed.13,14 By using sampling with replacement, some observations may appear multiple times in a single resam-
ple, while others may be missing. By contrast, subsampling consists of drawing B subsets of m<N observations from the
original dataset. Often, m = 0.632N is chosen as 0.632 is the probability with which an observation appears in a bootstrap
sample. For comparability with the bootstrap, Sauerbrei et al used S0.632 in an investigation of model stability.15 However,
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T A B L E 1 Estimands describing the uncertainty of model estimation incurred by variable selection, their approximation by
simulation, and their estimation by resampling

Estimand Definition Approximationby simulation Resampling-based estimator

VIFj E[I(𝛽j ≠ 0)]
Q∑

q=1
I(𝛽q
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Note: Superscripts q or b indicate estimates obtained in the qth simulated dataset or the bth resample, respectively. Estimates 𝛽j and 𝛽b
j are set to 0 if they are

not selected by the variable selection algorithm in the corresponding model. For the sets J and J′ of indices, J ∪ J′ = {1, … , k}, and J ∩ J′ = { }. I(⋅) is the
indicator function, that is, it is 1 if the expression (⋅) is true and 0 otherwise.
Abbreviations: MSF, model selection frequency; RCB, relative conditional bias; RMSDR, root mean squared difference ratio; VIF, variable inclusion frequency.

there is no general agreement on the choice of m. Here, we consider m = 0.5N (S0.5), m = ⌊0.632N⌋ (S0.632), and m = 0.8N
(S0.8). Moreover, it was noted that with high-dimensional regularized Cox regression, sampling without replacement may
lead to more accurate prediction error estimates than sampling with replacement.16 The sampling distribution of a regres-
sion coefficient can be equivalently approximated by the bootstrap or subsampling when appropriately weighting the
estimator (Supplementary Material S1).17,18

3 STABILITY MEASURES

3.1 Estimands

The definition of estimands of the four stability measures as expected values can be found in Table 1. A large number Q
of datasets are generated with a given data generating mechanism for covariates and the outcome variable, for example,
based on a regression model with fixed regression coefficients 𝛽 (see section 4.1 for details on the data generating mecha-
nism in this simulation study). With each simulated dataset (q = 1, … , Q), we estimate 𝛽q and subsequently, approximate
the estimands according to the formulas in Table 1. The expected values can be conveniently approximated with an
arbitrary small error by adjusting Q.

In particular, the VIF of a covariate Xj, denoted by VIFj, describes how likely the covariate is selected. It depends,
among other things, on the selection method (eg, BE(AIC)) and on N as the selection is strongly determined by the power
of the Wald/likelihood-ratio test.

The MSF(J) describes how likely the true model was selected, which exactly includes the covariates Xj, j∈ J. The MSF
depends on the number of covariates k, and the number of possible models, 2k, sharply increases with increasing k. Thus,
a small MSF must be expected even with reliable variable selection algorithms and moderate values of k.

The RCBj of a regression coefficient 𝛽 j measures the bias of an estimate obtained after a selection procedure with
respect to the true value. It can be conveniently expressed as a percentage, where values greater than 0 mean stronger
overestimation and values less than 0 underestimation. The true RCB is only defined for covariates with a nonzero regres-
sion coefficient (predictors) and it can only be estimated if the corresponding covariate has been selected by the selection
procedure.

RCB is related to the idea of parameterwise shrinkage factors (PSFs) proposed by Sauerbrei to correct for
overestimation of regression coefficients in models selected via selection procedures.19 Assuming that a regression
coefficient is overestimated, which leads to an RCB> 0, the idea is that the overestimation can be corrected by
shrinking the regression coefficient by a suitable factor. Instead of PSFs, we can use (1+RCB)−1. Such a shrink-
age factor (SF) could be used to correct bias, as estimated by resampling, when applying variable selection. By
contrast, PSFs ignore alternative models obtained by variable selection and correct the bias relative to a “least
false model,” which is given by the expected values of the regression coefficients if the selected model was the
true model.
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The RMSDRj measures the inflation in root mean squared error (RMSE) relative to the SE of the estimate from the
global model including all covariates. Values >1 indicate inflation of mean squared error caused by applying a variable
selection procedure, while values <1 indicate a reduction.

3.2 Estimators

The definitions of all estimands require knowledge of the true model and therefore, estimates cannot easily be obtained
in the analysis of a real dataset. As demonstrated in Table 1, the estimators of the four stability measures can be defined
by plugging-in the unbiased estimates 𝛽 and 𝜎2 from the global model for their true quantities and by using B resam-
ples to approximate the sampling distribution of 𝛽. The definitions in Table 1 apply to any selection or resampling
procedure.

4 SIMULATION STUDY

4.1 Design

In this comprehensive simulation study, we applied BE(AIC) in linear regression models to evaluate the proposed stability
measures. We also applied BE with 𝛼B = 0.05 (BE(0.05)) and the Lasso,20 and extended the simulation to logistic and
Cox regression (details on the design can be found in Supplementary Material S8-S9). We use the structured approach
ADEMP21 to describe our simulation study.

Aims: The aims of the study were (1) to assess consistency of the proposed stability measures and (2) to evaluate how
accurately they can be estimated in small to large datasets.

Data-generating mechanism: Nine continuous and six categorical covariates were generated in order to obtain data
mimicking a typical medical observational study.22 While the key aspects of the data generation are described here, we
refer to the technical report accompanying Binder et al22 for a comprehensive description.

First, normal deviates Zl, l = 1, … , 15 were generated from a multivariate standard Gaussian distribution with
prespecified correlations ranging from −0.3 to 0.8. Subsequently, the normal deviates were transformed to yield plausi-
ble marginal distributions of 15 “real” variables, including two ordinal factors with three levels each.22 Thus, 17 design
variables Xj, j = 1, … , 17, resulted, and we assumed that only X1, … , X8 had a nonzero effect on the outcome (see
Table 2 for the regression coefficients, and Supplementary Material S2 for distributions and correlation structure). Hence,
J = {1, … , 8} and J′ = {9, … , 17}. A continuous outcome variable Y was generated from Y ∼ N

(∑8
j=1 xj𝛽j, 0.932

)
, resulting

in an R2 of 0.47.
We simulated Q = 1000 datasets with sample sizes 150, 300, 750, 1000, 5000, and 10 000. In each dataset we estimated

the global model including all 17 design variables, and then applied BE(AIC).
Estimands: The estimands in this study were the stability measures VIF, MSF, RCB, and RMSDR, and their true

values were approximated using the formulas provided in Table 1.
Methods: For each simulated dataset, we generated 1000 bootstrap (B) resamples and 1000 subsamples for each

sampling proportion 0.5, 0.632, and 0.8 (denoted as S0.5, S0.632, and S0.8). BE(AIC) was applied to the resamples to estimate
VIF, MSF, RCB, and RMSDR in each simulated dataset.

Performance measures: All resampling-based estimates of stability measures were compared with their approx-
imated estimands using mean estimates and RMSE for VIF and MSF, and median bias and median absolute bias for
RCB and RMSDR. Expected Monte Carlo errors of all performance measures are acceptable and are reported in the
Supplementary Material S3.

Software: R version 3.4.3 and packages abe 3.0.1, data.table 1.10.4-3, mvtnorm 1.0-7, parallel 3.4.3, were used.23

4.2 Simulation results

While the complete results of the simulation study are contained in the Supplementary Material S4 to S9, the typical
performance of the estimators can already be understood by means of results selected for this article.
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T A B L E 2 Setup of simulation study: Distribution, true regression coefficients, standardized regression coefficients, partial
R,2 and multiple R2 of variables

Variable Distribution
True regression
coefficient 𝜷 j

Standardized
regression
coefficient 𝜷 j𝝈j

Partial R2

in linear
regression (×100)

Multiple
R2/correlation (×100)

X1 normal 0.040 0.400 5.1 47.7

X2 normal −1.040 −0.385 3.8 56.4

X3 zero-inflated normal 0.250 0.394 3.4 66.4

X4 normal 0.624 0.249 2.3 40.3

X5 binomial(0.4) 0.402 0.194 2.0 12.6

X6 log-normal 0.021 0.171 1.9 0

X7 binomial(0.7) −0.398 −0.189 0.8 61.7

X8 normal −0.009 −0.094 0.3 44.4

X9 binomial(0.7) 0 0 0 39.0

X10 binomial(0.2) 0 0 0 70.0

X11 exponential 0 0 0 15.6

X12 binomial(0.2) 0 0 0 34.5

X13 binomial(0.1) 0 0 0 34.0

X14 normal 0 0 0 36.4

X15 normal 0 0 0 0

X16 binomial(0.5) 0 0 0 17.7

X17 binomial(0.5) 0 0 0 0

4.2.1 Variable inclusion frequencies

Approximated estimands of VIF, means, and RMSEs of estimated VIFs for all variables and three sample sizes (N ∈ {150,
300, 750}) are shown in Figure 1.

With a large sample size, estimands, and mean estimates of VIF for nonpredictors approached 0.157, in line with the
nominal significance level corresponding to AIC selection, and were clearly higher for predictors. Subsampling estimated
VIFs of nonpredictors almost unbiasedly, and among the subsampling proportions, S0.5 yielded the lowest RMSEs for
nonpredictors. However, for predictors, B and S0.8 showed the smallest bias and B the lowest RMSEs. If VIFs were not
estimated by resampling, but set to 0 or 1 depending on omission or selection of a covariate, then similarly low RMSEs
could occasionally be reached for the strongest predictors, while the RMSEs for nonpredictors were clearly higher than
with any resampling approach. Similar results were obtained for BE(0.05) and Lasso, as shown in the Supplementary
Material S4.

4.2.2 MSF of the true model

Model selection frequencies of the true model were most unbiasedly estimated by S0.8, followed by S0.632, S0.5 and B.
For example, when N = 750, with S0.8 the mean frequency of selection of the correct model is 16.8%, very close to its
estimand (18.8%). This value is fairly better than S0.632 and S0.5 (14.8% and 12.4%, respectively) and dramatically better
than B (2.4%). However, the RMSE was smallest for S0.5 despite the underestimation, followed by S0.632, B and S0.8 (Table 3,
Supplementary Material S5).

4.2.3 Relative conditional bias

RCB could be estimated unbiasedly, at least with a large sample size, by all resampling approaches (Figure 2, left column
and Supplementary Material S6). One predictor showed higher estimated RCBs, most likely because of its small effect
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F I G U R E 1 Simulation study: Variable inclusion frequencies (VIF) Left column: mean estimated VIF by subsampling with m = 0.5N
(“5,” blue), m = 0.632N (“6,” purple), m = 0.8N (“8,” red), by bootstrap (“B,” yellow), and their estimands (“X,” black), for different sample
sizes (top row, N = 150, middle N = 300, bottom N = 750). The horizontal dashed line represents the nominal significance level 𝛼B = 0.157.
Right column: root mean squared error (RMSE) of estimated VIF by subsampling with m = 0.5N (“5,” blue), m = 0.632N (“6,” purple),
m = 0.8N (“8,” red), by bootstrap (“B,” yellow), and the omission/ selection strategy (“O,” black). The omission/selection strategy sets the VIF
estimate to 0 or 1 according to omission or selection in the model fitted on a simulated dataset. Variables are ranked by partial R2 [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Simulation study: Model
selection frequency for the correct
model

N = 150 N = 300 N = 750

Estimand 3.3 9.9 18.8

Estimates Mean RMSE Mean RMSE Mean RMSE

S0.5 0.4 2.8 2.9 7.9 12.4 12.1

S0.632 1.0 3.2 5.1 8.4 14.8 13.9

S0.8 1.5 5.0 7.3 13.5 16.8 20.7

B 0.3 3.6 1.0 8.9 2.4 16.3

Note: Estimands, mean, and RMSE of estimates for subsampling with m = 0.5N, m = 0.632N, and m = 0.8N
(S0.5, S0.632, S0.8) and bootstrap (B) estimators. All numbers multiplied by 100.
Abbreviation: RMSE, root mean squared error.

size and the specific correlation structure. The median absolute deviation for B was less than for any subsampling method
(Supplementary Material S6). For nonpredictors, the estimand is not defined but still estimates are obtained. They indicate
that if a nonpredictor is selected, its regression coefficient is on average about twice as high as the coefficient in the global
model.

4.2.4 Root mean squared difference ratio

The estimand of RMSDR equals 1 if in its definition the selected model coefficient 𝛽j is replaced by the global model
coefficient 𝛽j. The only difference in numerator and denominator of the RMSDR estimator in that case is that the
numerator is obtained by resampling, while the denominator is the model-based SE from the global model. The bootstrap

http://wileyonlinelibrary.com
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F I G U R E 2 Simulation
study: Relative conditional bias
(left column) and root mean
squared difference ratio (right
column) estimated by bootstrap
Upper row: median estimate;
lower row: median deviation to
the estimand; red and blue
indicate high and low multiple
correlation of a variable with
others; solid and dashed lines
represent predictors and
nonpredictors. The line width is
proportional to absolute effect
size [Colour figure can be viewed
at wileyonlinelibrary.com]

estimator of the root mean squared deviation from 𝛽j converged to the model-based SE much faster than any subsampling
estimator (Supplementary Material S7). Therefore, we further considered bootstrap estimators of RMSDR only (Figure 2,
right column).

Generally, the approximated estimands of RMSDR decreased with increasing sample size, reaching values below 0 at
a sample size of 750 for most covariates, and at 5000 for all covariates. In this way, they indicate a benefit from applying
variable selection with moderate or large sample sizes, but an increased error with smaller sample sizes. When investigat-
ing the median deviation of RMSDR estimates from their approximated estimands, a constant overestimation of the ratio
by around 0.2 is observed for nonpredictors. For predictors, it is overestimated by approximately 0.1 if these predictors
are correlated with others. RMSDR is almost unbiasedly estimated for uncorrelated predictors.

4.2.5 Further results

With logistic and Cox regression, we observed approximately the same dependencies of approximated estimands on sam-
ple sizes and similar behavior of the estimators as in linear regression (Supplementary Material S8-S9). The four stability
measures described well the different operation characteristics of other variable selection procedures. For example, with
BE(0.05) the RMSDRs at smaller sample size are greater than with BE(AIC), but with larger sample sizes they indicate
more benefit, in particular for nonpredictors (Supplementary Material S7, Supplementary Figure 6B). This is because
BE(0.05) removes nonpredictors more accurately than BE(AIC) with larger sample sizes. With the Lasso, RMSDR depends
less on sample size than with BE(AIC). Because of the shrinkage of the Lasso estimator, RMSDR can be much smaller for
nonpredictors and some predictors. However, because of the Lasso’s characteristic to introduce bias towards zero, there
are also predictors where the RMSDR is always greater than 1.

5 EXAMPLE

5.1 Aim

We illustrate the typical behavior of the estimators of VIF, MSF, RCB, and RMSDR by means of Cox regression anal-
ysis of a study of cardiovascular risk in healthy men. In our example, modeling was supposed to supply a concise
description of the association of the hazard of cardiovascular events with covariates available at a preventive health
screening.

http://wileyonlinelibrary.com
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5.2 Data and modeling strategy

The data stemmed from a large registry where information collected at health screenings were linked to hospital dis-
charge diagnoses and death certificates.24,25 Approximately 13% of the relevant Austrian population participates in this
health screening program every year, as it is offered free-of-charge. For the model development, a dataset with observa-
tions from 4769 men was available. The outcome variable of interest was time from the first health screening examination
to occurrence of a fatal or nonfatal cardiovascular event during the study period, and the median follow-up time was
3.9 years (interquartile range 2.6-5.0 years). Such a cardiovascular event was observed in 4.86% (n = 232) participants. At
the health screening, various characteristics were electronically recorded which could be potentially associated with the
risk of cardiovascular disease since this screening program aims at preventing cardiovascular and other diseases. Based on
discussions with internal medicine specialists and use in previously published cardiovascular risk prediction models,26-28

we preselected the following variables for our global model: age, systolic blood pressure, use of blood pressure lowering
medication, cholesterol ratio, smoking status, diabetes, BMI score, physical activity (three categories), waist circumfer-
ence (two categories), triglycerides, presence of protein in urine, and presence of glucose in urine. Their correlation
structure is shown in Supplementary Material S10. In making this preselection, we assumed that all of these variables
are associated with the outcome in a multivariable model, but for some of them the association might be negligible such
that they could be omitted in a concise descriptive model. We estimated a global model with all preselected covariates in
which approximately 18 events were available per variable (232 events/13 variables). Subsequently, we applied BE(AIC)
using the R package survival to derive the more concise “selected” model.

The resulting estimates and stability measures are given in Table 4. To calculate stability measures, we used the sub-
sampling approach [m = ⌊0.5N ⌋] to estimate VIF and MSF, and the bootstrap to estimate RMSDR and RCB. In both
approaches, 1000 resamples were drawn. In addition, we calculated the PSFs and their SEs for the BE(AIC) model using
the R package shrink.29

5.3 Results

In Table 4, we ranked the variables by their VIFs. The most important predictors were age, smoking status and BP
medication with VIFs of approximately 100%.

The MSF of the selected model was estimated as 6.0%. No other combination of variables yielded a higher MSF. Given
the large number of different sets of covariates that would be possible to select, the value of the estimated MSF indicates
relatively stable selection.

RMSDR was greater than one for most of the selected variables indicating that application of variable selection
increased the variability of the estimated regression coefficients. This is in line with theoretical results see, for example,
Hjort and Claeskens.30 Presence of protein in urine and systolic BP had RMSDR> 1.3, whereas the selection procedure
decreased its mean squared error of physical activity by not selecting it.

RCB was positive for all variables. The positive bias in the selected model was negligible for strong variables selected in
almost all resamples, whereas the RCB increased for variables that were less important and selected less often. Especially
the regression coefficients of cholesterol ratio, glucose in urine and physical activity were highly biased if these variables
were selected. Occasionally, the bootstrap-based RCB can be positive even if the selected estimate is smaller in magnitude
than the global estimate, which in our dataset occurs for the variable age.

We also computed the novel version of the SFs based on RCBs (see section 3.1), and estimated corresponding SEs
via the delta method. Such SF can be read as an indicator of how much a regression coefficient has been overestimated.
In the example, for the most important (strongest) variables (VIF∼ 100%) it was close to 1 (no overestimation), while it
was smaller for the other variables. Compared with PSFs19,29,31 the novel SFs have similar values with smaller SEs (in
particular for lower numbers). Hence, just like PSFs, the novel SFs might also be useful to express the relative importance
of each variable.

In this example, BE(AIC) suggested a reasonable, sparse descriptive model. No strong bias (RCB) was induced by
variable selection and the SF is close to one for most of the selected covariates. Diabetes and triglycerides are two covariates
that cannot be clearly identified as predictive or nonpredictive. Both have a relatively high RCB und a lower SF around
0.7. However, both covariates are competing for selection (pairwise inclusion frequency 5.5%; Supplementary Material 10)
and the model selected diabetes but did not include triglycerides; without the additional information on model stability
a researcher might easily overlook this arbitrary preference of the selection procedure for diabetes.
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6 DISCUSSION

6.1 Optimal resampling approaches for calculating stability measures and beyond

Here, we first defined estimands for the four measures quantifying model stability that could be approximated using
simulation, and investigated how accurately these estimands could be estimated by various resampling techniques.
Subsampling seems favorable to estimate MSF and VIF, while estimation of RCB and RMSDR should better rely on boot-
strapping. The choice for a suitable proportion of the original sample to be used for subsampling is delicate.32 Analytically,
one can show that for a fixed model, bootstrapping generates approximately the same sampling distribution as subsam-
pling one half of the original sample size (see Supplementary Material S1). Empirically, we found that this strategy works
well in terms of accuracy of MSFs, and also of VIFs for nonpredictors, but higher subsampling proportions may yield
higher accuracy to estimate VIFs of predictors.

While VIF, MSF, and RCB seem to be reliably estimated by resampling techniques, it is harder to quantify the effect
of variable selection on the variation of the regression coefficients. In our simulation study, we found that RMSDR may
be well approximated by the bootstrap only for predictors that are uncorrelated to other candidate covariates, a situation
rarely encountered in practice. For other covariates, such as correlated predictors, or nonpredictors, the RMSDR is most
often overestimated. Most likely this is a consequence of substituting the true model in the definition of the estimand by
the global model when estimating RMSDR. We have also tried other resampling approaches in our analyses, such as the
parametric or model-based bootstrap, that is, drawing observations of the outcome variable given the estimated coeffi-
cients of regression model and adding the resampled residuals.13 The parametric bootstrap could start with the selected
model, the global model or even mixing results over a set of different models such as those selected in a (nonparametric)
bootstrap. In all these attempts, we found that accuracy was not improved and that, occasionally, underestimation of the
RMSDR resulted. Because possible problems of variable selection procedures should not be underestimated, we have a
preference for the nonparametric bootstrap to estimate RMSDR.

Moreover, we established a similarity between RCB and previously proposed PSFs.19 In our real data example our
proposal of bias correcting SFs was more efficient (less variability) than PSFs. However, we have not further explored
this possible efficiency gain, and one should keep in mind that the two proposals quantify the bias relative to different
quantities (see section 3.1).

6.2 Expected behavior in more extreme situations

In our simulation study we defined marginal scenarios based on common recommendations on multivariable
modeling.3,11,33 Specifically, we defined the most extreme scenario with 150 observations and 17 variables. In such situ-
ations one would already expect some overfit in the global model, which will further increase if the number of variables
increases or if the number of observations decreases. For VIFs, Figure 1 suggests that precision of their estimates does not
depend on sample size, but rather on a variable being a predictor or not, and on the absolute value of the estimate. Simi-
lar considerations apply to MSF (Table 3). Hence, VIF and MSF should also be suitable to indicate model instabilities in
more extreme scenarios than those studied here.

However, we observed that precise estimation of RCB and in particular of RMSDR becomes difficult already in our
marginal scenario (Supplemental Figures 5 and 6). When considering fewer observations or more variables, we must
expect that median bias and median absolute bias will further increase and then in particular RMSDR must be even more
cautiously interpreted. If an analyst is already alerted by low VIFs, RMSDR will not contribute to further characterize
model instabilities.

6.3 Awareness of model instability and reporting of stability measures are essential

Software packages for regression modeling offer model selection but no standard software routinely reports any measures
to quantify model instability. Such measures may confirm the stability of a model, may point at instabilities and may even
indicate that the instabilities induced by a particular variable selection procedure are too severe to be compensated by
the benefits of reporting the parsimonious model. In such a case, the modeling strategy could be modified by choosing
a different, probably more conservative variable selection procedure or by more efficient use of background knowledge
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T A B L E 5 Summary and recommendations for stability measures

Stability measure

What it
should estimate
(interpretation of the
estimand)

How it
should be estimated
(resampling approach)

Rationale
and limitation

Variable inclusion frequency Probability of a variable to be
selected in the final model

Subsampling with m = 0.5N (S0.5) Consistent and efficient
estimation for nonpredictor

Model selection frequency Probability of a specific
combination of variables to
constitute the final model

Subsampling with m = 0.5N (S0.5) Consistent and efficient
estimation

Relative conditional bias Bias of a selected regression
coefficient relative to the true
regression coefficient

Bootstrap Consistent and efficient
estimation

Root mean squared difference ratio Inflation of the SE of a regression
coefficient induced by the
variable selection procedure

Bootstrap Consistent for uncorrelated
predictors
Overestimated for correlated
predictors and for
nonpredictors

in the preselection of variables. If our measures were routinely reported in software for variable selection, data analysts
would be immediately informed about possible instability problems which would otherwise often go unnoticed.

Our recommendations on quantities to report along with the results of variable selection procedure are summarized
in Table 5 and implemented in the R package abe.34 This package provides the possibility to calculate the four stability
measures by the simple bootstrap, by the m-out-of-n bootstrap or by subsampling. According to our results and recom-
mendations, the user could choose a sample size of m = 0.5N for subsampling to estimate the VIF for each variable
considered for selection and the MSF of the most likely models. Likewise, the bootstrap could be employed to estimate
RCB and RMSDR for each variable of the global model.
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