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ANALYTIC PERSPECTIVE

On hazard ratio estimators 
by proportional hazards models in matched‑pair 
cohort studies
Tomohiro Shinozaki1*  , Mohammad Ali Mansournia2 and Yutaka Matsuyama1

Abstract 

Background:  In matched-pair cohort studies with censored events, the hazard ratio (HR) may be of main interest. 
However, it is lesser known in epidemiologic literature that the partial maximum likelihood estimator of a common 
HR conditional on matched pairs is written in a simple form, namely, the ratio of the numbers of two pair-types. 
Moreover, because HR is a noncollapsible measure and its constancy across matched pairs is a restrictive assumption, 
marginal HR as “average” HR may be targeted more than conditional HR in analysis.

Methods:  Based on its simple expression, we provided an alternative interpretation of the common HR estimator as 
the odds of the matched-pair analog of C-statistic for censored time-to-event data. Through simulations assuming 
proportional hazards within matched pairs, the influence of various censoring patterns on the marginal and common 
HR estimators of unstratified and stratified proportional hazards models, respectively, was evaluated. The methods 
were applied to a real propensity-score matched dataset from the Rotterdam tumor bank of primary breast cancer.

Results:  We showed that stratified models unbiasedly estimated a common HR under the proportional hazards 
within matched pairs. However, the marginal HR estimator with robust variance estimator lacks interpretation as an 
“average” marginal HR even if censoring is unconditionally independent to event, unless no censoring occurs or no 
exposure effect is present. Furthermore, the exposure-dependent censoring biased the marginal HR estimator away 
from both conditional HR and an “average” marginal HR irrespective of whether exposure effect is present. From the 
matched Rotterdam dataset, we estimated HR for relapse-free survival of absence versus presence of chemotherapy; 
estimates (95% confidence interval) were 1.47 (1.18–1.83) for common HR and 1.33 (1.13–1.57) for marginal HR.

Conclusion:  The simple expression of the common HR estimator would be a useful summary of exposure effect, 
which is less sensitive to censoring patterns than the marginal HR estimator. The common and the marginal HR esti-
mators, both relying on distinct assumptions and interpretations, are complementary alternatives for each other.
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Background
Matching is a useful sampling method employed in 
cohort studies, in which the control of confounders is 
indispensable [1]. The simplest matching design is a 1:1 
matched (matched-pair) cohort study, in which each 
matched pair comprising an exposed and an unexposed 
member is followed up through the study period. The 

standard choices of effect measures are common odds 
ratio (OR) and risk ratio (RR) conditional on matched 
pairs. As the number of pairs increases, asymptotically 
unbiased estimate of common OR across matched pairs 
is the ratio of the number of “discordant” pairs [2, 3]; 
using the numbers of pairs shown in Table 1, the condi-
tional maximum likelihood estimator (CMLE) of com-
mon OR is B/C [2]. This estimator coincides with the 
Mantel–Haenszel OR estimator [4] and the uncondi-
tional maximum likelihood estimator using multinomial 
distribution of (A, B, C, D) parameterized under common 
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OR [5]. Common RR may be estimated by the Mantel–
Haenszel RR estimator, which simplifies to the crude 
RR (A +  B)/(A +  C) [3, 6], by estimating equations for 
parameters in conditional multiplicative risk models [7], 
or by conditional Poisson regression models, which are 
mimicked by stratified Cox model-fitting with Breslow or 
Efron-type tie breaking [8, 9].

One of the concerns in cohort studies is censoring 
owing to unequal follow-up period or loss to follow-up 
before the end of the study. In the presence of censor-
ing, common hazard ratio (HR) is a viable alternative. 
Common HR can be estimated by the Mantel–Haenszel 
rate ratio [6] or partial maximum likelihood estimators 
(PMLE) of Cox proportional hazards models stratified 
on matched pairs [10–12]. However, perhaps because of 
the ease of Cox model-fitting by modern computer soft-
ware, it is lesser known that the PMLE of common HR 
can also be transcribed in a simple formula as in the case 
of CMLE of common OR [10]. The formula motivates us 
to focus on the relationship of the PMLE to the matched-
pair analog of C-statistics for time-to-event, which has 
been recently discussed in the literature for evaluating 
discriminatory ability in prediction [13–15].

This representation would be useful because HR (like 
OR) is known to be a noncollapsible measure: even under 
homogeneity of conditional HR across strata and in the 
absence of confounding, marginal (unadjusted) HR is not 
necessarily equal to the conditional one [16, 17]. Moreo-
ver, the assumption of homogenous (common) HR across 
strata may be too restrictive. To circumvent interpreta-
tional difficulties, marginal HR estimated by unstratified 
Cox models with robust variance estimator is often of 
primary interest than common HR [18]. Even when HR is 
not constant over time, it may be interpreted as the “aver-
age” HR of time-varying HR [19]. However, we argue that 
the uncritical “average” view of marginal HR may have 
limited value because the estimator depends on censor-
ing distribution that is nuisance to inference for exposure 
effect on outcome [20, 21].

In this paper, we showed the simple expression of the 
common HR estimator and its alternative interpretation 
as the odds of the matched-pair analog of C-statistic for 

censored time-to-event data. Through simulation studies, 
assuming proportional hazards within the matched pairs, 
we evaluated the influence of various censoring patterns 
on the marginal and common HR estimators of unstrati-
fied and stratified proportional hazards models, respec-
tively. For illustration, several estimators were compared 
in a propensity score-matched dataset of primary breast 
cancer from the Rotterdam tumor bank.

Methods
In this section, we provide the simple formula for the 
common HR estimator under a stratified proportional 
hazards model in matched-pair cohort studies. The com-
mon HR is linked to overall C-index with matched-pair 
analog to improve its interpretation. By simulation stud-
ies under the stratified proportional hazards models, we 
compare the performance in competing estimators as 
well as statistical tests used in matched-pair cohort stud-
ies in various censoring distributions. Finally, we illus-
trate the methods in a real dataset.

Stratified PMLE of common HR in matched‑pair cohorts
Consider matched-pair cohort studies comparing time-
to-event outcome T, in which each pair k (k = 1,…, n)  
is comprised of an exposed (e =  1) and an unexposed 
member (e  =  0). Because outcome Tke of member e 
in pair k may be censored by drop-out time Uke, or 
the end of follow-up τ, we observe follow-up time as 
Xke = min(Tke,Uke, τ ). Define Yke as an indicator of event 
(Yke = 1 if Xke = Tke, 0 otherwise). Suppose all risk factors 
have the same distribution within each pair.

If we are interested in common HR across all matched 
pairs throughout the follow-up period, an appropriate 
model is the Cox proportional hazards model stratified 
on the matched-pair k:

where λke(t) and β are a hazard function of Tke and loga-
rithm of common HR, respectively.

Partial likelihood of (1) is given by the product of the 
contribution at each event time from each stratum k, 
expressed as follows [10–12]:

To express the contribution Lk(β) from each stratum, 
we classify each pair observable in matched-pair data 
into eight types (Table 2). For clarity, the only tie we addi-
tionally consider is caused by the end of follow-up, i.e., 
Xk1 = Xk0 = τ (type 9). Let n1,…, n9 denote the number 
of pairs of types 1–9. Partial likelihood in the presence of 
other types of ties are shown in “Appendix 1”.

(1)�ke(t) = �k0(t) exp(β · e),

(2)

L(β) =

n
∏

k=1

Lk (β) =

n
∏

k=1

∏

e=0,1

{

exp(β · e)
∑

e′ in pair-k risk set atXke
exp(β · e′)

}Yke

Table 1  Numbers of  each pair types in  matched-pair 
cohort data

Unexposed pair member

Event Nonevent

Exposed pair member

 Event A B

 Nonevent C D
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Pairs of types 1 and 3 contribute to partial likelihood 
by exp(β)

1+exp(β), pairs 2 and 4 contribute by 1
1+exp(β), and pairs 

of types 5–9 do not contribute to it. Eventually, the only 
contributors for the PMLE are those who are in the pairs 
in which the pair-member with shorter observed time 
experienced an event; this is the necessary and sufficient 
condition for “comparable” pairs in C-statistic for time-
to-event, which we revisit later [13–15]. The resulting 
partial likelihood (2) is

where G = n1 + n3 denotes the number of pairs where the 
exposed member has shorter observed time and experi-
enced an event (types 1 and 3) and H = n2 + n4 denotes 
the number of pairs where the unexposed member has 
shorter observed time and experienced an event (types 2 
and 4). Therefore, all information regarding matched-pair 
data for common HR is concentrated on the number of 
only two types of pairs.

By maximizing partial likelihood, we can write the 
PMLE of common HR as G/H. Substituting G/H into 
the observed Fisher information [11], the approxi-
mate variance estimator of log(G/H) can be obtained 
by 1/G +  1/H. These are of the same form as the loga-
rithm of the CMLE log(B/C) and its variance estimator 
1/B + 1/C [2, 3].

Tests of null association
To test the null hypothesis of common OR in matched-
pair data, McNemar’s test is often recommended [22–
24]. The test statistic is (B−C)2

B+C , which is also a function 
of B and C. Similarly, by using the definitions of G and H 
from above Klein and Moeschberger [12] have developed 
a stratified log-rank test statistic (G−H)2

G+H  as a weighted 

(

eβ

1+ eβ

)G(
1

1+ eβ

)H

,

rank statistic. As the number of pairs grows, (G−H)2

G+H  has 
an asymptotic Chi-squared distribution with one degree 
of freedom under β = 0. Similar to McNemar’s test that 
can be considered as the score test of OR = 1 in a condi-
tional logistic model [3], the stratified log-rank test can 
be considered as the score test for β =  0 in a stratified 
Cox model (1). Note that Wald and score tests for the 
hypothesis of conditional HR (or OR) = 1 can be shown 
to be asymptotically equivalent to test statistics for mar-
ginal HR (or OR) = 1 [25]. Therefore, tests for both con-
ditional and marginal null hypotheses in different models 
may be used interchangeably, although OR and HR are 
both noncollapsible measures.

Stratified PMLE as overall C‑statistic for matched pairs
For binary exposure E (1 if exposed, 0 if unexposed) and 
time-to-event outcome T, overall C-index (C-index for 
time-to-event) is defined as

where τ is the time of the end of follow-up or an arbi-
trary time interval set by analysts [13, 14]. Assuming 
the absence of censoring except at the end of follow-
up, Pencina and D’Agostino proposed to estimate Cτ by 
restricting all possible pairs in the sample to “compara-
ble” pairs, in which the member with a shorter observed 
time experienced an event, i.e., “Xi < Xj ,Yi = 1,Xi < τ” 
[14].

We can consider the matched-pair analog of Cτ:

where (e1, e2) is either (0, 1) or (1, 0), and sampling is 
made for matched pairs k =  1,…, n. Let Ske(t) and fke(t) 

Cτ = max

{

Pr(Ei = 1, Ej = 0
∣

∣Ti < Tj , Ti < τ )

Pr(Ei = 0, Ej = 1
∣

∣Ti < Tj , Ti < τ )

}

Cτ ,pair = max

{

Pr(e1 = 1, e2 = 0 in pair k
∣

∣Tke1
< Tke2

, Tke1
< τ )

Pr(e1 = 0, e2 = 1 in pair k
∣

∣Tke1
< Tke2

, Tke1
< τ )

}

Table 2  List of pair types and their contribution to stratified partial likelihood

Type Number of pairs Observed data in the pair Observed time Yk1 Yk0 Lk(β)

1 n1 Exposed gets event first, followed by unexposed event Xk1 < Xk0 1 1 e
β

1+eβ

2 n2 Unexposed gets event first, followed by exposed event Xk1 > Xk0 1 1 1

1+eβ

3 n3 Exposed gets event first, followed by unexposed censored Xk1 < Xk0 1 0 e
β

1+eβ

4 n4 Unexposed gets event first, followed by exposed censored Xk1 > Xk0 0 1 1

1+eβ

5 n5 Exposed is censored first, followed by unexposed event Xk1 < Xk0 0 1 1

6 n6 Unexposed is censored first, followed by exposed event Xk1 > Xk0 1 0 1

7 n7 Exposed is censored first, followed by unexposed censored Xk1 < Xk0 0 0 1

8 n8 Unexposed is censored first, followed by exposed censored Xk1 > Xk0 0 0 1

9 n9 Exposed and unexposed are censored simultaneously Xk1 = Xk0 = τ 0 0 1
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denote survival and density functions of Tke, respec-
tively. Given the matched-pair design considered here, 
Pr(e1 = 1, e2 = 0 in pair k

∣

∣Tke1 < Tke2 , Tke1 < τ ) is  
expressed as Pr(Tk1 < Tk0|Tk1 < τ orTk0 < τ ) =  
Pr(Tk1<Tk0,Tk1<τ)
1−Sk0(τ )Sk1(τ )

 . Taking the odds of this probability yields 

the following under the stratified Cox model (1):

Therefore, the common HR exp(β) equals Cτ,pair/
(1 −  Cτ,pair) if common HR  >  1, and (1 −  Cτ,pair)/Cτ,pair 
if common HR  <  1. In fact, this relationship has been 
derived by Holt and Prentice over 40 years ago for τ = ∞, 
in which case Cτ ,pair = Pr(Tk1 < Tk0) if common HR > 1 
and Cτ ,pair = Pr(Tk1 > Tk0) otherwise [10].

Due to censoring by Uke, event times Tk1 and Tk0 are 
not always observable. As shown in the “Appendix 2”, 
G/(G +  H) converges in probability (as pair number n 
grows) to

Note that (3) is not equal to Pr(Tk1 < Tk0|Tk1

< τ or Tk0 < τ ) in general. Thus, Cτ,pair cannot be appar-
ently calculated by the observed data if censoring before 
τ occurs. “Appendix 2” shows, however, that under the 
model (1), the odds of (3) equal exp(β) even if Tke is cen-
sored by Uke that is independent to Tke conditional on 
matched pairs and exposure. Thus, we can estimate Cτ,pair 
as well as β based on only “comparable” matched pairs 
introduced by design even if censoring depends on both 
matched pairs and exposure.

Simulation studies
To examine the performance of the stratified PMLE 
under the assumption (1) compared to competitive 
PMLEs used in matched-pair cohort studies, we simu-
lated 2000 cohorts with size 2n = 100, 500 (n = 50, 250 
exposed–unexposed pairs). SAS code for generating data 
will be provided in the Additional file 1.

We simulated each pair’s “effect” γk as a standard nor-
mal variate, assuming that matching eliminates all con-
founding, though the assumption is at best expected to 
approximately hold in practice. Time-to-event was then 
generated from the random-intercept (frailty) model 
[11, 12] �ke(t) = �0 exp(γk) exp(β · e) with λ0  =  1 and 

Pr(Tk1 < Tk0, Tk1 < τ)

Pr(Tk1 > Tk0, Tk0 < τ)
=

∫ τ

0 fk1(t)Sk0(t)dt
∫ τ

0 fk0(t)Sk1(t)dt

=

∫ τ

0 {�k0(t)e
βSk1(t)}Sk0(t)dt

∫ τ

0 {�k0(t)Sk0(t)}Sk1(t)dt

= eβ .

(3)

Pr{e1 = 1, e2 = 0 in pair k
∣

∣Tke1
< Tke2

,Tke1
< min(Uke1

,Uke2
),Tke1

< τ }

= Pr{Tk1 < Tk0|Tk1 < min(Uk1,Uk0, τ) orTk0 < min(Uk1,Uk0, τ) }

common log-HR β =  log(2.0), log(1.0), and log(0.5). The 
time was censored by exponential variate according to 
the following censorship patterns:

1.	 Independent censoring with the rate parameter of 1, 
2, and 4, or

2.	 Conditionally independent censoring given strata 
and exposure, where the rate parameter equals 
γk + αe, α = log(0.25), log(1.0), and log(4.0).

We also employed Weibull time-to-event variables in 
additional scenarios to emulate the situations in which 
(1) baseline hazards increase or decrease instead of the 
time-constant hazard λ0, or (2) the shape parameter var-
ied between the strata while keeping stratum-specific HR 
fixed as a constant across strata. As the results from these 
additional scenarios were similar to those from the above 
exponential-normal frailty model, the parameter settings 
and the results are provided in the Additional file 1.

We fitted pair-stratified Cox models, unstratified Cox 
models with or without robust sandwich variance estima-
tor [26], as well as true frailty Cox models as a reference. 
Note that stratified and frailty models assume that the 
conditional parameter is constant across matched pairs, 
while unstratified models only model a marginal param-
eter and do not assume such constancy across pairs.

With the frailty Cox models used in the data genera-
tion, the marginal distributions of time do not follow 
proportional hazards except for the positive-stable dis-
tributed frailty [12]. Thus, the unstratified Cox model is 
known to be misspecified. One way around this prob-
lem is to define the model parameters as the asymp-
totic means of the maximum-likelihood estimators that 
are free from censoring, which is always well-defined 
and interpretable (even if the models are not correct) 
[20, 27, 28]. Therefore, the targeted marginal HR in this 
study is defined as a mean of the estimate of unstratified 
Cox models calculated in a large (n = 5,000,000) dataset 
where no member is censored.

The performance of the above estimators was evaluated 
by mean bias (the average of 2000 log-HR estimates—
true log HR), empirical standard error (standard devia-
tion of 2000 estimates), mean estimated standard error, 
root mean squared error (RMSE; the square root of the 
sum of the squared bias and the empirical variance of the 
estimator), and coverage proportion of 95% confidence 
intervals. The empirical power (or type I error when 
HR  =  1) tested by Wald statistics (log-HR estimates 
divided by their estimated standard errors) of the above 
was also compared, accompanied by a stratified log-rank 
test statistic. We used PHREG procedure in SAS version 
9.4 (Cary, NC).
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Application: propensity‑matched cohort data from the 
Rotterdam tumor bank
To illustrate the methods in a real dataset, we used the 
records from the Rotterdam tumor bank, which includes 
follow-up data on 2982 women with primary breast can-
cer. The dataset is available in the R package AF devel-
oped by Dahlqwist and Sjölander [29] and the details of 
the dataset have been described elsewhere [30]. The out-
come T is relapse-free survival, which is defined as time 
to developing relapse of breast cancer or death from any 
cause before the end of the follow-up period. Women 
remained in the dataset until they experienced relapse 
or death, were lost to follow-up or were at the end of the 
follow-up period, whichever came first. The exposure of 
interest is the absence of chemotherapy (1 if treated with-
out chemotherapy, n =  2402; 0 if treated with chemo-
therapy, n = 580).

One notable feature in this dataset is that the amount 
of confounding is very strong—adjusting for the pos-
sible confounders reverses the sign of the association 
[30]. Thus, we turned the dataset into a matched cohort 
based on propensity score (the conditional probability of 
exposure given possible confounders). Propensity score is 
conditional on the following prognostic variables: age at 
surgery (years), menopausal status (0 if premenopausal, 
1 if postmenopausal), tumor size (≤20 mm, >20–50 mm, 
and >50 mm), tumor grade (2 or 3), progesterone recep-
tors, (fmol/l), oestrogen receptors (fmol/l), and the num-
ber of positive lymph nodes [ranging between 0 and 34; 
transformed into exp(–0.12 * the number of nodes)]. We 
estimated the propensity score for each woman by fitting 
a logistic model, and then matched women on the esti-
mated propensity scores by caliper-based pair-matching 
algorithm without replacement (allowable caliper width 
was 20% of the standard deviation of estimated pro-
pensity scores in a chemotherapy group). The resulting 
matched cohort is comprised of n = 446 exposed–unex-
posed pairs. The SAS code for forming the propensity-
matched cohort from the Rotterdam dataset is provided 
in the Additional file 1.

Results
Simulation results
Table  3 shows the results in independently censored 
data (similar results were obtained for n = 50, provided 
in online supplementary material). The marginal HR 
defined in the unstratified models is towards null from 
conditional HR, similar to the well-known result that 
the marginal OR is closer to null than common stra-
tum-specific OR [16]. In fact, marginal HR always lies 
between the conditional HR and 1 under the exponential 
survival model [17]. Null exposure effect in conditional 
HR implies that marginal HR is also null. In this case, no 

estimator has a bias. Coverage of confidence intervals 
maintains almost nominal level except for the unstrati-
fied model without robust variance that overestimates 
the true variability.

For non-null HR (β ≠ 0), PMLE for unstratified models 
have “bias” from conditional HR that partly reflects the 
noncollapsible property of HR [17] and the dependency 
on censoring distribution. The latter also impedes its 
interpretation as “average” marginal HR that is independ-
ent of censoring. Frailty to disease structurally changes 
hazard among the remaining risk-set over the follow-up 
period [19, 31]: under our simulation model, HR con-
stancy during the follow-up period only holds condition-
ally on frailty but does not hold marginally with non-null 
exposure effect. Estimates for unstratified models are 
indeed valid as marginal effect-measures in pair-matched 
data if there are no other covariates that need to be con-
trolled and if no censoring occurs [20, 32]. If no obser-
vation is censored, estimates from unstratified models 
are unbiased for the marginal HR parameter (data not 
shown). As censoring increases, the bias in unstratified 
PMLE from the marginal HR parameter becomes larger 
and the coverage probability decreases.

Table 4 shows the results for censorship dependent on 
matched pair and exposure. The pair effect on censoring 
alone (from the rows “Censoring rate ratio = 1”) does not 
invalidate any estimate for null exposure effect but biases 
unstratified PMLE from both conditional and marginal 
HRs under non-null exposure effect, as expected from 
Table 3. Exposure effect on censoring also affects the dis-
tribution of unstratified PMLE for both null and non-null 
exposure effects. This censoring mechanism also makes 
bias in PMLE for frailty Cox models despite that it mod-
els true hazard. Only stratified PMLE, G/H, has no bias 
in this censoring pattern, which is guaranteed with the 
assumption (1), as shown in “Appendix 2”.

The shortcomings of stratified and frailty PMLEs are 
their variability. Even if conditional HR is of primary 
interest, their RMSE can be greater than that from 
unstratified models. However, in the moderate sized sam-
ples (e.g., n > 250), the variability around conditional HR 
by stratified and frailty PMLEs can be outweighed by the 
bias in unstratified models: the “bias” from conditional 
and marginal HRs. Frailty models also failed to converge 
a few times in 2000 repetitions.

Matched analysis of the Rotterdam cohort
The Kaplan–Meier estimates of relapse-free survival from 
the original (2982 women) and the propensity-matched 
(2n  =  892 women) Rotterdam cohorts were depicted 
in Fig.  1. While the unadjusted curves in the origi-
nal cohorts favored the absence of chemotherapy, the 
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Table 3  Simulated estimates with independent censoring distribution, varying censoring rate (2000 repetitions, n = 250)

Method Censoring rate MCSE MESE Log conditional-HR Log marginal-HR

Bias 95% CP (%) RMSE Bias 95% CP (%) RMSE

Log conditional-
HR = log(2) = 0.693;  
Log marginal-HR = 0.437

Frailty Cox model 1 0.13 0.13 −0.03 93.50 0.14 0.23 58.80 0.27

Stratified Cox model 0.18 0.18 0.00 95.20 0.18 0.26 72.15 0.32

Unstratified Cox model without 
sandwich variance

0.10 0.12 −0.19 66.15 0.22 0.07 95.35 0.12

Unstratified Cox model with  
sandwich variance

0.10 0.10 −0.19 51.80 0.22 0.07 90.75 0.12

Frailty Cox model 2 0.15 0.15 −0.03 94.49 0.15 0.22 68.69 0.27

Stratified Cox model 0.21 0.20 0.01 95.45 0.21 0.26 76.85 0.34

Unstratified Cox model without 
sandwich variance

0.12 0.14 −0.16 80.70 0.20 0.09 93.25 0.15

Unstratified Cox model with  
sandwich variance

0.12 0.12 −0.16 70.90 0.20 0.09 88.40 0.15

Frailty Cox model 4 0.17 0.18 −0.04 95.19 0.18 0.22 78.81 0.28

Stratified Cox model 0.25 0.25 0.01 94.85 0.25 0.26 83.40 0.37

Unstratified Cox model without 
sandwich variance

0.15 0.17 −0.13 89.55 0.20 0.12 91.95 0.19

Unstratified Cox model with  
sandwich variance

0.15 0.15 −0.13 84.20 0.20 0.12 87.35 0.19

Log conditional-HR = log(1) = 0; 
Log marginal-HR = 0

Frailty Cox model 1 0.14 0.14 0.00 95.55 0.14 0.00 95.55 0.14

Stratified Cox model 0.18 0.18 0.00 95.75 0.18 0.00 95.75 0.18

Unstratified Cox model without 
sandwich variance

0.11 0.13 0.00 97.70 0.11 0.00 97.70 0.11

Unstratified Cox model with  
sandwich variance

0.11 0.11 0.00 94.55 0.11 0.00 94.55 0.11

Frailty Cox model 2 0.15 0.16 0.00 95.34 0.15 0.00 95.34 0.15

Stratified Cox model 0.21 0.21 0.00 95.30 0.21 0.00 95.30 0.21

Unstratified Cox model without 
sandwich variance

0.13 0.15 0.00 97.45 0.13 0.00 97.45 0.13

Unstratified Cox model with  
sandwich variance

0.13 0.13 0.00 94.40 0.13 0.00 94.40 0.13

Frailty Cox model 4 0.19 0.19 0.00 95.78 0.19 0.00 95.78 0.19

Stratified Cox model 0.27 0.26 0.00 95.65 0.27 0.00 95.65 0.27

Unstratified Cox model without 
sandwich variance

0.17 0.18 0.00 97.10 0.17 0.00 97.10 0.17

Unstratified Cox model with  
sandwich variance

0.17 0.17 0.00 95.05 0.17 0.00 95.05 0.17

Log conditional-
HR = log(0.5) = –0.693; Log 
marginal-HR = –0.438

Frailty Cox model 1 0.15 0.15 0.04 94.19 0.15 −0.22 69.19 0.27

Stratified Cox model 0.20 0.20 0.00 95.30 0.20 −0.26 76.65 0.33

Unstratified Cox model without 
sandwich variance

0.12 0.14 0.17 80.55 0.21 −0.09 94.20 0.15

Unstratified Cox model with  
sandwich variance

0.12 0.12 0.17 70.35 0.21 −0.09 89.25 0.15

Frailty Cox model 2 0.17 0.18 0.04 94.13 0.18 −0.21 79.49 0.28

Stratified Cox model 0.25 0.25 −0.01 95.10 0.25 −0.26 83.30 0.36
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propensity-matched curves adjusting possible confound-
ers reversed the association of exposure and outcome.

Censoring before the end of the follow-up period was 
not negligible in the matched cohort, but censoring distri-
bution is similar across exposure groups (Fig. 2): the situa-
tion would resemble the simulation pattern 1 (independent 
censoring). Among 446 pairs in the matched cohort, the 
number of pairs where the exposed member has shorter 
observed time and experienced an event (G) was 198 
and the number of pairs where the unexposed mem-
ber has shorter observed time and experienced an event 
(H) was 135. The PMLE of common HR is G/H =  1.47 
with 95% confidence limits exp(log(1.47)  ±  1 .96 
× √(1/198 +  1/135)) =  1.18 and 1.83; these estimates 
coincide with the result from the stratified Cox model 
fitting program in SAS/PHREG procedure. On the con-
trary, marginal HR estimated from the unstratified Cox 
model with robust sandwich variance estimator in the 
same matched cohort is 1.33 (95% CI 1.13–1.57). As seen 
from simulation, the common HR estimate was further 
from null than marginal HR estimate in this dataset.

These results were compared to other marginal or 
conditional HR estimates adjusting for the seven prog-
nostic variables: Table  5 shows the estimates from 
inverse-probability weighted Cox model with robust vari-
ance estimator, multivariable-adjusted Cox model, and 
multivariable-adjusted Cox model with inverse-proba-
bility weighting and robust variance estimator. Although 
the target populations were not the same between pro-
pensity-matched and inverse-probability weighted analy-
ses [18, 33], the PMLE of stratified and unstratified Cox 
models from the matched cohort approximate the con-
ditional and marginal estimates from the original cohort, 
respectively.

Discussion
The PMLE for common HR in matched-pair cohort stud-
ies can be expressed by a simple formula based on only 
two numbers: the number of pairs in which the exposed 
has a shorter observed time and experienced an event 
(G) and the number of pairs in which the unexposed 
has a shorter observed time and experienced an event 
(H). Such a simple form of HR estimators is unique to 
PMLE. Corresponding Poisson rate regression may be 
a stratified Poisson model with common HR, with the 
likelihood conditional on the total number of events 
in each stratum (0, 1, or 2), which reduces to binomial 
likelihood [34]. The CMLE for common HR is the solu-
tion of 

∑

k
Yk1Xk0−HR·Yk0Xk1

Xk0+HR·Xk1
= 0, which is dependent on 

observed time X. It is slightly different from the Mantel–
Haenszel rate ratio estimator, 

∑

k Yk1Xk0/ (Xk0+Xk1)
∑

k Yk0Xk1/ (Xk0+Xk1)
, which 

approximates the Poisson CMLE around HR = 1.
The current simple expression of stratified PMLE and 

its relationship with Cτ,pair is also unique to a binary 
exposure. We could not find any simple expression of 
estimators of multiple effect-parameters for more than 
2 exposure levels, or even a single parameter in the 
stratified Cox model (i.e., linear effect on log-hazard) 
for continuous exposure, say, V. In the latter case, an 
adequate definition of matched-pair overall C-index 
may be Cτ,pair  =  Pr(Vk1  >  Vk2| Tk1  <  Tk2, Tk1  <  τ) (if 
log-HR β  >  0). This may be estimated by redefining a 
“binary” exposure E, such that Ek1 =  I(Vk1  >  Vk2) and 
Ek2 =  I(Vk1 < Vk2), and calculating G/(G + H) as if the 
dataset comes from a pair-matched cohort. However, 
the limiting value of this statistic is now dependent on 
the censoring distribution irrespective of the underly-
ing model form. Instead, the stratified PMLE obtained 
by iterative maximization (e.g., by Newton–Raphson 

Table 3  continued

Method Censoring rate MCSE MESE Log conditional-HR Log marginal-HR

Bias 95% CP (%) RMSE Bias 95% CP (%) RMSE

Unstratified Cox model without 
sandwich variance

0.15 0.17 0.14 89.95 0.20 −0.12 92.25 0.19

Unstratified Cox model with  
sandwich variance

0.15 0.15 0.14 84.90 0.20 −0.12 88.50 0.19

Frailty Cox model 4 0.22 0.22 0.03 94.97 0.22 −0.22 84.80 0.31

Stratified Cox model 0.31 0.31 −0.01 95.45 0.31 −0.27 88.55 0.41

Unstratified Cox model without 
sandwich variance

0.19 0.21 0.10 93.35 0.22 −0.16 91.90 0.25

Unstratified Cox model with  
sandwich variance

0.19 0.20 0.10 91.05 0.22 −0.16 88.40 0.25

MCSE, empirical (Monte Carlo) standard error; MESE, mean estimated standard error; 95% CP, coverage proportion of 95% confidence interval; RMS,E root mean square 
error
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Table 4  Simulated estimates with conditionally independent censoring given matched-pair and exposure, varying cen-
soring rate ratio by exposure (2000 Repetitions, n = 250)

Method Censoring rate ratio by  
exposure

MCSE MESE Log conditional-HR Log marginal-HR

Bias 95% CP (%) RMSE Bias 95% CP (%) RMSE

Log conditional-
HR = log(2) = 0.693; Log 
marginal-HR = 0.437

Frailty Cox model 0.25 0.12 0.12 0.09 88.60 0.16 0.35 18.15 0.37

Stratified Cox model 0.16 0.16 0.00 94.95 0.16 0.26 65.90 0.30

Unstratified Cox model without 
sandwich variance

0.10 0.11 −0.04 96.50 0.10 0.21 52.90 0.23

Unstratified Cox model with  
sandwich variance

0.10 0.09 −0.04 91.55 0.10 0.21 37.75 0.23

Frailty Cox model 1 0.13 0.13 −0.02 94.20 0.13 0.24 54.85 0.27

Stratified Cox model 0.18 0.17 0.00 94.85 0.18 0.26 70.50 0.31

Unstratified Cox model without 
sandwich variance

0.10 0.12 −0.15 78.80 0.18 0.11 89.05 0.15

Unstratified Cox model with  
sandwich variance

0.10 0.10 −0.15 68.55 0.18 0.11 82.65 0.15

Frailty Cox model 4 0.16 0.16 −0.27 58.60 0.31 −0.01 95.17 0.16

Stratified Cox model 0.22 0.22 0.01 95.35 0.22 0.26 80.00 0.34

Unstratified Cox model without 
sandwich variance

0.14 0.15 −0.39 22.85 0.41 −0.13 87.40 0.19

Unstratified Cox model with  
sandwich variance

0.14 0.13 −0.39 17.95 0.41 −0.13 83.60 0.19

Log conditional-HR = log(1) = 0; 
Log marginal-HR = 0

Frailty Cox model 0.25 0.13 0.12 0.14 79.60 0.19 0.14 79.60 0.19

Stratified Cox model 0.16 0.16 0.00 95.40 0.16 0.00 95.40 0.16

Unstratified Cox model without 
sandwich variance

0.10 0.12 0.17 71.00 0.20 0.17 71.00 0.20

Unstratified Cox model with  
sandwich variance

0.10 0.10 0.17 59.65 0.20 0.17 59.65 0.20

Frailty Cox model 1 0.13 0.14 0.00 95.34 0.13 0.00 95.34 0.13

Stratified Cox model 0.18 0.18 0.00 95.50 0.18 0.00 95.50 0.18

Unstratified Cox model without 
sandwich variance

0.11 0.13 0.00 97.75 0.11 0.00 97.75 0.11

Unstratified Cox model with  
sandwich variance

0.11 0.11 0.00 95.20 0.11 0.00 95.20 0.11

Frailty Cox model 4 0.18 0.18 −0.29 63.82 0.34 −0.29 63.82 0.34

Stratified Cox model 0.24 0.24 0.00 95.80 0.24 0.00 95.80 0.24

Unstratified Cox model without 
sandwich variance

0.16 0.17 −0.33 52.20 0.36 −0.33 52.20 0.36

Unstratified Cox model with  
sandwich variance

0.16 0.16 −0.33 47.00 0.36 −0.33 47.00 0.36

Log conditional-
HR = log(0.5) = –0.693; Log 
marginal-HR = –0.438

Frailty Cox model 0.25 0.14 0.13 0.19 68.73 0.24 −0.06 91.75 0.15

Stratified Cox model 0.18 0.18 0.00 95.50 0.18 −0.26 72.70 0.31

Unstratified Cox model without 
sandwich variance

0.11 0.12 0.35 15.30 0.37 0.10 90.70 0.14

Unstratified Cox model with  
sandwich variance

0.11 0.11 0.35 9.60 0.37 0.10 84.75 0.14

Frailty Cox model 1 0.15 0.15 0.02 94.66 0.15 −0.23 65.46 0.28

Stratified Cox model 0.21 0.21 0.00 95.10 0.21 −0.26 77.85 0.33
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algorithm) of partial likelihood may be used to estimate 
overall-C; following the similar discussion of Gönen 
and Heller [35], the average of exp(β̂·|Vk1−Vk2|)

1+exp(β̂·|Vk1−Vk2|)
 across 

n matched pairs converges to Pr(Vk1  >  Vk2| Tk1  <  Tk2, 
Tk1  <  τ) if the assumed linear-effect Cox model is cor-
rect and if no tie-event occurs [36]. Although the sim-
ple expression of PMLE is not applicable to continuous/
multiple-level exposures, the stratified PMLE is still rel-
evant to interpretation of a matched-pair C-index for 
time-to-event outcomes.

It is well recognized that whenever matching variables 
in case–control studies are associated with either expo-
sure or disease in an original cohort, unless exposure 
effect on disease is absent, they must be adjusted in anal-
ysis irrespective of whether they are confounders [1, 37]. 

Table 4  continued

Method Censoring rate ratio by  
exposure

MCSE MESE Log conditional-HR Log marginal-HR

Bias 95% CP (%) RMSE Bias 95% CP (%) RMSE

Unstratified Cox model without 
sandwich variance

0.13 0.14 0.11 90.35 0.17 −0.15 85.50 0.20

Unstratified Cox model with sand-
wich variance

0.13 0.13 0.11 85.85 0.17 −0.15 79.80 0.20

Frailty Cox model 4 0.22 0.22 −0.29 76.15 0.36 −0.55 27.32 0.59

Stratified Cox model 0.28 0.28 −0.01 95.35 0.28 −0.26 86.80 0.39

Unstratified Cox model without 
sandwich variance

0.21 0.21 −0.29 77.05 0.35 −0.54 25.40 0.58

Unstratified Cox model with  
sandwich variance

0.21 0.21 −0.29 74.15 0.35 −0.54 22.20 0.58

MCSE, empirical (Monte Carlo) standard error; MESE, mean estimated standard error; 95%CP, coverage proportion of 95% confidence interval; RMSE, root mean square 
error
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Unlike case–control studies, ignoring matching in cohort 
studies generally produce valid point estimates when the 
matching ratio is constant across strata and no censoring 
occurs [32, 37]. This phenomenon is due to the design 
that completely balances the matched variables between 
exposed and unexposed groups. In the theory of causal 
diagrams, design unfaithfulness occurs, i.e., exposure 
and matching variable are independent in the matched 
subpopulation despite being connected in the causal 
diagram [37–39]. However, when additional confound-
ers are adjusted in the analyses, such cancellation breaks 
down and ignoring matching variables results in biased 
estimates [32]. Moreover, as shown in our simulation, if 
the proportionality of hazards holds given matching vari-
ables and if censoring is present, the estimated HR under 
marginal models would be biased away from both con-
ditional HR and an “average” of time-varying HR [19]. 
The bias depends on the censoring rate even if events are 
independently censored. Similar to this phenomenon, 
if the matching variable is a risk factor for outcome and 
competing risks or losses to follow-up are associated with 
both exposure and the matching variable, estimates not 
adjusting for the matching variables are no longer unbi-
ased even in the null exposure effect [1, 37]. Our simu-
lation also showed that censorship dependent on the 
exposure and the matched pair invalidates the marginal 
estimate and statistical test.

Matching is often conducted in analysis stage, especially 
with estimated propensity scores in order to reduce con-
founding, as in our real data example. Contrary to actually 
matched data, analytical subtleties in propensity-matching 
have been discussed in recent literature. First, whether pro-
pensity-matching should adjust for as sampling variation 
remains controversial [18, 40]. Second, conditional effect 

parameters are usually not targeted in propensity-matching 
because conditioning on propensity-matched pairs has lit-
tle interpretability. Third, at the cost of balancing between 
exposure groups, propensity-matching discards some pro-
portion of available data. If one is interested in the effect on 
the exposed (the marginal effect-measure if 1 unexposed is 
matched on 1 exposed), one can expect more efficient esti-
mates are obtained by differential propensity-weighting for 
exposed and unexposed groups [41] than marginal mode-
ling with robust variance estimator after propensity-match-
ing. While weighting directly uses the estimated propensity 
scores from fitted models [42, 43], matching only uses the 
ranks of estimated propensity scores within an allowable 
caliper width. As ranks are less sensitive to misspecification 
of the model form, one may argue the propensity-matching 
analyses are more robust than estimates using propensity-
weighting or outcome-regression, or both [44]. Detailed 
investigation of this bias–variance trade-off between pro-
pensity-matching and weighting for marginal estimates is 
interesting future work. From these viewpoints, however, a 
PML estimator of common HR may be of little use along 
with propensity-matching.

Conclusion
Although common HR itself may have limited value in 
public health literature because of its noncollapsibility 
and built-in selection bias [19], the simple and intuitive 
representation of its estimator would be a useful sum-
mary of the exposure effect. The common HR estimator 
may be a good alternative to the marginal HR estimators 
if loss-to-follow-up is not negligible and/or depends on 
exposure and matching variables. Otherwise, survival 
time or risk comparisons should be used to overcome the 
problems with causal interpretation of HR [17, 19].

Table 5  Hazard ratio estimates from the Rotterdam tumor bank dataset

CI confidence interval, IPW inverse-probability weighted, HR hazard ratio
a  Stratified on matched pairs
b  Using a robust variance estimator aggregating residuals within pairs
c  Using a robust variance estimator aggregating residuals within an individual woman
d  Adjusted for age at surgery, menopausal status, tumor size, tumor grade, progesterone receptors, oestrogen receptors, and exp(–0.12 * the number of positive 
lymph nodes). Age and the transformed number of nodes were included by linear and quadratic terms
e  Target population is the matched part of unexposed population (treated with chemotherapy)
f  Target population is total (unexposed and exposed) population

Model Analysis set Target HR HR estimate 95% CI

Stratified Cox modela Matched cohort Conditionale 1.47 1.18 1.83

Unstratified Cox modelb Matched cohort Marginale 1.33 1.13 1.57

IPW Cox modelc Original cohort Marginalf 1.32 1.07 1.62

Multivariable Cox modeld Original cohort Conditionalf 1.48 1.27 1.71

IPW multivariable Cox modelc,d Original cohort Conditionalf 1.58 1.28 1.96

Unadjusted Cox model Original cohort Biased 0.84 0.75 0.95
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Appendix 1: PMLE with tied‑event pairs
Table  6 shows the additional types of pairs when tied 
events occur in the same pair. By convention, when cen-
soring and event simultaneously occur in the data, that 
pair is treated as if censoring was measured after event: 
types 10 and 11 (Table  6) are treated as types 3 and 4 
(Table  2), respectively. Then, we only have to consider 
how to treat tie-event (type 12) by each method: the 
exact, Breslow’s, or Efron’s methods are commonly used 
[11, 12].

Additional file

Additional file 1. Additional simulation results and SAS codes for simula-
tion and for matching women based on estimated propensity scores in 
the Rotterdam tumor database.

If tie-events are treated by the exact method, the con-
tribution of that type of pair is exp(β)/{1 + exp(β)} + 1/
{1 +  exp(β)} =  1, which means these pairs do not con-
tribute the partial-likelihood. Thus, we only have to 
modify the matched-pair common HR estimator as G/H 
in which type 12-pairs are counted in neither G nor H: 
G = n1 + n3 + n10 and H = n2 + n4 + n11. On the con-
trary, if tie-events are treated by Breslow’s methods, the 
contribution of that pair type is exp(β)/{1 + exp(β)}2, or 
by Efron’s methods, 2 × exp(β)/{1 + exp(β)}2. This means 
that the partial likelihood counts type 12-pairs in both 
G and H: a modified matched-pair common HR estima-
tor corresponding Breslow’s or Efron’s methods is G/H 
in which type 12-pairs are counted in both G and H (i.e., 
G = n1 + n3 + n10 + n12 and H = n2 + n4 + n11 + n12).

We provide in Table 7 a typical dataset (50 pairs) gen-
erated with true HR  =  2 with independent censoring 
(rate =  1) in the main text. To view the impact of tied 
event data, we rounded the observed time to one decimal 
place. Among the comparable pairs, n1 + n3 + n10 = 18, 
n2 + n4 + n11 = 7 and n12 = 1 (pair 30). Using exact tie-
breaking method, G = 18 and H = 7; PMLE of common 
HR is G/H  =  2.57 with 95% confidence limits exp{log
(2.57) ±  1.96 × √(1/18 +  1/7)} =  1.07 and 6.16. Using 
Breslow’s and Efron’s tie-breaking method, G =  19 and 
H =  8 and the estimate (95% confidence limits) is 2.38 
(1.04, 5.43). These data are in perfect accordance with 
the results obtained by fitting a Cox model stratified on 
matched-pairs via the PHREG procedure with options 
“ties =  exact” and “ties =  Breslow” (default in current 
version of SAS; “ties =  Efron” provide the same result), 
respectively.

Appendix 2: Equivalence between the limiting 
value of G/H and Cτ with censoring under stratified 
proportional hazards model
Following the main text, the Cτ estimator G/(G + H) is 
expressed as

∑n
k=1 Yk1I(Xk1 < Xk0)

∑n
k=1 Yk1I(Xk1 < Xk0)+ Yk0I(Xk1 > Xk0)

,

Table 6  Pair types with tied data with at least one event

Type Number of pairs Observed data in the pair Observed time Yk1 Yk0

10 n10 Exposed gets event and unexposed censored simultaneously Xk1 = Xk0 1 0

11 n11 Unexposed gets event and exposed censored simultaneously Xk1 = Xk0 0 1

12 n12 Exposed and unexposed get events simultaneously Xk1 = Xk0 1 1

http://dx.doi.org/10.1186/s12982-017-0060-8
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Table 7  Simulated 50 pairs generated with true HR = 2 with independent censoring (rate = 1)

Pair (k) Exposure (e) Time (Xke) Event (Yke) Pair (k) Exposure (e) Time (Xke) Event (Yke)

1 0 0.1 0 26 0 1 0

1 1 0.8 1 26 1 0 0

2 0 0.3 0 27 0 0 1

2 1 0.3 0 27 1 0.2 1

3 0 0.6 0 28 0 0.1 0

3 1 0.1 0 28 1 0.2 1

4 0 0.2 0 29 0 0.4 0

4 1 0.2 1 29 1 0.3 0

5 0 0.2 0 30 0 0 1

5 1 0.4 1 30 1 0 1

6 0 1.6 0 31 0 0.1 1

6 1 0.5 0 31 1 0.5 1

7 0 0.4 1 32 0 0.2 0

7 1 0.2 0 32 1 1.1 0

8 0 1.1 1 33 0 0.6 0

8 1 0.4 1 33 1 0.4 1

9 0 1.2 0 34 0 0.2 1

9 1 0.1 0 34 1 0.1 1

10 0 0.3 1 35 0 1 0

10 1 0.2 0 35 1 0.3 0

11 0 0.6 1 36 0 2.7 1

11 1 1.3 1 36 1 0 0

12 0 0.1 1 37 0 0 0

12 1 0 1 37 1 0.2 1

13 0 0.3 0 38 0 0 0

13 1 0.1 0 38 1 1.3 0

14 0 0.1 0 39 0 0.4 1

14 1 0 1 39 1 0.1 1

15 0 0 1 40 0 0.8 0

15 1 0.1 1 40 1 0 1

16 0 0.5 0 41 0 0 1

16 1 0.3 1 41 1 0.1 1

17 0 2.7 0 42 0 0.1 0

17 1 0.6 1 42 1 0.1 1

18 0 0.2 0 43 0 2.4 0

18 1 0.3 0 43 1 1.3 1

19 0 1.5 0 44 0 0.7 1

19 1 0.2 0 44 1 0.2 1

20 0 0.1 0 45 0 0.2 1

20 1 0 1 45 1 0.1 1

21 0 0.5 1 46 0 0.3 0

21 1 0.7 0 46 1 0.4 1

22 0 0.4 1 47 0 0.1 0

22 1 0.2 1 47 1 0.1 0

23 0 0 0 48 0 0.1 1

23 1 0.3 0 48 1 0.2 1

24 0 0.2 0 49 0 0.5 1

24 1 0.3 1 49 1 0 0

25 0 1.9 1 50 0 0.5 1

25 1 0.1 1 50 1 0 1
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where I(A) is the indicator function (1 if A is true, 0 oth-
erwise). Because Yke = I{Tk1 < min(Uke, τ)}, it is rewritten 
as

∑

n

k=1 I{Tk1 < min(Uk1,Tk0,Uk0, τ )}
∑

n

k=1 I{Tk1 < min(Uk1,Tk0,Uk0, τ )} + I{Tk0 < min(Uk0,Tk1,Uk1, τ )}

=

∑

n

k=1

∑

(e1,e2)=(0,1),(1,0) I{Tke1
< min(Uke1

,Tke2
,Uke2

, τ )}I(e1 = 1, e2 = 0 in pair k)
∑

n

k=1

∑

(e1,e2)=(0,1),(1,0) I{Tke1
< min(Uke1

,Tke2
,Uke2

, τ )}

which is equal to Cτ,pair/(1  −  Cτ,pair) by following the 
argument in the main text.

Note that as the pair-number n increases, the 
denominator and the numerator divided by n2 con-
verges to Pr{Tke1 < Tke2 ,Tke1 < min(Uke1 ,Uke2 , τ )} and 
Pr{Tke1

< Tke2
,Tke1

< min(Uke1
,Uke2

, τ ), e1 = 1, e2 = 0}  , 
respectively [15]. Therefore, with drop-out before 
the end of follow-up τ, G/(G  +  H) converges to con-
ditional probability (3),Pr{e1 = 1, e2 = 0 in pair  
k
∣

∣Tke1
< Tke2

,Tke1
< min(Uke1

,Uke2
),Tke1

< τ } .The lim-
iting value of G/(G + H) is

If Uk0 and Uk1 are independent of each other and are 
independent of both Tk1 and Tk0 within all matched-pair 
k, Pr{Tk1 < Tk0, Tk1 < min(Uk0, Uk1, τ)} is

where SUke(t) is a survival function of Uke. Similarly, the 
limiting value of H/(G + H) is Pr{Tk1 > Tk0 | Tk1 < min(Uk0, 
Uk1, τ) or Tk0  <  min(Uk0, Uk1, τ)}  =  Pr{Tk1  >  Tk0, 
Tk0  <  min(Uk0, Uk1, τ)}/Pr{Tk1  <  min(Uk0, Uk1, τ) or 
Tk0  <  min(Uk0, Uk1, τ)} in which the numerator is 
∫ τ

0 fk0(t)Sk1(t)SUk1
(t)SUk0

(t)dt. Suppose stratified pro-
portional hazards assumption (1) holds. The limit of ratio 
of G/(G + H) and H/(G + H), or G/H, is then

Pr{Tk1 < Tk0|Tk1 < min(Uk0,Uk1, τ ) orTk0 < min(Uk0,Uk1, τ )}

= [Pr{Tk1 < Tk0,Tk1 < min(Uk0,Uk1, τ )}

+Pr{Tk1 < Tk0,Tk0 < min(Uk0,Uk1, τ )}

−Pr{Tk1 < Tk0,Tk1 < min(Uk0,Uk1, τ ),Tk0 < min(Uk0,Uk1, τ )}]

/Pr{Tk1 < min(Uk0,Uk1, τ ) orTk0 < min(Uk0,Uk1, τ )}

= Pr{Tk1 < Tk0,Tk1 < min(Uk0,Uk1, τ )}

/Pr{Tk1 < min(Uk0,Uk1, τ ) orTk0 < min(Uk0,Uk1, τ )}.

Pr(Tk1 < Tk0,Tk1 < Uk0,Tk1 < Uk1,Tk1 < τ)

=

∫ τ

0

fk1(t)Sk0(t)SUk1
(t)SUk0

(t)dt,

∫ τ

0 fk1(t)Sk0(t)SUk1
(t)SUk0

(t)dt
∫ τ

0 fk0(t)Sk1(t)SUk1
(t)SUk0

(t)dt

=

∫ τ

0 �k0(t)e
βSk1(t)Sk0(t)SUk1

(t)SUk0
(t)dt

∫ τ

0 �k0(t)Sk0(t)Sk1(t)SUk1
(t)SUk0

(t)dt
= eβ ,
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