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In the present study, we evaluated the effects of administering Enterococcus faecium
in food and/or water on the hematological and immunological parameters, intestinal
microbiota, resistance to bacterial diseases (streptococcosis and francisellosis) and
growth of Nile tilapia. Before the in vivo experiment, probiotic bacteria isolated from
Nile tilapia were selected via inhibition tests. Sequencing, annotation, and assembly of
the complete genome of the selected bacteria as well as other tests were performed
using bioinformatics tools. Three treatments were implemented: G1 (probiotic feeding),
G2 (probiotic in water), and G3 (probiotic in food and water); and a negative control
(NC) was also employed. Treatment lasted 38 days, and each group consisted of fish
and two repetitions. The fish were divided and infected with Streptococcus agalactiae
S13 (serotype Ib) and Francisella orientalis. The G1 group had a higher average final
weight gain than the G2, G3, and NC groups. Further, a significant increase in the
number of thrombocytes was observed in the groups administered probiotics in the
diet (G1 and G3). A statistical difference was observed in the mortality of fish infected
with S. agalactiae in the NC compared to the treated groups. Cetobacterium was the 43
most abundant genus in the intestinal microbiota of all groups, including the NC group.
E. faecium increased the immunity of fish administered the treatment and decreased
the mortality caused by S. agalactiae. As an autochtone probiotic, E. faecium does not
interfere with the local ecosystem and thus has a great probiotic potential for Nile tilapia
in Brazil.

Keywords: Enterococcus faecium, immunological parameters, routes of administration, tilapia, resistance to
diseases
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INTRODUCTION

Fish farming is one of the largest aquaculture activity in the
world, with Nile tilapia (Oreochromis niloticus) being a species
of great importance [Food and Agriculture Organization (FAO),
2020]. It is estimated that the culture of this species moves
the economy of 135 countries worldwide, and in Brazil, this
species is the most produced fish [Associação Brasileira de
Piscicultura-Peixe-BR, 2020; Food and Agriculture Organization
(FAO), 2020].

Brazil is estimated to lose 84 million dollars per year in
freshwater fish farming owing to losses caused by diseases,
with bacteriosis being the most important contributing
disease (Tavares-Dias and Martins, 2017). Bacteriosis, such
as streptococcosis and francicellosis, is known to cause high
mortality rates in fish (Soto et al., 2009). Antimicrobials are
used as treatment and prophylaxis for these diseases; however,
the indiscriminate use of antibiotics promotes the selection of
drug-resistant or multi-resistant bacteria, in addition to their
potential risk to the environment and public health (Merrifield
et al., 2010; Ruiz et al., 2020).

Therefore, the use of probiotics as an alternative strategy
has been receiving increasing attention worldwide for tilapia
aquaculture (Hai, 2015; Alemayehu et al., 2018; Bharati
et al., 2019). Probiotics are live microorganisms that, when
administered in adequate amounts, confer health benefits
to the host. Several microorganisms, including Gram-
negative and Gram-positive bacteria, have been used as
probiotics in fish farming, including Lactobacillus, Lactococcus,
Leuconostoc, Enterococcus, Carnobacterium, Shewanella, Bacillus,
Aeromonas, Vibrio, Enterobacter, Pseudomonas, Clostridium,
and Saccharomyces species (Nayak, 2010; Hai, 2015). Probiotics,
either alone or combined with supplements, can elevate
phagocytic, lysozyme, complement, respiratory burst activity,
and the expression of various cytokines in fish (Wang et al., 2008,
2017; Ruiz et al., 2020). They also stimulate the gut immune
system of fish, with a marked increase in the number of Ig (+)
cells and acidophilic granulocytes (Nayak, 2010).

Studies have shown that the efficacy of probiotics is highest
in the host species from which they are isolated. This is because
the strains can perform better as they have already adhered to
the gut wall of the fish and are well adapted to compete with the
pathogens (Ghosh et al., 2010).

Nile tilapia fingerlings supplemented with Bacillus cereus
for 42 days via water and feed had a significant increase
in lysozyme, in addition to other immunological parameters.
However, the results were better when the probiotic was added to
the feed (Wang et al., 2017). Based on studies that administered
Lactobacillus plantarum to Nile tilapias, the fish had higher
feed efficiency, yield, and final weight after 12 weeks. Further,
there was an increase in thrombocytes and leukocytes in these
animals (Jatobá et al., 2011). In Nile tilapia, the use of commercial
probiotics after 6 weeks positively affected fish zootechnical
performance, increasing the number of goblet cells in the gut and
the expression of immunity-related genes (Standen et al., 2016).

Most studies on probiotics isolated from other species or
geographic regions may interfere with their mode of action.

When the probiotic is isolated from the host itself, the chances
of colonization/adhesion and its beneficial effects increase. In
this context, the objective is to develop alternative methods for
rearing tilapia to avoid the high use of antibiotics. The present
study sought to investigate the use of Enterococcus faecium as a
probiotic supplemented in the diet and water of O. niloticus to
improve fish health and determine the effects of this probiotic
on the intestinal microbiome, growth rates and zootechnical
parameters of O. niloticus.

MATERIALS AND METHODS

Probiotic Bacteria Selection, Genome
Assembly, and Identification of
Metabolic Regions
The E. faecium strain, LAC7.2, which was selected as a probiotic,
was isolated from the gastrointestinal tract of healthy Nile tilapias
from the hatchery of Londrina/Paraná, Brazil in 2017. In vitro
tests were performed to suggest the probiotic potential. Nile
tilapia feces were diluted (scale 10) in 0.85% saline, plated on
Man, Rogosa, and Sharpe (MRS) Lactobacillus Kasvi R© agar, and
incubated for 48 h at 28◦C. Thereafter, colonies were selected
and characterized. The selected bacteria strains were then seeded
on MRS agar and incubated for 48 h. A solution containing
Mueller Hinton agar (Kasvi, São José dos Pinhais, Brazil) at
45◦C with pathogenic bacteria (Escherichia coli, Staphylococcus
spp., and Streptococcus spp.) was prepared. This solution was
placed on MRS plates containing probiotic bacteria. The plates
were incubated for 24 h at 28◦C, and the inhibition halos
were measured for bacteria with larger halos. To evaluate
the inhibition induced by Francisella noatunensis F1, cystine
heart agar enriched with 1% of bovine hemoglobin (Kasvi)
was employed, where the pathogenic bacteria were seeded with
swabs over the plate surface. Thereafter, small holes were made
in the agar and the E. faecium LAC 7.2 filtered supernatant
(0.22 µm) was deposited. Readings were taken after 48 h. This
test was performed in duplicate. The strain that shown the higher
inhibition halo against pathogenic bacteria was considered as a
potential probiotic for in vivo trial.

Genome sequencing of E. faecium was performed using the
MiSeq platform (Illumina R© , United States). Reads were uploaded
in FASTQ format to the CLC Genomics Workbench 12 (Qiagen,
United States) software for the trimming and assembly steps.
Genome annotation was performed in Rapid Annotation using
Subsystem Technology (RAST; version 2.0) (Aziz et al., 2008).
The genome project was deposited in the GenBank database
under the accession number CP045012.1. A summary of the
project information is provided in Table 1.

Phylogenetic analysis was performed using Gegenees V2.2.1
(Ågren et al., 2012) and SplitsTree4 v4.15.1, with high accuracy,
to generate a heatmap and phylogenetic tree, respectively.
Secondary metabolite clusters in the sequenced genome were
predicted using antiSMASH 5.0 (Weber et al., 2015) and
RAST. The ResFinder 3.2 program was also used to detect
resistance genes.
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TABLE 1 | Genome sequencing project information, and Enterococcus faecium
genome annotated by NCBI Prokaryotic Genome Annotation Pipeline (PGAP).

Property Term

Finishing quality Finished

Libraries used One paired-and library (mean size 300 bp, DNA
insert size of ˜300 bp)

Sequencing platforms Illumina MiSeq

Fold coverage 377.0x

Assemblers NCBI Prokaryotic workbench v12.0.2

Gene calling method NCBI Prokaryotic Genome Annotation Pipeline

GeneBank ID CP045012.1 (chromosome)

CP045013.1 (plasmid pI)

CP045014.1 (plasmid pII)

GenBank date of release October 18, 2019

BIOPROJECT PRJNA224116

Source material identifier LAC7.2

Project relevance Fish

Attribute Value

Gene (total) 2.931

CDs (total) 2.841

Genes (coding) 2.710

Genes (RNA) 90

rRNAs 6, 6, 6 (5S, 16S, 23S)

rRNAs 68

ncRNAs 4

Pseudogenes (total) 131

Fish
A total of 405 Nile tilapia (O. niloticus) were obtained from
a commercial hatchery in the state of Paraná, with an initial
weight of 11.93 ± 0.59 g. The animals were stored in 150 L
tanks containing heated water with continuous renewal (80%
of daily volume) for an acclimatization period of 7 days; the
temperature was maintained at approximately 25◦C and fish
were fed three times per day until apparent satiety. Water
parameters (pH, 6.8–7.2; total ammonia, <0.4 mg/L, dissolved
oxygen, 5.4 mg/L; and absence of chlorine) were measured
daily and maintained throughout the experimental period. The
microbiological diagnosis was performed before the experiment,
where 20 fish were randomly sampled and killed using a high
dose of benzocaine (200 mg/mL). All animal procedures were
approved by the Ethics Committee on Animal Use of the State
University of Londrina (CEUA/UEL-7327.2017.39). Fragments
of the brain, liver, cranial kidney, and spleen were stripped in
Mueller Hinton agar enriched with 5% defibrinated sheep blood
and in cystine heart agar enriched with 1% of bovine hemoglobin.
The plates were incubated at 28◦C for 5 days to confirm the health
status of the fish (no bacterial growth in the plates).

Experimental Design and Basal Diet
Fish were divided into three treatment groups: G1 (probiotic
rationing), G2 (probiotic in water), and G3 (probiotic in feed
and water); and three control groups: PCA (no probiotic and
challenge with Francisella orientalis), PCB (no probiotic and

challenge with Streptococcus agalactiae), and NC (no probiotic
and no challenge) (n = 45), as shown in Table 2. The fish were fed
a commercial feed (Presence R© Nutripiscis TR 36% CP) according
to the treatments and challenged on day 38. After infection,
the animals were monitored for 30 days to determine clinical
signs and mortality.

For the G1 group, approximately three bacterial colonies
of E. faecium were added to 600 mL of MRS Lactobacillus
Kasvibroth R© and incubated under agitation for 48 h at 28 ◦C.
Thereafter, 100 mL was sprayed on 1 kg of feed (2.3 × 108 CFU/g
of feed), with 5 mL of universal vehicle (Vansil R©) and dried at
28◦C for 8–12 h. Fish were fed four times per day until satiety.
For group G2 (aquarium volume around 27 L), 100 mL of MRS
broth with cultured E. faecium was added to aquarium water
and the water renovation was interrupted for 2 h. Thereafter, the
water volume was restored. This procedure was performed every
10 days. Group G3 received both treatments.

On the day before challenge with F. orientalis, the water
temperature was gradually decreased and maintained at
21◦C (±1◦C) to promote immersion infection for 3 h
(7.1 × 105 CFU/mL of water in the tank); this is because
outbreaks of franciselose in Brazil occur in colder waters
(Ortega et al., 2016). For infection with S. agalactiae, the
water temperature was maintained at 28◦C (±1◦C) (Chen
et al., 2012) and administered intraperitoneally at 0.1 mL/fish
(8.8 × 105 CFU/mL) schematic figure about isolation and
treatment of fish with a probiotic bacteria. Previous data from
our team showed that the immersion route is more suitable
for francisellosis infection, and it is possible to establish a
Lethal Dose concentration of (LD50). For S. agalactiae, only
the intraperitoneally route reproduces the disease and it
was possible to calculate the LD50 (unpublished data). In
Supplementary Figure 1 represents a schematic of the isolation
and administration of E. faecium and Supplementary Figure 2
the route of application for the challenge of pathogenic bacteria
in fish.

Growth Performance
Fish of all replicates were counted and weighed individually on
the first and last day of trial. The weight gain, weight gain (%),
medium final body weight, and specific growth rate (SGR) were
determined (Ridha, 2006).

Blood Sampling
Blood samples were collected at 38 days post-treatment with
probiotics (16 samples per group). The fish were anesthetized
with benzocaine (100 mg/L), and blood was collected by
puncturing the caudal vessel in 3 mL syringes (21 G)
containing 10% anticoagulant (ethylenediaminetetraacetic acid).
Blood samples were used to measure hematocrit levels (Hct;
%) using the microhematocrit method (Paiva et al., 2013),
and red blood cells (RBCs; 106/µL) were counted in a
Neubauer chamber following dilution at 1:200 in Dacie solution.
White blood cells (WBCs; 103/µL) and total thrombocyte
counts were calculated using an indirect method (Ishikawa
et al., 2008). For differential counting of leukocytes, smears
were stained with May–Grünwald/Giemsa/Wright stain. The
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TABLE 2 | Division of groups before and after challenge.

Before challenge

Group Treatment Tanks

G1 Probiotic in feed 2

G2 Probiotic in water 2

G3 Probiotic in feed and water 2

NC No probiotic 3

After challenge

Group/replicate Treatment Tanks

G1_A Probiotic in feed and challenge with
Francisella orientalis F1

1

G1_B Probiotic in feed and challenge with
Streptococcus agalactiae S13

1

G2_A Probiotic in water and challenge with
Francisella orientalis F1

1

G2_B Probiotic in water and challenge with
Streptococcus agalactiae S13

1

G3_A Probiotic in feed and water and challenge
with Francisella orientalis F1

1

G3_B Probiotic in feed and water and challenge
with Streptococcus agalactiae S13

1

PC_A No probiotic and challenge with Francisella
orientalis F1

1

PC_B No probiotic and challenge with
Streptococcus agalactiae S13

1

NC No probiotic and no challenge with bacteria 1

hemoglobin concentration (Hgb; g/dL) was analyzed using the
cyanmethemoglobin method (Collier, 1944) using commercial
kits (Labtest, Lagoa Santa, MG, Brazil) to determine the
hematimetric indices of mean corpuscular volume (MCV; fL) and
mean corpuscular hemoglobin concentration (MCHC; g/dL).

Innate Immune Analysis
Innate immune analysis was performed in all groups (five fish per
replicate) at 38 days after treatment. Blood samples were collected
without anticoagulant, allowed to coagulate, and centrifuged at
1400 × g for 10 min at room temperature to obtain serum, which
was stored at -20◦C.

Serum lysozyme activity was determined using a methodology
adapted from that described by Demers and Bayne (1997).
Briefly, the initial and final absorbances were measured by
spectrophotometry to determine the serum lysozyme activity
by the lysis of the Gram-positive bacterium, Micrococcus
lysodeikticus (Sigma-Aldrich Chemical Co.). The reduction in
absorbance of the samples was converted into an estimate of
lysozyme concentration (µ g mL).

Alternative complement pathway activity (ACH50) was
determined using rabbit red blood cells (RaRBCs) as target cells
for hemolysis, following a previously described method (Sunyer
and Tort, 1995). Briefly, serially diluted sera were mixed with
rabbit erythrocyte suspension and incubated at 25◦C for 1 h
with occasional shaking. The extent of hemolysis was estimated
by measuring the optical density of the supernatant at 414 nm

(OD414). Serum dilutions resulting in greater than 90% or less
than 15% lysis were excluded from the calculation, and the serum
dilution that resulted in 50% lysis of RaRBC was represented as
ACH5O units/µL.

Microbiome Analysis
After 38 days of treatment, six fish from each group were used
for the bacterial microbiome analysis, and each DNA sample was
isolated from the stools of two fish and pooled. The animals in
each experimental group were killed with benzocaine (200 mg/L).
The stool of the entire intestinal tract was removed aseptically
and maintained in sterile vials with refrigeration. The samples
were immediately stored in a freezer at -80◦C until processing.
For total DNA extraction, a commercial QIAamp DNA Stool
Mini Kit (QIAGEN, Hilden, Germany) was used according to the
manufacturer’s instructions. Thereafter, the V4 region of the 16S
ribosomal subunit gene was amplified with primers containing
overlapping regions with Illumina platform primers (Klindworth
et al., 2013). After verification of the amplicon quality, the
samples were sent to the Neoprospecta company for sequencing
using the Illumina MiSeq platform with the 250-cycle V2 kit. The
next steps were performed according to Suphoronski et al. (2019)
using MOTHUR v.1.36.1 software.

Statistical Analysis
Data were subjected to normality and homogeneity tests and
subsequently to analysis of variance (ANOVA), followed by
the Tukey test for comparison between arithmetic means, with
a significance level of 5%. For quantitative variables that did
not present a normal distribution, the non-parametric Kruskal–
Wallis test was used, followed by the Dunn test with a significance
level of p < 5%. Cumulative mortality was analyzed using the
Fisher exact test with a significance level of 5% using OpenEpi
v. 3.01.1 In metagenomics, to verify the abundance significance of
taxa between groups, statistical analysis of metagenomic profiles
(STAMP) was performed using parent level 1 and profile level 6 to
analyze the significance between two groups using the two-sided
Welch’s t-test (Parks et al., 2014).

RESULTS

Probiotic Bacteria Selection, Genome
Assembly, and Identification of
Metabolic Regions
The inhibition halos for the selected strains were 16 mm (E. coli),
15 mm (Staphylococcus spp.), and 10 mm (Streptococcus spp.)
(data not shown). The inhibition zone of F. orientalis F1 was
18 mm. The E. faecium antagonism against Staphylococcus
spp. and the inhibition of supernatant (filtered or not) of
probiotic strain are demonstrated in Supplementary Figure 3.
The complete genome of the E. faecium strain consisted of a
single circular chromosome that is 2.625.745 bp in length and
two plasmids of 206.375 and 80.816 bp, totaling 2.912.936 bp,

1https://www.openepi.com/Menu/OE_Menu.htm
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37.96% G + C content, 18 rRNA operons, 68 tRNA genes, and
131 pseudogenes (Table 1). In the phylogenetic tree, the ancestors
of the bacterium were found to be Enterococcus casseliflavus
(Figure 1). Based on the heat map, E. faecium was highly similar
to other strains of the same species, but was not 100% similar
to other strains. In the anti-SMACH analysis, the secondary
metabolite, Enterocin A (Access GenBank: QIS84411.1 and
locus_tag F6447_10905), was found to have 100% similarity in
region 10 while polysaccharide had 82% similarity in region 3
(Figure 2). In ResFinder, two resistance genes were found in one
of the plasmids: aminoglycosides and macrolides.

Experimental Design and Basal Diet
The mean probiotic concentration was 5.53 × 106 CFU/g. The
final body weight and weight gain of the medium are shown in

Table 3. No significant differences (p > 0.05) were observed in
weight gain (g) (Table 3); however, the final body weight (g), SGR,
and weight gain (%) were significantly higher in the G1 group
than in the other groups, including the NC group.

Blood Sampling and Innate Immune
Analysis
There were no significant differences (p > 0.05) between the
treated and control groups in the hematocrit, hemoglobin,
erythrocytes, MCV, and MCHC parameters. Thrombocyte counts
were significantly larger in G1 than in G2 and similar to
G3. Further, there was a difference in the MCH between NC
and G2. The differential leukocyte cell counts did not differ
significantly between treatments for total leukocytes, neutrophils,
or monocytes. No eosinophils or basophils were observed

FIGURE 1 | * Phylogenetic tree of Entereococcus faeciun strain_LAC7.2 having as predecessor the Enterococcus casseliflavus.
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FIGURE 2 | Enterococcus faecium anti-SMACH analysis.

TABLE 3 | Growth performance of Nile tilapia due to different treatments.

Groups G1 G2 G3 NC

Medium final body weight (g) 40.15 ± 1.35a 34.5 ± 1.03b 35.4 ± 0.85b 34.25 ± 0.90b

Weight gain (g) 28.64 ± 3.51 22.86 ± 0.61 22.91 ± 0.57 21.39 ± 0.9

Weight gain (%) 248.29 ± 23.3a 199.08 ± 3.35b 183.53 ± 4.23b 174.54 ± 0.85b

Specific growth rate (SGR) 3.27 ± 0.24a 2.88 ± 0.04b 2.74 ± 0.05b 2.65 ± 0.01b

G1, probiotics in feed; G2, probiotics in water; G3, probiotics in feed and water; NC, negative control. a,bDifferent letters indicate significant differences between the
treatments (P < 0.05).

in any of the treatments tested (Table 4). The mean serum
lysozyme concentrations and complement activity did not differ
significantly between the treatment groups and the NC group
(p > 0.05) (Table 4).

Microbiome Analysis
A total of 9.038.053 sequences were obtained for all groups,
and 309 operational taxonomy units (OTUs) were identified.
A rarefaction curve showed that sequencing was sufficient to
identify most of the bacterial species present in the fish gut,
suggesting that the read count of the trial was representative
of the intestinal bacteriome in all groups (Figure 3). Table 5
displays the total number of sequences obtained for each
group. Mothur software was used to calculate the Shannon
index, which compares the diversity of species in each group.
However, no significant differences were observed between
groups. The G1 and NC groups presented the lowest level

of species diversity, whereas the G2 and G3 groups had a
higher level of diversity than the G1 and NC groups. Such
finding suggests that groups receiving probiotic in water
had greater diversity. The abundance of bacterial species
calculated using the Mothur software is shown in Figure 4. The
abundance plot displays the most abundant bacteria in each
sample: Cetobacterium, Vibrionaceae_unclassified, Plesiomonas,
Gammaproteobacteria_unclassified, Streptophyta_unclassified,
Bacteroidales_unclassified, and Enterobacteriaceae_unclassified.
Cetobacterium was most abundant in all groups; however, the
G1 and NC groups had a high percentage of Cetobacterium
compared with the G2 and G3 groups. Vibrionaceae_unclassified
was more abundant in G2 and G3 than in G1 and NC.

Mortality After Infection
The cumulative mortality of fish infected with F. orientalis
F1 was: PC, 65.12%; G1, 68.18%; G2, 62.15%; and G3,
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TABLE 4 | Blood general parameters (mean ± SE) in the experimental groups of Nile tilapia supplemented with probiotics.

Groups G1 G2 G3 NC

Hematocrit (%) 28.83 ± 0.77 21.8 ± 1.03 25.8 ± 0.89 28.6 ± 1.04

Hemoglobin (g/dL) 7.29 ± 0.41 6.49 ± 0.53 5.84 ± 0.59 5.97 ± 1.26

Erythrocytes (106/µL) 1.49 ± 0.08 1.14 ± 0.04 1.18 ± 0.04 1.37 ± 0.06

Thrombocytes (103/µL) 64.1 ± 3.87a 33.1 ± 1.33b 42.2 ± 3.38a,b 34.02 ± 3.91b

Leukocytes (103/µL) 58.04 ± 4.61 31.88 ± 0.78 39.46 ± 2.07 50.60 ± 5.21

Lymphocytes (103/µL) 25.72 ± 2.92 13.05 ± 0.52 19.48 ± 1.17 20.93 ± 1.84

Neutrophils (103/µL) 28.81 ± 3.34 17.75 ± 0.71 18.45 ± 1.57 28.28 ± 3.48

Monocytes (103/µL) 3.5 ± 0.47 1.07 ± 0.27 1.52 ± 0.26 1.38 ± 0.29

MCV (fL) 204.02 ± 12.37 196.32 ± 15.25 206.83 ± 12.56 216.01 ± 12.58

MCH (g/dL) 50.67 ± 2.05 56.85 ± 0.99 53.69 ± 0.82 43.71 ± 0.95

MCHC (g/dL) 27.14 ± 0.27 32.64 ± 2.66 24.25 ± 2.1 21.7 ± 1.56

Lysozyme (µg/mL) 3.33 ± 0.59 4.96 ± 1.13 3.16 ± 0.71 4.94 ± 0.80

Complement activity mean (µL for lysis of 50% of erythrocyte) 45.25 ± 2.87 52.1 ± 4.58 41.01 ± 3.09 45.63 ± 1.22

G1, probiotics in feed; G2, probiotics in water; G3, probiotics in feed and water; NC, negative control. a,bDifferent letters indicate significant differences between the
treatments (P < 0.05).

FIGURE 3 | Rarefaction curve showing increasing species with the number of reads in different trial groups. G1, probiotics in feed; G2, probiotics in water; G3,
probiotics in feed and water; NC, negative control.

TABLE 5 | Number of sequences of the most abundant species in the experimental groups.

Taxon Number of sequences (%)

G1 G2 G3 NC

Cetobacterium 91709.5 (92.7) 36749 (55.2) 54798.5 (61.7) 67008 (83.6)

Vibrionaceae_unclassified 5054.5 (5.1) 25973 (39) 28610 (32.2) 11570 (14.4)

Plesiomonas 1191.5 (1.2) 2020 (3) 3779 (4.3) 515 (0.6)

Gammaproteobacteria_unclassified 260.5 (0.3) 1271 (1.9) 1083 (1.2) 459 (0.6)

Streptophyta_unclassified 539 (0.5) 15.5 (0) 111.5 (0.1) 1.5 (0)

Bacteroidales_unclassified 36.5 (0) 188.5 (0.3) 47 (0.1) 361 (0.5)

Enterobacteriaceae_unclassified 185.5 (0.2) 303.5 (0.5) 435.5 (0.5) 227 (0.3)

Total of reads 91709.5 66520.5 88864.5 80141.5

G1, probiotics in feed; G2, probiotics in water; G3, probiotics in feed and water; NC, negative control.
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FIGURE 4 | Abundance in the experimental groups and information on the percentage of sequences in each group. G1, probiotics in feed; G2, probiotics in water;
G3, probiotics in feed and water; NC, negative control.

54.35%. No statistical difference was found between the groups
(Figure 5). However, the cumulative mortality of fish infected
with S. agalactiae S13 showed a statistical difference between
the PC and other groups that received probiotics in feed and/or
water. Mortality was: PC = 88.29%; G1 = 75.56%; and G2 and
G3 = 73.33% for both (Figure 6).

DISCUSSION

The use of probiotics in aquaculture is increasingly being
considered as an eco-friendly approach to mitigate health-
related problems. The disease prevention ability of probiotics is
achieved through the enhancement of immunity and exclusion
of pathogens (Das et al., 2013). To use a bacterium as a
probiotic, tests are needed to verify its potential (Repally et al.,
2018). In vitro tests performed on isolated Nile tilapia bacteria,
E. faecium, revealed the potential formation of halos against
pathogenic bacteria. Similar results were found by Reda et al.
(2018), where antibacterial activity in Nile tilapia intestinal
bacteria was observed against the pathogens Aeromonas sobria,
Aeromonas hydrophila, Pseudomonas aeruginosa, Pseudomonas
putida, and Staphylococcus aureus. Dias et al. (2019) isolated
E. faecium from the digestive tract of juvenile neotropical
ornamental cichlid fish (Pterophyllum scalare) and reported that
we found an antagonism to S. aureus, P. aeruginosa, E. coli, and
A. hydrophila, which demonstrate the probiotic potential of this
bacterium in different fish species.

Of note, due to the bacterial genome used as a probiotic and
with the use of bioinformatics, possible mutations, resistance
genes, and antibacterial metabolites can be discovered, which
can be used to define bacteria as a potential probiotic. Based
on the heatmap and phylogenetic tree, strain LAC7.2 was not

100% similar to the other strains. These results could indicate
the probiotic effect (i.e., better, worse, or absent). In the analysis
of secondary metabolites performed in silico, enterocin was the
main metabolite found (Figure 1); this finding aligns with that
of Aymerich et al. (1996), who also observed the bactericidal
power of this metabolite. Studies have shown that enterocin
A has strong antimicrobial activity against Listeria ivanovii
(Rehaiem et al., 2010) S. aureus, E. coli, and P. aeruginosa
(Fathizadeh et al., 2020). Furthermore, this bacteriocin increases
the phagocytic activity of leukocytes, beneficially influencing
the animals’ immune system (Strompfová et al., 2006). This
demonstrates the bactericidal capacity of this probiotic in
modulating pathogenic species. Two resistance genes were found
in one of the plasmids, aminoglycosides and macrolides, but
whether these genes are functional remain unknown. Currently,
the antimicrobials approved by Brazilian legislation for use
in fish farming are florfenicol and tetracyclines [Sindicato
Nacional da Indústria de Produtos para a Saúde Animal
(SINDAM), 2021]; however, they do not belong to the class
of antimicrobials in which the bacterium in question showed
in vitro resistance.

Regarding fish performance, group G1 had a significant
increase in final average weight and specific growth rate; however,
the average weight of all groups did not differ. By evaluating
juvenile rainbow trout (Oncorhynchus mykiss) that received
different doses of E. casseliflavus for 8 weeks, Safari et al.
(2016) found that the highest dose groups (108 CFU/g of feed
and 109 CFU/g of feed) had significantly improved growth
parameters. Such finding suggests that increasing the probiotic
dose may improve performance.

In the blood analysis, thrombocyte counts were higher in the
G1 group, with statistical differences found between G2 and NC.
Thrombocytes are important in the organic defense mechanism,
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FIGURE 5 | Cumulative mortality observed in the different groups after disease challenge by immersion with Francisella orientalis. NC, negative control (no challenge
with bacteria); PC, positive control; G1, probiotics in feed; G2, probiotics in water; G3, probiotics in feed and water. a,bDifferent letters indicate significant differences
between treatments (P < 0.05).

FIGURE 6 | Cumulative mortality observed in the different groups after disease challenge with Streptococcus agalactiae administered via the intraperitoneal route.
NC, negative control (no challenge with bacteria); PC, positive control; G1, probiotics in feed; G2, probiotics in water; G3, probiotics in feed and water. a,b,cDifferent
letters indicate significant differences between treatments (P < 0.05).

which is demonstrated by their appearance in coagulation and
inflammatory processes, as well as their phagocytic activity
during infection (Jatobá et al., 2011). Therefore, this result
suggests that fish administered probiotics in feed have a more
stimulated immune system, which is due to the presence
of primary gut-associated lymphoid tissue (Panigrahi et al.,
2007), than those administered probiotics in water. There
was no difference in the other hematological parameters
between the groups.

The proliferation of cytokines and stimulation of natural killer
lymphocytes, increased production of antibodies, phagocytic rate,
and lysozyme activity are responses to modulation of the immune
system from probiotic supplementation (Matsuzaki and Chin,
2000). Several studies have shown that the use of probiotics
in fish increases these immunological indices (Jatobá et al.,
2011; Pereira et al., 2016; Ruiz et al., 2020). However, in this

study, there was no difference in mean complement activity and
lysozyme levels.

The microbial community of the gastrointestinal tract is
known to stimulate the development of the immune system
and promote competition with pathogenic microorganisms.
Moreover, they are fundamental for the integrity of intestinal villi
and ensure proper nutrient metabolism in fish (Hooper et al.,
2012). Few studies have evaluated the intestinal community after
probiotic supplementation from the metagenomic analysis. In the
present study, we observed that the genus, Cetobacterium, varied
in abundance in the G1 and NC groups, and were lower in the
G2 and G3 groups than in the other groups. Cetobacterium is
related to vitamin B12 synthesis (Tsuchiya et al., 2008) and may
aid in carbohydrate degradation through symbiotic microbial
activity with digestive enzymes (Pedrotti et al., 2015). In the
present study, we observed that the genus Cetobacterium varied
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in abundance in groups G1 and NC, being smaller in groups G2
and G3 than in the other groups. This abundance in the G1 group
is reflected in a better growth performance of this group (Table 3).

We also observed higher percentages of unclassified
Vibrionaceae and Plesiomonas in groups G2 and G3 in the less
abundant NC Plesiomonas. Such finding suggests that groups
administered the probiotic only in water or water and feed had
greater diversity. Standen et al. (2015) administered a commercial
probiotic (AquaStar R©), which contained various bacteria, and
found different populations in the gut microbiota after 8 weeks.
In NC, Bacillus, Cetobacterium, and Mycobacterium were the
dominant genera, while Bacillus, Enterococcus, and Pediococcus
were the largest constituents in fish fed probiotics. Previous
studies have shown that fish gut communities vary within species
because of factors, such as dietary input, season, developmental
stage, and the surrounding habitat (Sullam et al., 2012).

Mortality caused by S. agalactiae S13 infection was
significantly lower in all groups receiving the probiotic than
in the positive control group. As observed in other studies,
probiotic stimulates the immune system during infection
with pathogenic bacteria (Elala and Ragaa, 2015; Safari et al.,
2016). However, mortality caused by F. orientalis F1 did not
differ between the groups. In the present study, we evaluated
the administration of only one probiotic bacterium in Nile
tilapia. Lee et al. (2017) carried out a study comparing
the administration of different probiotics (Bacillus subtilis
WB60 and L. plantarum KCTC3928) but in isolation. Few
studies have verified the symbiotic effect of probiotics with
other probiotics or prebiotics. Devi et al. (2019), who
employed a symbiotic diet, found that immune responses
in the fish were earlier than those in fish administered only
probiotics or prebiotics.

Notably, the use of autoctone probiotics can benefit not only
the fish itself, but also the aquatic community; this is because it is
a bacterium that is already present in the environment. Probiotics
isolated in other regions and countries can negatively influence
the local aquatic community. The use of probiotics is directly
related to unique health as with the use of fewer antimicrobials
in animal production; thus, collaboration is critical to ensure
there is no increase in superbugs. Therefore, further studies
with autochthonous probiotic bacteria should be carried out
at different concentrations and dosages to better assess their
potential in fish.

The use of autochthonous probiotics can benefit the
host’s microbiota as this bacterium is already present in the
environment. Herein, E. faecium was demonstrated to be a
potential probiotic for use in aquaculture as it provided a better
specific growth rate and reduced the mortality of fish challenged
with S. agalactiae.

Therefore, new studies with autochthonous probiotic bacteria
should be carried out at different concentrations and dosages to
better assess their potential in fish.
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