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Abstract

Background: Fractional-dosed intradermal (i.d.) vaccination produces antibody con-

centrations above the proposed proxy for protection against severe disease as

compared with intramuscular (i.m.) vaccination and may be associated with a decreased

prothrombotic effect.

Objectives: To assess changes in coagulation following standard dosed i.m. or

fractional-dosed i.d. (one-fifth of i.m.) mRNA-1273 SARS-CoV-2 vaccine and to deter-

mine the association between the inflammatory response and coagulation.

Methods: This study was embedded in a randomized controlled trial assessing the

immunogenicity of an i.d. fractional-dosed mRNA-1273 vaccine. Healthy participants,

aged 18 to 30 years, were randomized (2:1) to receive either 2 doses of i.d. or i.m.

vaccine. Blood was drawn prior to first and second vaccination doses and 1 and 2 weeks

after the second dose. The outcomes were changes in coagulation parameters (primary

endpoint peak height of the thrombin generation curve) and inflammation (high-

sensitivity C-reactive protein [hs-CRP]).

Results: One hundred twenty-three participants were included (81 i.d.; 42 i.m.). Peak

height increased after vaccination (i.m., 28.8 nmol; 95% CI, 6.3-63.8; i.d., 17.3 nmol;

95% CI, 12.5-47.2) and recovered back to baseline within 2 weeks. I.m. vaccination

showed a higher inflammatory response compared with i.d. vaccination (extra increase

hs-CRP, 0.92 mg/L; 95% CI, 0.2-1.7). Change in endogenous thrombin potential was

associated with change in hs-CRP (beta, 28.0; 95% CI, 7.6-48.3).

Conclusion: A transient increase in coagulability after mRNA-1273 SARS-CoV-2

vaccination occurred, which was associated with the inflammatory response. While i.d.

administration showed antibody concentrations above the proposed proxy for

protection against severe disease, it was associated with less systemic inflammation.

Hence, i.d. vaccination may be safer.
behalf of International Society on Thrombosis and Haemostasis. This is an open access article under the CC BY-
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.

1 | INTRODUCTION

Vaccination against COVID-19 has played a pivotal role in contain-

ment of the COVID-19 pandemic [1]. Soon after the implementation

of large-scale SARS-CoV-2 vaccination, thrombotic events were re-

ported as possible side effects [2]. First reports described a pattern of

thrombosis after vaccination with the vector-based ChAdOx1 nCoV-

19 vaccine, associated with platelet factor 4 autoantibodies, a low

platelet count, increased D-dimer, and decreased fibrinogen levels,

and was named vaccine-induced thrombotic thrombocytopenia [3,4].

In addition, increased rates of venous thrombotic events without

thrombocytopenia were reported in the weeks after vector-based

(ChAdOx1 nCoV-19 or Ad26.COV2.S) and (to a lesser extent)

mRNA-based vaccines (BNT162b2 or mRNA-1273) [5–9]. This resul-

ted in several changes in vaccination campaigns across the world [10].

Several studies examining the effect of SARS-CoV-2 vaccination

on coagulation parameters, such as the international normalized ratio

and the activated partial thromboplastin time, showed contradictory

results [11–20]. These parameters summarize only part of the coag-

ulation system or are only relevant in patients receiving anticoagulant

therapy and may not accurately reflect alterations in the coagulation

cascade. The thrombin generation assay (TGA) provides a global

overview of both procoagulant and anticoagulant pathways [21,22].

Intradermal (i.d.) vaccination is a dose-sparing strategy providing

immune responses equivalent to intramuscular (i.m.) vaccination while

using smaller vaccine doses with the benefits of fewer systemic side

effects [23,24]. A dose-sparing technique may be particularly of in-

terest to low- and middle-income countries [25,26]. I.d. administra-

tions with fractional doses have been proven successful in the past for

several vaccines, such as influenza, rabies, or hepatitis B vaccines [27].

During the COVID-19 pandemic, we conducted a randomized

controlled trial, comparing the immunogenicity of 2 one-fifth frac-

tional i.d. doses and 2 full-dose i.m. delivery of the mRNA-1273

(Moderna) vaccine, each 28 days apart, as a primary vaccination se-

ries [28]. Fractional dosing through i.d. vaccination showed antibody

concentrations above the proposed proxy for protection against se-

vere disease [29].

It is possible that a fractional dose confers a lower thrombotic risk

than a full-dose vaccination. The aim of the present study was to assess

the change proxies for a prothrombotic change, ie, levels of coagulation
factor (F)VIII,fibrinogen, D-dimer, and thrombin generation parameters

following mRNA-1273 vaccination by dose as well as the association

between these changes and the inflammatory response.
2 | METHODS

2.1 | Trial design

This study was a secondary analysis of an open-label, randomized

controlled trial at the Leiden University Medical Center in the

Netherlands. The trial was approved by the Medical Ethical Commit-

tee Leiden, Den Haag, Delft (NL 76702.058.21) and registered in the

International Clinical Trials Registry Platform (EUCTR2021-000454-

26-NL). All participants provided written informed consent.
2.2 | Procedures

Eligible participants were adults aged 18 to 30 years and predomi-

nantly White or of European ancestry. Participants with a past or

intercurrent SARS-CoV-2 infection, determined by a positive SARS-

CoV-2 polymerase chain reaction or seropositivity (positivity SARS-

CoV-2 anti-Nucleocapsid), were excluded. Other main exclusion

criteria were prior SARS-CoV-2 vaccination, use of anticoagulants or

steroids, hematologic disease, or pregnancy.

Participants were randomized into 3 groups. The control group

received 2 standard doses of 100 μg 28 days apart in the deltoid

muscle (standard administration technique). Two experimental groups

received 2 fractional doses (one-fifth of the standard dose of 100 μg

mRNA-1273) 28 days apart in the dermis of the deltoid region, one

with the classical Mantoux technique and the other with a small

needle (Bella-mu) designed for i.d. administration. Since both experi-

mental groups showed similar immunogenicity results, they were

combined in further analyses [29]. The randomization was done using

sealed envelopes. The participant and site staff were unblinded as the

administration route differs [29].

Blood was collected on days 1 (D1; before first dose), 29 (D29,

before second dose), 36 (D36; 1 week after second dose), and 43

(D43). Fibrinogen, FVIII, and D-dimer (reported in ng/mL D-dimer



TA B L E 1 Characteristics of participants.

Characteristic of

participants

Intradermal

n (%)

Intramuscular

n (%)

N 81 42

Age, mean (SD) 22.1 (3.2) 23.5 (3.7)

Sex (female) 34 (42) 17 (40)

BMI, mean (SD) 24.4 (4.7) 23.4 (3.7)

Comorbidity 38 (47) 17 (40)

Psychiatric 16 (20) 8 (19)

Pulmonal 2 (2) 0 (0)

Allergy 16 (20) 5 (12)

Neurologic 5 (6) 1 (2)

Other 11 (14) 5 (12)

Medication use 27 (33) 13 (31)

Antihistamine 9 (11) 4 (10)

Methamphetamine 8 (10) 3 (7)

Oral contraceptives 21 (26) 6 (14)
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units) were measured to assess changes in coagulation using a coa-

gulometric clot detection method on an ACL TOP 700 analyzer

(Werfen) as previously described using designated reagent (D-dimer

HS 500, HemosIL, Werfen) [30]. Thrombin generation (lag time,

endogenous thrombin potential [ETP], peak height, time to peak, ve-

locity index, and time until the start of the tail of the curve) was

measured using the calibrated automated thrombogram (Diagnostica

Stago) as previously described [31]. In the TGA, coagulation is acti-

vated in plasma samples according to manufacturer’s instructions

using a low amount of tissue factor and phospholipids, followed by

continuous measurement of thrombin formation and degradation. The

ETP, which is the net result of pro- and anticoagulant potentials, is

described by the height of the peak and the area under the curve. A

higher peak height, ETP, start tail time, or velocity index indicates

hypercoagulability, while shorter lag time and time to peak represent

hypercoagulability. The primary outcome of the TGA, measured in this

study, was the peak height as this is the most strongly associated with

venous thrombosis risk [32,33].

Inflammation was assessed by high-sensitivity C-reactive protein

(hs-CRP) from serum using the immunoassay analyzer COBAS CORE

(Roche Diagnostics GmbH).

Other 8 (10) 5 (12)

BMI, body mass index.
2.3 | Statistical analysis

Outliers for coagulation and inflammation parameters (defined as 5

times the SD) were excluded. At baseline, we collected self-reported

data on age, sex (biological male/female), medication use, body mass

index, and comorbidities.

The change in coagulation parameters and inflammatory response

was expressed as the difference between D1 and D36 (1 week after

the second vaccination) as these are relatively “fast” processes and we

expected that alterations in coagulation and inflammation normalize

quickly. Participants with missing data on D1 or D36 were excluded

from the analyses. To assess whether changes in coagulation or

inflammation persist for a prolonged period, we determined the levels

of the affected parameters again at D43. All changes relative to

baseline were analyzed by univariate linear regression analyses. In

addition, we compared changes in distribution, ie, the SDs of the pa-

rameters before and after vaccination, of all parameters. To assess

whether there were differences between changes in coagulation or

inflammation parameters after vaccination, stratified for type of vac-

cine administration (i.d. or i.m.), we adjusted for baseline values by

using the difference between the post value (D36) and baseline value

(D1) as the dependent variable and both the assigned type of

administration (i.m. or i.d.) and baseline value (D1) as the independent

variables in a linear regression analysis.

The association between the inflammatory response and change

in coagulation was assessed for i.d. and i.m. vaccination combined and

visualized by scatter plots and tested using univariate linear regres-

sion analysis.

Statistical analyses were done using STATA 16.1 for Windows

(StataCorp). Sample size was calculated based on the original trial.
3 | RESULTS

Between June 14 and July 8, 2021, 150 participants were enrolled, of

whom 15 were excluded due to SARS-CoV-2 seropositivity at baseline

or because of intercurrent SARS-CoV-2 infection before D29. Eleven

additional participants were excluded because of missing coagulation

data at baseline or D36, and 1 participant was excluded because of

self-reported homozygosity for the FV Leiden mutation. Therefore, a

total of 123 (82%) participants were included in the analyses of

coagulation. Demographic characteristics of these participants are

shown in Table 1, stratified by group (i.d. vs i.m.). No major differences

were observed between the i.d. and i.m. groups, except a higher

proportion of oral contraceptive use in the i.d. group than that in the

i.m. group (26% vs 14%). For the analyses involving inflammatory

markers, 10 participants were excluded because of missing inflam-

mation data at baseline or D36, and 1 participant was excluded

because of a hs-CRP over 5 SDs from the mean. The remaining 112

participants (75%) were included in the analysis of the association

between coagulation and inflammation.

Differences between pre- and postvaccination (D36-D1) for the

coagulation and inflammation parameters are listed in Table 2 and

Figure 1. The peak height increased in both the i.m. and i.d. groups

(change in i.d. group, 17.3 nmol [95% CI, −12.5 to 47.2]; change in i.m.

group, 28.8 nmol [95% CI, −6.3 to 63.8]). The SDs were larger at D36

than at D1 and differed between the measurements and the 2 groups

(peak height SD in i.m. group: before vaccination [D1], 69.2; after

vaccination [D36], 90.9; and peak height SD in i.d. group: before

vaccination [D1], 93.1; after vaccination [D36], 99.1), indicating that



T AB L E 2 Coagulation and inflammation at baseline, before the second vaccine, and 1 and 2 weeks after the second vaccine.

Coagulation parameter

Day 1 Day 29 Day 36 Day 43

Change between baseline

and day 36 (95% CI)Baseline

Before second

vaccine

7 days after

second vaccine

14 days after

second vaccine

N 81 80 81 81

Peak height (nmol) 219.4 (93.1) 223.9 (87.5) 236.7 (99.1) 223.6 (94.2) 17.3 (−12.5 to 47.2)

Lag time (min) 5.8 (1.0) 5.9 (1.0) 5.6 (0.9) 5.7 (0.9) −0.3 (−0.6 to 0.03)

ETP (nmol × min) 1719.2 (467.4) 1687.5 (433.5) 1760.0 (515.1) 1690.9 (439.5) 40.7 (−111.9 to 193.4)

Time to peak (min) 10.5 (1.7) 10.4 (1.8) 9.9 (1.7) 10.3 (1.9) −0.6 (−1.1 to −0.03)
Start tail time (min) 27.6 (3.2) 27.0 (3.0) 26.9 (3.4) 27.1 (3.0) −0.8 (−1.8 to 0.3)

Velocity index (nmol/min) 52.2 (32.1) 56.5 (35.1) 63.9 (41.6) 58.5 (40.9) 11.7 (0.11 to 23.3)

Fibrinogen (mg/dL) 273.4 (57.9) 272.5 (60.3) 284.3 (64.8) 277.9 (71.5) 10.9 (−8.2 to 30.0)

FVIII (%) 100.1 (23.4) 101.5 (25.9) 99.6 (26.4) 100.8 (34.0) −0.5 (−8.2 to 7.3)

D-dimer (ng/mL) 258.6 (236.6) 266.7 (242.4) 274.7 (253.2) 279.9 (300.1) 16.1 (−60 to 92.1)

Hs-CRP (ng/mL) 1.7 (2.5) 1.4 (1.8) 1.6 (2.0) 1.7 (2.4) −0.1 (−0.8 to 0.6)

Coagulation parameter

Day 1 Day 29 Day 36 Day 43

Change between baseline

and day 36 (95% CI)Baseline Before second vaccine

7 days after

second vaccine

14 days after

second vaccine

N 42 42 42 42

Peak height (nmol) 202.9 (69.2) 210.0 (76.6) 231.7 (90.9) 222.0 (77.4) 28.8 (−6.3 to 63.8)

Lag time (min) 5.8 (1.0) 5.9 (1.0) 6.0 (1.1) 5.8 (1.0) 0.1 (−0.3 to 0.6)

ETP (nmol × min) 1648.7 (386.0) 1666.7 (369.9) 1761.7 (433.7) 1748.2 (413.0) 113 (−65.2 to 291.2)

Time to peak (min) 10.8 (2.0) 10.8 (2.1) 10.4 (1.8) 10.4 (1.6) −0.3 (−1.2 to 0.5)

Start tail time (min) 27.7 (3.0) 27.6 (3.1) 27.4 (2.8) 27.2 (2.7) −0.2 (−1.6 to 1.1)

Velocity index (nmol/min) 46.8 (28.9) 51.2 (33.0) 59.8 (39.1) 53.8 (31.5) 13.0 (−1.9 to 27.9)

Fibrinogen (mg/dL) 263.8 (57.4) 269.1 (58.7) 295.9 (59.0) 263.1 (43.7) 32.1 (6.8 to 57.4)

FVIII (%) 106.5 (24.1) 107.7 (25.4) 105.3 (25.9) 97.6 (26.9) −1.1 (−12.0 to 9.7)

D-dimer (ng/mL) 215.8 (187.3) 233.2 (180.0) 299.2 (188.8) 261.6 (180.4) 83.5 (0.8 to 166.1)

Hs-CRP (ng/mL) 1.2 (2.0) 1.1 (1.5) 2.3 (2.3) 1.1 (1.1) 1.1 (0.1 to 2.1)

ETP, endogenous thrombin potential; FVIII, factor VIII; Hs-CRP, high-sensitivity C-reactive protein.
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the magnitude of the change in peak height is variable between study

participants.

Changes between D1 and D36 were observed for other param-

eters of thrombin potential, fibrinogen, and D-dimer but not for FVIII

levels (Supplementary Figure S1). Most parameters were back to

baseline levels at D43 (peak height at D1, 219.4 nmol; at D36, 236.7

nmol; at D43, 223.6 nmol). Additionally, to confirm the quick

normalization of coagulation after vaccination, we also compared

coagulation parameters of D29 (just before second dose) with those of

D1 and D43 to confirm whether they were similar (Table 2 and

Supplementary Table S1). Hs-CRP increased in i.m. vaccinated par-

ticipants (D36 relative to D1) but remained stable after i.d. vaccination

(change in i.d. group, −0.1 mg/L [95% CI, −0.8 to 0.6]; change in the

i.m. group, 1.1 mg/L [95% CI, 0.1-2.1]; Table 2 and Figure 1).
After adjustment for baseline values, i.m. administration was

associated with mild increase in all coagulation parameters and with

an increase in hs-CRP compared with i.d. administration (extra in-

crease peak height, 8.4 nmol [95% CI, −16.9 to 33.7]; extra increase

hs-CRP, 0.92 mg/L [95% CI, 0.2-1.7]; Table 3).

Excluding participants using oral contraceptives did not alter

these results (Supplementary Tables S3 and S4).
3.1 | Association between coagulation and

inflammation

The association between changes (eg, delta) of coagulation parame-

ters and change in hs-CRP between D1 and D36 are shown in Table 4



F I GUR E 1 Distribution of peak height, endogenous thrombin potential (ETP), D-dimer, and high-sensitivity C-reactive protein (hs-CRP) at

each time point (1: baseline; 29: before second dose; 36: 1 week after second dose; 43: 2 weeks after second dose), stratified for administration

technique.
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and Figure 2. A positive association was found of delta lag time (beta,

0.13; 95% CI, 0.06-0.2), delta ETP (beta, 28.0; 95% CI, 7.6-48.3), delta

time to peak (beta, 0.13; 95% CI, 0.01-0.27), delta time to tail (beta,
T AB L E 3 Difference in change after vaccination (day 1 vs day 36)
between intramuscular and intradermal vaccination; adjusted for
baseline.

Coagulation parameter

Extra increase i.m. vs i.d. (95% CI)

Adjusted for difference in baseline

Peak height (nmol) 8.4 (−16.9 to 33.7)

Lag time (min) 0.35 (0.04 to 0.7)

ETP (nmol × min) 66.7 (−36.0 to 169.5)

Time to peak (min) 0.35 (−0.2 to 0.9)

Start tail time (min) 0.54 (−0.6 to 1.7)

Velocity index (nmol/min) 1.76 (−9.5 to 13.0)

Fibrinogen (mg/dL) 17.8 (−1.4 to 36.9)

Factor VIII (%) 0.46 (−6.2 to 7.1)

D-dimer (ng/mL) 49.9 (−24.1 to 124.0)

Hs-CRP (ng/mL) 0.93 (0.2 to 1.7)

ETP, endogenous thrombin potential; Hs-CRP, high-sensitivity C-reactive

protein; i.d., intradermal; i.m., intramuscular.
0.26; 95% CI, 0.003-0.51), delta fibrinogen (beta, 14.6; 95% CI, 11.4-

17.7), and delta FVIII (beta, 2.2; 95% CI, 0.8-3.6) with delta hs-CRP. No

association was found between the changes in the other coagulation

parameters and the change in hs-CRP. Excluding participants with a

delta hs-CRP under −5 or above 5 did not alter these results (results

are shown in Supplementary Table S2).
4 | DISCUSSION

SARS-CoV-2 vaccination with full-dose i.m. or fractional-dose (one-

fifth of standard dose) i.d. of the mRNA-1273 vaccine results in a

transient prothrombotic state as evidenced by changes in peak height,

ETP, levels of fibrinogen, and D-dimer. Particularly, the systemic in-

flammatory response was most pronounced in participants receiving

the full dose of the vaccine intramuscularly as compared with the

participants receiving the fractional dose intradermally. These

changes in coagulation were associated with the inflammatory

response.

Although no association was seen between the change in coagu-

lation (D36-D1) and the inflammatory response after vaccination

(D36-D1) in the primary coagulation endpoint (peak height), this was

observed for multiple other coagulation endpoints, ie, lag time, ETP,



T AB L E 4 The association between the change in coagulation
parameter and the change in the inflammatory response (delta high-
sensitivity C-reactive protein) in all participants.

Coagulation parameter

Units increase in the change in

coagulation factors associated with

1 mmol increase in the change of

hs-CRP (95% CI)

Peak height (nmol) 1.6 (−3.5 to 6.6)

Lag time (min) 0.13 (0.06 to 0.2)

ETP (nmol × min) 28.0 (7.6 to 48.3)

Time to peak (min) 0.13 (0.01 to 0.27)

Velocity index (nmol/min) −0.43 (−2.6 to 1.7)

Start tail time (min) 0.26 (0.003 to 0.51)

Fibrinogen (mg/dL) 14.6 (11.4 to 17.7)

Factor VIII (%) 2.2 (0.8 to 3.6)

D-dimer (ng/mL) 4.7 (−8.5 to 17.8)

ETP, endogenous thrombin potential; Hs-CRP, high-sensitivity C-reactive

protein.
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time to peak, the start tail time, fibrinogen, and FVIII. Particularly, the

change in ETP was positively associated with the change in inflam-

mation. This is most likely due to a longer time to complete inhibition
F I GUR E 2 Scatter graphs for the association between the inflammato

parameter with fitted linear regression line. ETP, endogenous thrombin po
of thrombin generation than a stronger and faster propagation of

thrombin caused by inflammation (relatively stronger association of

start tail time with inflammation than lag time or time to peak or peak

height). This suggests that inflammation causes the same amount of

thrombin to be produced; however, the inhibition of thrombin is

slower. Fibrinogen and FVIII are acute-phase proteins, which explains

their association with inflammation. D-dimer was not associated with

inflammation. This could be due to the relatively shorter half-life of D-

dimer (5 hours) as compared with CRP (19 hours), fibrinogen (40

hours), and FVIII (12 hours) and therefore a possible change due to

vaccination was not detectable anymore after 1 week of vaccinations.

It may seem contradictory that mean levels of FVIII do not change

following vaccination (between D1 and D36), while there was an as-

sociation between changes (eg, delta) of FVIII and change in hs-CRP

between D1 and D36. However, mean FVIII levels are measured on

group level, while the association between changes in FVIII and hs-

CRP is assessed on an individual level.

Prior studies that evaluated coagulation parameters in SARS-

CoV-2 vaccinated individuals using an unvaccinated control group

also reported a change in the thrombohemorrhagic balance toward

hypercoagulability [16,18,19]. Campello et al. [14] showed a transient

increase in TGA at 3 days after vaccination, which normalized within

10 days. Brambilla et al. [13] observed increased thrombin generation

in 30 participants 8 days after receiving a mRNA vaccine. Garabet
ry response and changes after vaccination for each coagulation

tential; Hs-CRP, high-sensitivity C-reactive protein.
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et al. [17] found no changes in thrombin generation or D-dimer on

average 11 days after vaccination, which might (similar to Campello

et al. [14]) be too long after vaccination to detect small and transient

changes. Despite an increased inflammatory response, Willems et al.

[20] found no changes in several activated coagulation factors in older

participants in the 48 hours after vector-based vaccines. However, all

studies that reported an increase in coagulation parameters after

vaccination concluded that these transient changes were not strong

enough to be clinically relevant in an unselected population, and

(similar to our study) no venous thrombotic events were observed.

The strengths of this study include the pre- and postrandomized

design, preventing several possibilities of confounding. The only factor

that could intervene in intraindividual change of coagulation may be

an event of noticeable impact (eg, infections and trauma). No such

events were registered in the adverse event registration of the orig-

inal randomized controlled trial, and participants with a SARS-CoV-2

infection were excluded. In addition, the route of vaccine adminis-

tration (i.d. or i.m.) was randomized. The only difference by chance

between the 2 groups (oral contraceptive use) did not affect the

conclusions.

Our study has limitations. The limited sample size did not allow a

stratified analysis for low- and high-risk venous thrombosis groups.

This is particularly evident in the analyses comparing i.d. with i.m., in

which CIs were wide. In addition, the time points on which coagulation

and inflammation were measured (7 days after second dose of

vaccination) could be too late, especially for the inflammatory

response. Potentially, the effects of vaccination on coagulation and

inflammation are different in the week directly after vaccination;

however, our blood sample was drawn not earlier than 7 days after

the vaccination. Furthermore, loss to follow-up was about 25%.

However, this was evenly distributed between the i.d. and i.m. groups

and is unlikely to have been related to these laboratory analyses.

Additionally, the cohort consisted of young individuals (<30 years of

age), limiting generalizability to middle-aged and older individuals.

However, (thrombotic) side effects of SARS-CoV-2 vaccinations are

more often reported in young people and are of relatively higher

importance for young people because of a lower risk of severe

COVID-19 infection in the young [34]. The cohort was predominantly

White or of European ancestry; therefore, we are unsure if our results

apply to other ethnicities. It is known that thrombin generation (TG) is

affected by differences in blood collection, sample preparation, and

storage [35]. One might say that this lack of official standardization

and reference values of TG results in limited external replicability of

our results. However, all blood collections and analyses were stan-

dardized and performed in a single laboratory, preventing biased

measurements. In addition, by focusing on within-individual changes,

we expect that the lack of standardization of TG does not influence

external replicability of our results. No measurement of coagulation

and inflammation was performed in the first week after the first

vaccine dose. Therefore, we do not know the effect of a single

vaccination on coagulation and inflammation. However, most systemic

side effects of the mRNA-1273 vaccine are reported especially after

the second dose [34]. von Willebrand factor plays a key role in
vascular inflammation and coagulation [36]. Unfortunately, von Wil-

lebrand factor was not measured in our study, which could have aided

in the interpretation of our results. Because of the design of this study,

we cannot conclude whether the smaller effect of i.d. vaccination than

i.m. vaccination on coagulation and inflammation is caused by the

administration technique, the fractional vaccine dose, or both. Lastly,

these results are only applicable to the mRNA-1273 vaccine. How-

ever, prior research suggests an even stronger effect on coagulation

and inflammation after viral-vector-based vaccines [14,19,37].
5 | CONCLUSION

We conclude that vaccination results in a transient prothrombotic

state, which is associated with the inflammatory response. I.d. vacci-

nation with a one-fifth vaccine dose provokes a smaller systemic in-

flammatory response and might have a smaller effect on coagulation

than i.m. vaccination, which indicates a benefit for i.d.-administered or

fractional dose (SARS-CoV-2) vaccines. Combined with other advan-

tages of using i.d. fractional dose vaccines, eg, economic, ecologic, and

on public health domains, our results support the additional potential

benefit of further implementation of i.d.-administered vaccines.

Further research, using larger cohorts, should be performed on the

identification of subgroups with higher risk of vaccine-induced

thrombosis. These groups could potentially benefit the most from

i.d.-administered vaccines.
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