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Abstract

Microbial pathogens grow in a wide range of different morphologies that provide distinct

advantages for virulence. In the fungal pathogen Candida albicans, adenylyl cyclase (Cyr1)

is thought to be a master regulator of the switch to invasive hyphal morphogenesis and bio-

film formation. However, faster growing cyr1Δ/Δ pseudorevertant (PR) mutants were identi-

fied that form hyphae in the absence of cAMP. Isolation of additional PR mutants revealed

that their improved growth was due to loss of one copy of BCY1, the negative regulatory

subunit of protein kinase A (PKA) from the left arm of chromosome 2. Furthermore, hyphal

morphogenesis was improved in some of PR mutants by multigenic haploinsufficiency

resulting from loss of large regions of the left arm of chromosome 2, including global tran-

scriptional regulators. Interestingly, hyphal-associated genes were also induced in a manner

that was independent of cAMP. This indicates that basal protein kinase A activity is an

important prerequisite to induce hyphae, but activation of adenylyl cyclase is not needed.

Instead, phosphoproteomic analysis indicated that the Cdc28 cyclin-dependent kinase and

the casein kinase 1 family member Yck2 play key roles in promoting polarized growth. In

addition, integrating transcriptomic and proteomic data reveals hyphal stimuli induce

increased production of key transcription factors that contribute to polarized

morphogenesis.

Author summary

The human fungal pathogen Candida albicans switches between budding and filamentous

hyphal morphologies to gain advantages for virulence and survival in the host. Although
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adenylyl cyclase has been thought to be a master regulator that controls this switch, we

identified C. albicans pseudorevertant mutants that grow better and form hyphae in the

absence of adenylyl cyclase and cAMP. The mutant cells were also able to induce hyphal-

associated genes in the absence of cAMP that are needed for virulence. Integrating infor-

mation from different omics approaches identified cAMP-independent mechanisms that

promote hyphal growth. This includes phosphoproteomic studies that revealed key roles

for the Cdc28 cyclin-dependent kinase and casein kinase 1 in promoting hyphal growth.

In addition, integrating transcriptomic and proteomic data revealed that post-transcrip-

tional mechanisms regulate the levels of a set of key transcription factors that are impor-

tant for hyphal induction, suggesting a special type of translational regulation. These

studies better define the pathways that stimulate C. albicans to switch from budding to

hyphal growth, which is important for invasion into tissues, escape from the immune sys-

tem, and biofilm formation.

Introduction

Fungal pathogens are capable of transitioning between different morphologies that provide

distinct advantages for virulence and survival in the host [1,2]. For example, the fungal patho-

gen Candida albicans switches from budding to hyphal growth, which promotes virulence as

the long hyphal filaments mediate invasion into tissues, escape from immune cells, and biofilm

formation [1–6]. A variety of stimuli promote hyphal morphogenesis, including serum, CO2,

alkaline pH, peptidoglycan breakdown products, N-acetylglucosamine (GlcNAc), and contact

with a solid matrix [3,7,8]. In C. albicans, adenylyl cyclase (Cyr1) is thought to be a master reg-

ulator of hyphal growth [3,5,9–11]. Deletion of adenylyl cyclase (cyr1Δ/Δ) blocks hyphal for-

mation, and addition of millimolar levels of exogenous cAMP induces it [12]. However,

interpreting the role of Cyr1 and cAMP is complicated by the fact that the cyr1Δ/Δ mutants

grow very poorly [13]. Furthermore, a recent study showed that faster growing cyr1Δ/Δ pseu-

dorevertant (PR) mutants form hyphae in the absence of Cyr1 and cAMP [14]. Thus, although

cAMP is capable of inducing hyphae, other pathways can contribute to stimulating the forma-

tion of filamentous hyphal cells [14].

In C. albicans, cAMP formed from ATP by Cyr1 acts by binding to the negative regulatory

subunit (Bcy1) of protein kinase A (PKA), thereby releasing the PKA catalytic subunits (Tpk1

and Tpk2) to phosphorylate target proteins [11]. Most current models propose that the

cAMP-PKA pathway induces the expression of a special set of genes that promote hyphal

growth [2,3,11,13,15,16]. This has been supported by the ability of many transcription factors

(TFs) to regulate this switch. For example, PKA was reported to phosphorylate the Efg1 TF,

which is required for hyphal induction [17,18]. However, it has been surprising that none of

the hyphal-induced genes has been shown to play a direct role in the morphogenesis machin-

ery that determines cell shape [19,20]. The common core set of genes stimulated by a group of

different hyphal inducers in C. albicans do not account for the transition to hyphal growth

[19]. In addition, our recent studies showed that a mutant that cannot catabolize GlcNAc can

be stimulated by GlcNAc to form hyphae without induction of hyphal-specific genes [20].

Other studies have shown that some hyphal regulatory TFs can be bypassed under special envi-

ronmental conditions [21,22], or by altered expression of the Cak1 protein kinase [23], the

absence of a variant histone H3 [24], or mutation of the Ssn3 subunit of the Mediator tran-

scription complex [25]. This indicates that although TFs are important for creating the proper
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physiological environment for cells to undergo hyphal growth, the target genes are not directly

involved in promoting filamentous morphogenesis.

Other studies have implicated several protein kinases in hyphal signaling that are not

directly regulated by cAMP [2,3,26]. For example, the cyclin-dependent kinase Cdc28 pro-

motes hyphal growth in part by phosphorylating several proteins involved in polarized mor-

phogenesis [26–34]. Therefore, to better define the cAMP-dependent and independent

mechanisms of hyphal signaling, we isolated a set of new cyr1Δ/Δ PR mutants that displayed

variable levels of improved growth rates and ability to form hyphae. The wild type and PR

mutant cells were compared with four omics approaches: genomics combined with gene-map-

ping by CRISPR-Cas9 to identify genetic changes in PR mutants, transcriptomics to better

define the role of cAMP in hyphal gene regulation, proteomics and phosphoproteomics to

reveal key kinases for hyphal induction. Furthermore, integrative transcriptomics and proteo-

mics profiling indicates that there are increases in the levels of key transcription factors, possi-

bly due to changes in their translation rate, that are induced by hyphal signaling. Altogether,

these results reveal how multiple processes in the gene expression pathway can modulate cellu-

lar differentiation.

Results

Large deletions in the left arm of chromosome 2 bypass the need for cAMP

to improve the growth rate and to stimulate hyphal morphogenesis

We previously reported that slow growing cyr1Δ/Δ mutant strains give rise to faster growing

cells, which we termed pseudorevertants (PRs) [14]. Interestingly, these spontaneous PRs

could form hyphae even though they lack Cyr1 and cAMP [14]. To better define the underly-

ing mechanisms, we isolated additional PR strains. These PR mutants were isolated from inde-

pendent cultures which were started from different single colonies of the cyr1Δ/Δ strain. We

found that they differed in their growth rates and ability to be induced to form hyphae (Figs

1A, 1B and S1). Based on these phenotypic differences, the new PR mutants could be grouped

into 4 classes (Table 1). Surprisingly, the degree of improved growth rate of the PR mutants

did not correlate with their ability to form filamentous cells, indicating that the mechanisms of

suppression were complex. The faster growing Class 1 mutant doubled at a nearly wild-type

rate (1.5 h) but only 74% of the cells formed filamentous cells. In contrast, the Class 2, Class 3,

and Class 3+ PR mutants grew slower than the Class 1 mutants but were more efficient at

forming filamentous cells. For example, Class 2 mutants grew at a doubling time of 1.8 h yet

93% of the cells were filamentous. Class 3 and 3+ produced filamentous cells but they were

shorter and thicker than the WT hyphae.

Whole genome sequencing of the diploid C. albicans strains identified distinct genetic

changes in the four classes of PR mutants. Interestingly, although they were different, all four

classes of mutants contained genetic changes that resulted in loss of expression of one copy of

BCY1, which encodes the negative regulatory subunit of cAMP-dependent PKA kinase. This

suggested that reduced expression of BCY1 increased PKA activity resulting in improved

growth in the absence of cAMP. Similar results reported that a bcy1Δ mutation can rescue

growth of a cyr1Δ mutant in S. cerevisiae [35]. Class 1 mutants exhibited the simplest genetic

change, in that the improved growth correlated with a premature stop codon in BCY1 on chro-

mosome 2 (Fig 1C and S1 Table and S1 Data). In contrast, the Class 2, 3, and 3+ PR mutants

all lacked part of the left arm of one copy of chromosome 2 that includes BCY1. We previously

did not report a change in ploidy for PR2 [14]. However, higher read coverage of the genome

sequences in the present study (>90×) aided in detecting changes in ploidy of chromosome 2

and in identifying the junction regions (Fig 1C and S1 Table). Inspection of the genome
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sequences previously reported for PR3 and PR4 also indicates that they have altered ploidy for

regions of chromosome 2 similar to the class 3+ PR mutants.

Western blot analysis showed that the Bcy1 protein levels were reduced by 50% in the PR

mutants, confirming that altered gene dosage leads to reduced production of Bcy1 (S2 Fig).

The reduction in Bcy1 did not impact the levels of Tpk2, one of the PKA catalytic subunits in

the PR mutants compared to the WT. Interestingly, TPK2 was located in the middle of the

chromosome 2, which was duplicated in Class 3+ PRs. However, none of the other PKA path-

way components were located on chromosome 2. This supports the conclusion that the hap-

loinsufficiency of BCY1 bypassed the need for cAMP for growth and hyphal induction in C.

albicans.

Fig 1. Genetic changes in chromosome 2 bypassed the need for cAMP to improve growth and hyphal induction in cyr1Δ/Δ PR mutants. (A)

Doubling times were measured in liquid YPD medium at 30˚C. Shown is the mean ± SD (standard deviation) of 4 independent experiments. Statistical

analysis was performed using one-way ANOVA with Dunnett’s multiple comparisons test comparing the strains with the wild-type control (WT); NS

p> 0.05, � p< 0.05, �� p< 0.01, ��� p< 0.001. The doubling time of the strains shown was significantly shorter when compared to the cyr1Δ/Δ
background (p< 0.0001). (B) The strains indicated at the top were grown in the liquid medium indicated on the left, and then hyphal induction was

assessed microscopically. Cells were grown in liquid medium containing 15% serum or 50 mM N-acetylglucosamine (GlcNAc) to induce hyphal growth.

Cells were incubated at 37˚C for 3 h and then photographed. Scale bar, 10 μm. (C) Copy number variation analysis based upon read depth across the

genome. Copy number estimates scaled to genome ploidy (Y-axis) and chromosome location (X-axis) were plotted using YMAP [91]. Numbers and

symbols below chromosomes indicate chromosomal position (Mb), BCY1 gene (green arrows), centromere locus (indentations in the chromosome

cartoon), major repeat sequence position (black circles), and rDNA locus (blue circles, ChrR).

https://doi.org/10.1371/journal.ppat.1009861.g001
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In the Class 2 and 3+ PRs, similar breakpoints were identified in the independently isolated

strains indicating that a specific DNA sequence induced the chromosomal deletion. For exam-

ple, PR12 and PR14 (class 2) lost the same 276-kb region of chromosome 2 although they were

isolated from independent cultures on different days. We hypothesized that a specific DNA

sequence induced the breakpoints at the same location. To better understand how the large

deletions of 270 kb and 590 kb were generated in the Class 2, 3, and 3+ PRs, we inspected the

genome sequences for matches to the C. albicans 23-bp telomere repeat sequence (CACCAA-

GAAGTTAGACATCCGTA) [36], which was found at the deletion end points (S1 Table).

Analysis of the breakpoint regions in chromosome 2 revealed 4 to 9-bp matches to telomere

seed sequences. However, the long repeat sequence, which was previously reported to drive

genome rearrangements, was not found near the deletion sites [37]. As described previously,

this suggests that chromosome break healing by de novo telomere addition contributes to the

genome plasticity in C. albicans [38–40], which enables it to adapt to adverse conditions or del-

eterious mutations such as cyr1Δ/Δ.

Gene mapping by CRISPR-Cas9 identified general transcription factors are

involved in hyphal regulation

To confirm that the genetic changes in chromosome 2 improved growth and hyphal induction

in the PR mutants, transient expression of the CRISPR-Cas9 system [41,42] was utilized to rec-

reate the loss of one copy of BCY1 and the large deletions present in the Class 2, 3, and 3+ PR

mutants. To facilitate large deletions, two single guide RNAs (sgRNAs) were used to target

Cas9 to cut immediately adjacent to the deletion end points detected in the spontaneous PR

mutants (Fig 2A). Analysis of these cyr1Δ/Δ mutants that were created to be heterozygous

bcy1Δ, 270kbΔ, and 590kbΔ in chromosome 2 showed that they recapitulated the phenotypes

of the corresponding spontaneous mutants PR13, PR12, and PR18, respectively (Figs 2B–2D

and S1). This confirmed that haploinsufficiency of BCY1 improved growth, and that haploin-

sufficiency of the genes in the 270 kb region in the left arm of chromosome 2 was sufficient to

increase hyphal formation.

Gene mapping strategies to identify the basis for the improved hyphal growth of the PR

mutants showed that this effect is due to multiple genetic changes (Figs 2E and S1C). In the

Table 1. Phenotypic and genetic variations of cyr1Δ/Δ pseudorevertants (PRs).

Strain PR class Doubling time (h)a Filamentation (%)b Short genotypec

WT 1.4 ± 0.07 98 ± 2.3 Prototrophic wild type strain

cyr1Δ/Δ 3.4 ± 0.36 ��� 0.0 ��� cyr1Δ/Δ (parental strain)

PR13, PR19 Class 1 1.5 ± 0.19 74 ± 4.4 ��� bcy1�/BCY1 cyr1Δ/Δ

PR12, PR14 Class 2 1.8 ± 0.09 �� 93 ± 2.3 Monosomy of ~276 kb of Chr2L; cyr1Δ/Δ

PR18 Class 3 2.3 ± 0.06 ��� 93 ± 4.2 Monosomy of ~590 kb of Chr2L; cyr1Δ/Δ

PR2, PR16 Class 3+ 2.4 ± 0.18 ��� 82 ± 16.4 �� Monosomy of ~557 kb of Chr2L;

trisomy of ~1.3 Mb of Chr2; cyr1Δ/Δ

a Doubling times were measured in liquid YPD medium at 30˚C. Shown is the mean ± SD of 4 independent experiments.
b The percent of filamentous cells was measured 3 h after growth in GlcNAc medium at 37˚C. Shown is the mean ± SD of at least 3 independent experiments with at

least 100 cells counted for each condition.
c An asterisk indicates a nonsense mutation. Chr2L, left arm of chromosome 2.

The p-value was calculated using one-way ANOVA with Dunnett’s multiple comparisons test comparing the strains with the WT control

��p < 0.01

���p < 0.001.

https://doi.org/10.1371/journal.ppat.1009861.t001
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first approach, smaller 90 kb sections of the 270 kb region were deleted from one copy of chro-

mosome 2 in a bcy1Δ cyr1Δ/Δ strain. Surprisingly, these mutants were not better at producing

filamentous hyphal cells during GlcNAc induction (Fig 2E). However, the basal level of fila-

mentous growth was lower in the 90kb deletion mutant, unchanged in 90kb!180kb deletion

mutant, and elevated in 180kb!270kb deletion mutant compared to bcy1Δ cyr1Δ/Δ strain

Fig 2. Gene mapping by CRISPR-Cas9 demonstrates that haploinsufficiency of genes in chromosome 2 improved

hyphal induction in cyr1Δ/Δ PR mutants. (A) A schematic diagram showing deleted sequences on chromosome 2.

(B) The strains indicated at the top were grown in the liquid medium indicated on the left, and then hyphal induction

was assessed microscopically. Cells were grown in liquid medium containing 15% serum or 50 mM GlcNAc to induce

hyphal growth at 37˚C for 3 h and then photographed. Scale bar, 10 μm. (C) Doubling times were measured in liquid

YPD medium at 30˚C. Shown is the mean ± SD of 6 independent experiments. The doubling time of the strains shown

was significantly shorter when compared to the cyr1Δ/Δ background (p < 0.01). (D) Graph indicating the percent of

filamentous cells after growth in GlcNAc medium described in panel B. Shown is the mean ± SD of at least 3

independent experiments with at least 100 cells counted for each condition. (E) Gene mapping by CRISPR-Cas9

identified a 10-kb region (yellow square) that is involved in the filamentous phenotype. The left panel shows deleted

sequences on chromosome 2. The right panel shows the percent of filamentous cells in liquid GlcNAc medium at

37˚C; green, weak hyphal induction; yellow, intermediate hyphal induction; pink, strong hyphal induction. (A and E),

Note that deletions are heterozygous; the cells retain a wild-type version of chromosome 2. Numbers and symbols

indicate gene deletion (Δ), CRISPR cut site (scissors), large genomic deletion (dotted line), BCY1 gene (green circles),

and chromosomal position (kb). (C and D) Statistical analysis was performed using one-way ANOVA with Dunnett’s

multiple comparisons test comparing the strains with the WT or parental strain; NS p> 0.05, � p< 0.05, �� p< 0.01,
��� p< 0.001.

https://doi.org/10.1371/journal.ppat.1009861.g002
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(S1C Fig). This indicates that filamentation phenotype is affected by multiple genes in the criti-

cal region of chromosome 2.

We used the 90kb!270kb heterozygous deletion mutant as a starting point to map the

right end of the genes in this region that impact filamentous growth. A smaller deletion mutant

of chromosome 2 from 90kb!260kb was similar to the 90kb!270kb deletion, which partially

narrowed the key region. When the right end of the critical region was deleted by another

10kb, the 90kb!250kb deletion mutant did not exhibit better hyphal growth in the presence

of GlcNAc. Haploinsufficiency of the 10-kb region was therefore necessary to improve hyphal

induction in this strain (although it was not sufficient on its own).

Further mapping by deletion of the genes in this 10-kb region identified SRB9 and SPT5 as

contributing to the improved hyphal phenotype (S3 Fig). SRB9 encodes a subunit of the RNA

polymerase II Mediator complex and SPT5 encodes a transcription elongation factor complex

subunit. Interestingly, the double heterozygous mutation of SRB9 and SPT5 in the

90kb!250kb deletion strain promoted improved hyphal growth, while the single heterozy-

gous mutations of each gene did not. According to previous analyses of haploinsufficiency

genetic interactions [43,44], this suggest that the two genes function in the same pathway, con-

sistent with both SRB9 and SPT5 encoding subunits of the general transcription machinery.

Interestingly, mutation of a different subunit of the Mediator complex (SSN3) was identified

in a previous study because it restored the ability to form hyphae to a cph1Δ/Δ efg1Δ/Δ mutant

strain of C. albicans that lacks two key hyphal TFs [25]. Thus, the gene mapping results indi-

cate that global transcriptional regulators are important for creating a physiological state in the

cell that is more conducive to induction of the switch of hyphal morphogenesis [25,45].

Adenylyl cyclase is not necessary for transcriptional induction of hyphal

regulated genes

Based in part on previous studies of cyr1Δ/Δ mutant strains, adenylyl cyclase was thought to be

central to inducing the expression of a variety of genes, including virulence factors such as

adhesins and hyphal-specific genes that promote filamentous growth [2,3,13,15,16]. To exam-

ine this role of cAMP signaling, we performed RNA sequencing (RNA-seq) analysis of the WT

and PR mutants before and after stimulation with the hyphal inducer GlcNAc (Fig 3A and S2

Data). Heatmap clustering and principal component analysis (PCA) of the normalized RNA-

seq dataset revealed that WT and PRs showed similar patterns in transcriptomes, indicating

that adenylyl cyclase is not required to induce the broad range of hyphal genes (Figs 3B and

S4). In contrast, the cyr1Δ/Δ mutant clustered separately due to its expected defect in regulat-

ing hyphal genes (Fig 3B). Data for a subset of hyphal genes, as well as control genes are shown

in Fig 3C. These data show that the transcriptomic profile of class 1 mutant PR13 (bcy1�/BCY1
cyr1Δ/Δ) was similar to the WT in having a low basal level of hyphal gene expression that was

induced by hyphal stimulation. However, class 2 mutant PR12 (270kbΔ cyr1Δ/Δ) was distinct

in that it expressed a higher basal level of hyphal genes even in the absence of the hyphal

inducer GlcNAc (Fig 3C), which correlated with a higher basal level of filamentous cell mor-

phology (Fig 1B). The PR12 transcriptome was also distinct as the levels of the genes in the

270-kb region were around 2-fold less than the WT level due to the haploinsufficiency (see S2

Data). GlcNAc catabolic genes were highly expressed in all the strains tested, including

cyr1Δ/Δ (Fig 3C), which is consistent with previous studies showing that their regulation is

cAMP independent [46,47]. Altogether, these data indicate that an appropriate basal level of

PKA activity is needed for cells to respond transcriptionally to a hyphal inducer, rather than a

requirement for stimulation of Cyr1 to produce cAMP.
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Quantitative phosphoproteomics identified protein kinases required for

normal hyphal growth

To better understand how the switch to hyphal morphogenesis is regulated, we compared pro-

tein production and phosphorylation during hyphal induction. WT and PR13 strains were

treated with or without GlcNAc to form hyphae (Fig 4A), and then a label-free mass spectrom-

etry approach (LC-MS/MS) was used to detect 3,434 proteins and 17,580 phosphopeptides (S3

Data). To differentiate experimental variances from biological alterations, we compared the

Fig 3. Adenylyl cyclase is not necessary for transcriptional regulation of hyphal-induced genes. (A) Experimental scheme of

transcriptomic analysis. Cells were grown at 37˚C in liquid galactose medium and then 50 mM GlcNAc was added for 2 h to induce

hyphae. There were 2 biologically independent replicates for each condition. (B) Cluster analysis of differentially expressed genes (DEGs).

(C) Summary of differential expression analysis. The numbers in colored boxes are log2 difference of transcript levels compared to the wild-

type −GlcNAc condition. Grey numbers indicate the difference is not significantly different (adjusted p> 0.1).

https://doi.org/10.1371/journal.ppat.1009861.g003
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replicate data of WT cells treated with GlcNAc from both the whole proteome and the phos-

phoproteome. The null comparisons of the biological replicates showed high correlations

(r> 0.9) (Fig 4B). We first examined the phosphorylation status of Efg1, since genetic studies

implicated this TF as being a target of PKA and Cdc28 kinases on positions T179 and T206

Fig 4. Quantitative phosphoproteomics detected activity of two key protein kinases in hyphal induction. (A) Experimental scheme of parallel

proteomic and phosphoproteomic analyses. Cells were grown at 37˚C in liquid galactose medium and then 50 mM GlcNAc was added for 2 h to induce

hyphae. For phosphorylation analysis, phosphopeptides were enriched by polymer-based metal-ion affinity capture (PolyMAC). There were 2 biologically

independent replicates for each condition. (B) Representative null comparisons of the biological replicates show high reproducibility. We compared the

replicate data of WT+GlcNAc_1 and WT+GlcNAc_2 from both whole proteome and phosphoproteome. (C) Representative results of kinase-substrate

enrichment analysis. Gene set enrichment analysis (GSEA) algorithm [50] was used to identify significantly enriched or depleted groups of

phosphorylated substrates. The potential substrates of both Cdc28 and Yck2 kinases were more phosphorylated (up-regulated) during the hyphal

induction in the WT and PR13 cells. (D) The color-coded diagram illustrates changes of the selected kinase activities indicated by the scale bar at the

bottom (< 25% false discovery rate [FDR]). Kinase activity inference was based on the collective phosphorylation changes of their identified substrates.

(E) Venn diagrams of phosphopeptides upregulated during hyphal induction (log2 fold change> 0.5). Note that 605 phosphopeptides were upregulated

in both WT and PR13 strains. (F) Overrepresented motifs were extracted from the 605 phosphopeptides, using the motif-x algorithm [88] (p< 10−6). 44

phosphopeptides had the Cdc28 consensus motif ([S/T]-P-x-K/R) indicating they were potential substrates. (G) Venn diagrams of the upregulated Cdc28

substrates ([S/T]-P-x-K/R) or Yck2 substrates (S/T-x-x-[S/T]). 11 phosphopeptides were potential substrates of both Cdc28 and Yck2 kinases.

https://doi.org/10.1371/journal.ppat.1009861.g004
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positions, respectively [17,34]. However, our phosphoproteome data did not detect phosphor-

ylation at these sites in Efg1, consistent with the reports of Willger et al. [45] and Cao et al. [48]

(see S3 Data). Thus, three completely independent MS studies have not detected phosphoryla-

tion of Efg1 which was implicated from genetic evidence. Interestingly, during hyphal induc-

tion Efg1 was dephosphorylated in the C-terminal prion-like domain (PrLD), which is a

region of the Efg1 protein that is involved in the assembly of TF complexes by formation of

phase-separated condensates [49]. Altogether, these results indicate that models for role of

Efg1 regulation by phosphorylation during hyphal induction should be revised (see

Discussion).

We next used Gene Set Enrichment Analysis [50] to infer the activity of specific protein

kinases. The algorithm was based on the levels of phosphorylated peptides containing amino

acid sequence motifs characteristic of the substrate specificity of known protein kinases (Fig

4C). Strikingly, in contrast to the current models [2,3,5], this analysis revealed PKA activity

was not significantly different before and after hyphal induction in the WT or PR13 strains

(Fig 4D). Furthermore, control studies showed that the levels of the PKA subunits Bcy1 and

Tpk2 remained constant during hyphal induction (S2 Fig). Thus, there was no evidence to

support the stimulation of PKA in the PR mutants during hyphal induction. In contrast,

Cdc28 kinase activity was increased during hyphal induction in the WT strain (Fig 4D), con-

sistent with previous studies implicating this cyclin dependent kinase in hyphal regulation

[27,28,34,51]. To examine the role of Cdc28 further, we deleted the hyphal-induced cyclin

HGC1. The hgc1Δ/Δ mutation caused a stronger hyphal defect in the PR13 mutant compared

to the WT control cells (S5A and S5B Fig), indicating that PR13 cells are more reliant on

cyclin-dependent activity for hyphal induction than are the WT cells. Despite of the abnormal

morphology, the hgc1Δ/Δ mutant produced a similar number of filamentous cells as the WT

control strain (~95%). However, the PR13 hgc1Δ/Δ mutant produced a lower level of filamen-

tous cells (36%) compared to the PR13 strain (61%).

Interestingly, many of the potential Cdc28 phosphosites also contained a second motif indi-

cating they are targets for Yck2, a member of the casein kinase I family (Fig 4E–4G). Recent

studies in C. albicans have characterized the role of Yck2 in modulating morphogenesis, viru-

lence, fungal cell-wall stress responses, and resistance to clinical antifungal drugs [52–54].

Deletion of YCK2 strongly affected hyphal growth in both the WT and PR13 strains (S5A and

S5B Fig). The yck2Δ/Δ cells displayed an elongated cell morphology, but did not switch to a

true hyphal morphology in the presence of the hyphal inducers serum or GlcNAc. Interest-

ingly, both kinases are predicted to phosphorylate 11 sites in 8 proteins that are all thought to

have a role in polarized growth (S2 Table). We created phospho-site mutations of BNI1 and

MOB2 because these genes are required for normal hyphal growth [32,55]. However, mutation

of the individual phosphorylation sites did not cause a detectable hyphal defect, suggesting

that mutations of additional target proteins may be required to cause a strong defect in hyphal

morphogenesis (S5C Fig).

Hyphal stimulation induces translation of TFs that regulate morphological

switching

The transcriptomic and proteomic data sets were examined to determine how the abundance

of mRNAs and their corresponding proteins correlated during the switch to hyphal morpho-

genesis (Fig 5A). There was a relatively weak correlation (Pearson correlation coefficient,

r = 0.39) between mRNA and protein abundances in C. albicans (Fig 5B). Typical Pearson cor-

relation coefficients (r) for mammalian cells are about 0.6 and for S. cerevisiae it is about 0.7

[56]. This indicated that C. albicans has dynamic post-transcriptional regulatory mechanisms.
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Since protein levels are a function of mRNA abundance, translation rate, and protein turnover,

we approximated the translation rate with the protein/mRNA level ratio (this approximation

neglects protein degradation, see Fig 5C). Integration of RNA-seq and label-free LC-MS/MS

data gave an opportunity to estimate the translation rate of 3,267 genes (S4 Data). The transla-

tion rate spanned over five orders of magnitude across genes (Fig 5D). There was a negative

correlation between mRNA abundance and translation rate, while there was a positive

Fig 5. Integrated transcriptomic and proteomic analyses indicate that hyphal stimulation induces translation of hyphal regulator TFs. (A) A basic

gene expression model with key parameters (adapted from REF. [56,92]). The mRNA is transcribed with rate Vsr and degraded with a half-life represented

by tr1/2. The protein is translated proportionally to the mRNA abundance with the rate constant Ksp and degraded with a half-life of tp1/2. (B) An across-gene

correlation analysis comparing estimates of absolute mRNA abundance (expressed in fragments per kilobase of transcript per million mapped reads

(FPKM)) to protein abundance (expressed as label free quantitation (LFQ)) in exponentially growing WT cells. r, Pearson correlation coefficient. (C)

Mathematical expression of mRNA (Eq 1) and protein abundances (Eq 2) as a function of key gene expression parameters, including cell doubling time Tcc,
as detailed in REF. [92]. Rearranging Eq 2 yields the dependency of protein-mRNA abundance ratio on the translation rate constant Ksp, cell doubling time

Tcc, and protein half-life tp1/2 (Eq 3). We neglected protein degradation assuming that protein replacement is generally driven by dilution due to cell division

in exponentially growing C. albicans cells (tp1/2>> Tcc). Substituting the cell doubling time (Tcc = 1.5 h in C. albicans) yields Eq 4. Therefore, we can

approximate the translation rate with the protein-to-mRNA level ratio. (D) Across-gene correlation analyses comparing protein-to-mRNA ratio versus

mRNA abundance, protein abundance, and 5’ UTR length (from left to right). r, Pearson correlation coefficient. (E) Protein-to-mRNA ratios of 11 selected

hyphal regulator transcription factors (TFs) during GlcNAc induction in WT. The protein-to-mRNA ratios of the 5 hyphal regulators were two orders of

magnitude lower than the median in −GlcNAc control, indicating their translation rate was very low before hyphal induction. The p-value was calculated

using two-sided unpaired t-test (hyphal regulator TFs) and z-test (ribosomal proteins and total proteins). (F) The relative change in protein-to-mRNA ratio

for the selected 11 hyphal regulators is shown in yellow, relative changes in mRNA expression are shown in blue. The protein-to-mRNA ratio ofUME6,

SFL1, BRG1, TEC1, and FKH2 increased dramatically (log2 fold change> 4) during hyphal induction while mRNA levels did not.

https://doi.org/10.1371/journal.ppat.1009861.g005
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correlation between protein abundance and translation rate. Although it has been reported

that 5’ UTR length plays an important role in translation efficiency [57–59], there was no cor-

relation between 5’ UTR length and translation rate in our analysis.

We next examined whether the translation rate changed for TFs that are known to regulate

hyphal morphogenesis. As a group, the predicted translation rate of the 11 hyphal regulator

TFs did not change significantly after hyphal induction (Fig 5E). However, there was a huge

variation in the translation rates of the hyphal regulator TFs before hyphal stimulation and

some of them were very low. Strikingly, translation rates of these TFs increased dramatically

during hyphal growth while mRNA levels did not change much compared to the translation

rate (Figs 5F and S6). The mean translation rates of ribosomal proteins and total proteins were

similar, indicating selective translation regulation of the TFs. The Ume6, Sfl1, Brg1, Tec1, and

Fkh2 proteins were not detected in the uninduced cells while their mRNA levels were similar

to the median of total mRNAs (S4 Data). Using ribosome profiling, Mundodi et al. [60]

reported that many genes involved in hyphal growth showed reduced translational efficiency

(ribosome density) in contrast to our finding. However, due to biological factors such as differ-

ent translation elongation speed, ribosome queuing and the amino acid composition of the

nascent peptide chain, as well as technical issues, such as data normalization issues, ribosome

densities as measured by ribosome profiling do not necessarily reflect the protein output of the

ribosome [56,61]. Further work will be required to confirm whether these effects are due to

translation or another mechanism, such as increased protein stability [62,63]. However, the

results demonstrate that a post-transcriptional mechanism regulates key transcription factors

that are important for hyphal morphogenesis.

Discussion

The ability of C. albicans to switch between budding and hyphal morphologies contributes to

virulence by promoting invasive growth, escape from immune cells, and biofilm formation [1–

6]. The prevailing model is that the Cyr1 adenylyl cyclase acts as a master regulator by integrat-

ing signals from different hyphal inducers [3,5,9–11]. Although stimulation of Cyr1 to increase

cAMP levels can trigger hyphal growth, it is not clear that the failure of cyr1Δ/Δ cells to form

hyphae indicates that Cyr1 plays an essential role. The phenotype of cyr1Δ/Δ cells is compli-

cated by the fact that they grow slowly and have an abnormal physiology [12,13]. The identifi-

cation of faster growing cyr1Δ/Δ PR mutants that form filamentous cells in response to

inducers including serum, GlcNAc, and alkaline pH indicated the presence of alternative path-

ways that act in the absence of Cyr1 and cAMP [14]. In this study we demonstrated that the

improved growth of the PR mutants is due to mutation or deletion of one of the two copies of

BCY1, which encodes the negative regulatory subunit of PKA (Figs 1–3 and S2). This is

expected to increase PKA activity and confirms that an appropriate basal level of PKA activity

enables cells to grow better in the absence of cAMP. These results are also interesting in that

genomic analysis revealed that the different classes of PR mutants showed distinct mechanisms

for mutation of BCY1 or deletion of parts of the left arm of chromosome 2 (S1 Table), which

underscore how the plasticity of the C. albicans genome enables it to adapt to stress from muta-

tions or antifungal drugs [37,38,64,65]. It was also significant that the different chromosomal

changes improved growth to different extents, and that the degree of improved growth for the

different PR mutant classes did not correlate with their ability to form hyphae (Fig 1). This

indicated that the additional genes affected by the changes in chromosome 2 also contributed

to the ability of PR mutants to form hyphae.

Current models based on genetic evidence predict that PKA phosphorylates the Efg1 TF to

stimulate it to induce expression of hyphal genes [2,3,11,13,15,16]. However, we failed to
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detect phosphorylation of Efg1 in WT or PR13 cells, consistent with two previous phosphopro-

teomic studies [45,48]. In spite of this, the PR mutants were not only able to form hyphae, but

they also induced the expression of the expected set of hyphal-associated genes that includes

many virulence factors (Fig 3C). A further limitation of the current models is that several stud-

ies now question the role of hyphal-induced genes in promoting hyphal growth. For example,

the common core set of genes stimulated by a group of different hyphal inducers in C. albicans
do not account for the transition to hyphal growth [19]. In addition, under certain conditions

GlcNAc can stimulate hyphae without induction of hyphal-specific genes [20]. There also

appears to be a lack of TF specificity, as some hyphal regulatory TFs can be bypassed under

special environmental conditions [21], or by altered expression of the Cak1 protein kinase [23]

or the absence of a variant histone H3 [24]. In addition, hyphal growth was restored in a

cph1Δ/Δ efg1Δ/Δ mutant by a mutation in the SSN3 subunit of the Mediator complex [25].

Consistent with this, we found that haploinsufficiency of two global transcriptional regulators,

SRB9 (a component of Mediator) and SPT5, contributed to the improved filamentous growth

of the Class 2 mutants (S3 Fig). Altogether, these data suggest a new model that TFs are impor-

tant for creating the proper physiological environment for cells to undergo hyphal growth,

rather than inducing specific target genes that are directly involved in promoting filamentous

morphogenesis (Fig 6).

Fig 6. Integrative multi-omics profiling revealed new pathways that induce C. albicans hyphal formation in a cAMP-

independent manner. New insights into the mechanisms of hyphal morphogenesis were obtained by performing integrative multi-

omics profiling in C. albicans. Genetic changes in PR mutants were identified by performing genome analysis, gene-mapping by

CRISPR-Cas9, and transcriptome analysis. These studies showed that gene dosage effects on BCY1 (negative regulator of PKA) and

global transcription mechanisms promoted hyphal growth in the absence of cAMP. Integrating transcriptomic and proteomic data

revealed that the translation rate of some hyphal regulatory TFs increased dramatically during hyphal induction while their mRNA

levels did not, suggesting a special type of translational regulation promotes hyphal growth. Parallel comparisons of protein

production and phosphorylation revealed that phosphorylation by Hgc1-Cdc28 kinase and yeast casein kinase 1 (Yck2) increased

during hyphal induction, even in the absence of adenylyl cyclase, consistent with genetic studies indicating that these kinases play an

important role in hyphal growth. Altogether, these data suggest a new model that various hyphal inducers and TFs are predicted to

induce a new physiological state that promotes polarized filamentous growth, in part due to changes in protein phosphorylation.

https://doi.org/10.1371/journal.ppat.1009861.g006
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A perplexing aspect of hyphal induction is that it can be induced by such a broad range of dif-

ferent environmental and nutritional conditions (e.g. 37˚C, alkaline pH, nitrogen levels, GlcNAc,

certain amino acids) [2,3]. We suggest that there are many different pathways that can lead to a

physiological state that induces hyphal growth, which helps to explain why there does not appear

to be a common transcriptional response to different hyphal inducers. However, TFs can play a

role in inducing the appropriate state as mutation of TUP1 or overexpression ofUME6 is suffi-

cient to induce hyphal growth [16,66]. These TF mutants display changes in a wide range of

genes that can impact cell physiology. In addition, studies presented in Fig 5 indicate a role for

positive feedback in that induction of hyphal growth can lead to increased production of hyphal

TFs (Fig 6). This model also helps to explain other data that metabolic pathway mutants can

influence hyphal morphogenesis, such as mitochondrial mutants [2,67–69].

A further prediction of the model shown in Fig 6 is that the new physiological state is

expected to lead to activation of protein kinases such as Cdc28 and Yck2. These kinases have

been shown previously to be important for inducing hyphal growth in WT cells, and our phos-

phoproteomic data indicate that they are important in the absence of cAMP. In fact, it appears

that PR mutants are more reliant on Hgc1-Cdc28 than are WT cells (S5 Fig). An interesting

aspect of the phosphoproteomic data is that we identified a subset of proteins which contain

peptides that are phosphorylated on sites for both Cdc28 and Yck1. Although mutating single

sites in two of these proteins that are implicated in hyphal morphogenesis did not cause a

strong phenotype, it is possible that there are synergistic effects of Cdc28 and Yck2 via regula-

tion of a larger set of substrate proteins. Altogether, these results indicate that future studies on

hyphal signaling should focus on the roles that post-transcriptional and post-translational reg-

ulation play in promoting the changes in the morphogenesis pathways that mediate highly

polarized hyphal growth.

Materials and methods

Strains, culture conditions, and hyphal analysis

The C. albicans strains used in this study are described in S3 Table. C. albicans strains were

streaked fresh from storage at -80˚C onto YPD (1% yeast extract, 2% peptone, 2% glucose)

agar plates and then grown in rich YPD medium or in complete synthetic medium (SC) made

with yeast nitrogen base, select amino acids, and uridine. C. albicans transformants were

selected on YPD plus 200 μg/mL nourseothricin (NAT; Gold Biotechnology). NAT-sensitive

derivatives of cells carrying the SAT flipper were then obtained by growing cells on maltose

agar medium (1% yeast extract, 2% peptone, 2% maltose) for 2 days, and then several colonies

were spread on YPD plates containing 25 μg/mL of NAT and incubated for 2 days at 30˚C

[70]. NAT-sensitive cells formed smaller colonies than NAT-resistant parental strains.

Strain doubling times were determined from growth curves in YPD at 30˚C. Fresh over-

night cultures were diluted to a final concentration of ~0.05 OD660 in 5 mL YPD in test tubes

and then incubated at 30˚C on a tube roller. The OD660 was measured hourly for ~8 hours

until OD660 was>1.0. The reported doubling times are the averages of two biological replicates

each performed in duplicate.

To analyze hyphal formation in liquid media, cells were grown overnight at 30˚C in YPD,

and then inoculated into SC + 50 mM glucose + 10% bovine calf serum, or SC + 50 mM

GlcNAc medium. Samples were then incubated at 37˚C for the indicated time and then images

were captured using a Zeiss Axio Observer 7 inverted microscope equipped with a 40× objec-

tive differential interference contrast (DIC) optics and a Zeiss AxioCam 702 digital camera.

We counted both hyphae and pseudohyphae as filaments to make the image analysis consis-

tent. C. albicans cells were grown and induced to make hyphae in the same conditions for
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transcriptome, proteome, and phosphoproteome analyses. Galactose was used as a carbon

source because glucose represses expression of the GlcNAc transporter NGT1, which limits

hyphal induction [71]. C. albicans cells were grown at 37˚C to log phase (OD660 of 0.2 ~ 0.4) in

450 mL of SC + 50 mM galactose medium. For hyphal induction, 50 mL of pre-warmed 0.5 M

GlcNAc solution was added into the culture to make final concentration of 50 mM and the cul-

tures were incubated for 2 h at 37˚C. Cells were harvested by centrifugation, washed three

times with ice-cold ultrapure water, snap frozen on dry ice, and stored at −80˚C. Replicate

experiments were conducted independently on different days.

Strain construction

Deletion mutant strains were created using transient expression of CRISPR-Cas9 to facilitate the

genome engineering and limit transformation-induced genomic changes in C. albicans [41,72].

The methods were performed essentially as described previously [41,42]. Briefly, CaCAS9 expres-

sion and sgRNA expression cassettes were co-transformed into cells along with a repair template.

The CaCAS9 gene was codon optimized for expression in C. albicans [73]. The CaCAS9 expres-

sion cassette was PCR amplified from the plasmid pV1093, which was a kind gift from Dr. Valmik

Vyas [73]. The sgRNA expression cassette was constructed through single-joint PCR from the

plasmid pV1093 [41]. We used 20-bp target sequences of the sgRNA, as reported previously by

Vyas et al. [74] to target Cas9 to make a DNA double strand break at the target site (S4 Table).

When deleting large regions of chromosome 2 for gene mapping, two sgRNAs were used to cut

each side of the target region (see S1 Text). Repair templates were synthesized using the plasmid

pGR-NAT as a template, which contains the SAT1 flipper cassette [70]. The primers were

designed to include 60 to 80 bases of homology to the sequences upstream or downstream from

the target region. The oligonucleotides used in this study are listed in S5 Table. PCR was con-

ducted with Ex Taq (TaKaRa Bio, Inc.) in accordance with the CRISPR protocol (S1 Text).

BNI1 andMOB2 were mutated to prevent phosphorylation at the indicated sites using the

CRISPR-Cas9 method developed by Vyas et al. [73] The 20-bp target sequence of sgRNA was

cloned into pV1093 and correct clones were verified by DNA sequencing. The CRISPR expres-

sion plasmids were linearized by digestion with Kpn1 and Sac1 before transformation for effi-

cient targeting to the ENO1 locus. Repair templates were generated with two 60-base

oligonucleotides containing a 20-base overlap at their 30 ends centered on the desired site to

mutate a phosphorylation site. The repair templates were constructed by PCR primer exten-

sion to contain the desired phospho-site mutation as well as a unique restriction site to facili-

tate identification of appropriate transformants.

PCR products and linearized plasmids for transformation were purified and concentrated

using a GeneJET PCR purification kit (Thermo Fisher Scientific, Inc.). Electroporation was

used to introduce the DNA into cells following a previously described method [75]. An elec-

trocompetent cell suspension (40 μl) was added to aliquoted DNA, placed in 0.1 cm-gap elec-

troporation cuvettes, and electroporated on a Bio-Rad Gene Pulser at 1.5 kV. One milliliter of

0.5× YPD containing 1 M sorbitol was added immediately to the cuvette, and then the cell

mixture was incubated for 3 h at 30˚C before plating onto YPD + 200 μg/mL NAT agar. Natr

transformants were selected, and PCR genotyping of the transformants verified the genome

editing. When deleting large regions of chromosome 2 for gene mapping, we confirmed that

the deletions are heterozygous. As described in a previous paper [41], two PCR detection strat-

egies were designed to detect the wild-type allele and the deletion allele. More than 10 indepen-

dent transformants were tested for each deletion and around half of them had both WT and

deletion alleles (heterozygous deletion). We did not find any homozygous deletion mutants,

presumably due to the essential genes present in these regions of chromosome 2.
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Genome analysis

A 1 μg aliquot of the genomic DNA was prepared using the Illumina TruSeq PCR-free DNA HT

sample preparation kit with 450 bp insert size. Intact genomic DNA was sheared using the Cov-

aris sonicator (adaptive focused acoustics), followed by end-repair and bead-based size selection

of fragmented molecules. The size selected fragments then had adenines added to the 3’ ends of

the DNA, Illumina sequence adaptors ligated onto the fragments, followed by PCR amplification

and final library QC. A majority of the steps in this process were performed on the Caliper Sci-

Clone NGSx workstation (PerkinElmer), a robotics system developed and validated for auto-

mated library preparation. The library QC included a measurement of the average size of library

fragments using the Agilent BioAnalyzer, estimation of the total concentration of DNA by Pico-

Green (ThermoFisher), and a measurement of the yield and efficiency of the adaptor ligation pro-

cess with a quantitative PCR assay (Kapa) using primers specific to the adaptor sequence.

Sequencing was performed on the Illumina MiSeq instrument at 2 × 150 bp read length.

Reads were first trimmed and quality filtered using skewer v0.1.127 [76] with the following

parameters (-q 20 -Q 20 -l 50 -n yes). Reads were then mapped to the C. albicans SC5314

genome (Assembly 21) [77] using BWA mem v0.7.15 [78]. Duplicates were marked and read

groups added using the PICARD MarkDuplicates and AddOrReplaceReadGroups programs.

Indels were realigned using GATK 3.3 RealignerTargerCreator and IndelRealigner [79]. A set

of high-quality variants with variant scores of>100 was identified using GATK 3.3 Haplotype-

Caller on all samples simultaneously. These were then set as known sites when performing

base quality recalibration using GATK 3.3 PrintReads, AnalyzeCovariates and BaseRecalibra-

tor to produce finished bam files. GATK 3.3 HaplotypeCaller was then used again to call vari-

ants across samples to produce a final vcf file. snpEff 4.2 was used to annotate variants using a

custom built database based on the C. albicans SC5314 genome (Assembly 21) [77].

Transcriptome analysis

RNA extraction, library preparations, and sequencing reactions were conducted at GENEWIZ,

LLC. (South Plainfield, NJ, USA). Total RNA was extracted from fresh frozen cell pellets (108

cells per sample) using Qiagen RNeasy Plus Universal mini kit following manufacturer’s

instruction (Qiagen). Extracted RNA samples were quantified using Qubit 2.0 Fluorometer

(Life Technologies) and RNA integrity was checked using Agilent TapeStation 4200 (Agilent

Technologies). RNA sequencing libraries were prepared using the NEBNext Ultra II RNA

Library Prep Kit for Illumina following manufacturer’s instructions (NEB). Briefly, mRNAs

were first enriched with Oligo(dT) beads. Enriched mRNAs were fragmented for 15 min at

94˚C. First strand and second strand cDNAs were subsequently synthesized. cDNA fragments

were end repaired and adenylated at 3’ ends, and universal adapters were ligated to cDNA frag-

ments, followed by index addition and library enrichment by limited-cycle PCR. The sequenc-

ing libraries were validated on the Agilent TapeStation (Agilent Technologies), and quantified

by using Qubit 2.0 Fluorometer (Invitrogen) as well as by quantitative PCR (KAPA Biosys-

tems). The sequencing libraries were pooled and clustered on 1 lane of a flowcell. After cluster-

ing, the flowcell was loaded on the Illumina HiSeq instrument (4000 or equivalent) according

to manufacturer’s instructions. The samples were sequenced using a 2 × 150bp Paired End

(PE) configuration. Image analysis and base calling were conducted by the HiSeq Control Soft-

ware (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq was converted into

fastq files and de-multiplexed using Illumina’s bcl2fastq 2.17 software. One mismatch was

allowed for index sequence identification.

We performed quality profiling, adapter trimming, read filtering, and base correction for

raw data using an all-in-one FASTQ preprocessor, fastp [80]. The high-quality paired-end

PLOS PATHOGENS Regulation of C. albicans hyphal morphogenesis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009861 August 16, 2021 16 / 27

https://doi.org/10.1371/journal.ppat.1009861


reads were mapped to the C. albicans SC5314 genome (Assembly 22) [81] using HISAT2 [82].

StringTie [83] was used to assemble the read alignments obtained in the previous step and esti-

mate transcript abundances. Absolute mRNA abundance was expressed as fragments per kilo-

base of transcript per million mapped reads (FPKM). Differential expression analyses were

conducted using DESeq2 [84] package from Bioconductor [85] on R.

Western blotting

The fresh frozen cell pellets (109 cells per sample) were lysed using the same volume (~100 μL)

of 2× SDS lysis buffer (5% SDS, 20% glycerol, 125 mM Tris-HCl, pH 6.8) supplemented with

cOmplete EDTA-free protease inhibitor cocktail (Roche), 10 mM activated sodium orthovana-

date, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1% phosphatase inhibitor

cocktail 2 (Millipore-Sigma), 1% phosphatase inhibitor cocktail 3 (Millipore-Sigma). Zirconia

beads were added, and the cells were mechanically disrupted by 3 rounds of 1-min bead beat-

ing and 1-min cooling on ice. The samples were boiled at 95˚C for 5 min. After centrifugation

at 14,000 rpm for 5 min at 4˚C to remove cellular debris, the supernatant was transferred to a

new tube and this step was repeated. The protein concentration was measured using a BCA

protein assay kit (Thermo Fisher Scientific). 2-Mercaptoethanol and bromophenol blue were

added to 5% and 0.002% final concentration, respectively. The samples were boiled at 95˚C for

5 min. Equal amounts of proteins were resolved by SDS-PAGE using the Mini-PROTEAN

Tetra Cell system (Bio-Rad) and Tris/glycine/SDS running buffer. Subsequently, proteins were

transferred to a nitrocellulose membrane (Amersham) using a semi-dry transfer apparatus.

The membranes were blocked with 5% nonfat dry milk in TBS-T buffer (20 mM Tris-HCl, pH

7.6, 150 mM NaCl, 0.2% Tween-20) for 30 min and probed with CaBcy1 rabbit polyclonal

antibody (GenScript) or CaTpk2 rabbit polyclonal antibody (GenScript), at 1:1,000 dilution in

5% nonfat dry milk in TBS-T buffer plus 0.5% sodium azide for 2 hours at room temperature.

The membranes were then washed three times with TBS-T and incubated with an IRDye

800CW goat anti-rabbit IgG secondary antibody (LI-COR Biosciences) diluted at 1:10,000 in

TBS-T. The membranes were washed three times with TBS-T, stored in TBS buffer, and visual-

ized by scanning with an Odyssey CLx infrared imaging system (LI-COR Biosciences). For

Coomassie stained gels, SDS-PAGE gels were performed as described and then stained in Coo-

massie Brilliant Blue solution (0.1% Coomassie R-250, 50% methanol, 40% water, 10% glacial

acetic acid) overnight. Gels were incubated for 6 h in destaining solution (50% water, 40%

methanol, 10% glacial acetic acid), rinsed with water, and analyzed by scanning with an Odys-

sey CLx infrared imaging system (LI-COR Biosciences). Resulting images were analyzed and

quantified using ImageStudio software (LI-COR Biosciences).

Preparation of samples for mass spectrometry

The frozen cell pellet samples (5 × 109 cells per sample) were processed by Tymora Analytical

Operations (West Lafayette, IN). For lysis, 200 μL of lysis buffer (8M urea in 50mM Tris-Cl

pH 7.5, supplemented with phosphatase inhibitor cocktail 3 [Millipore-Sigma]) was added to

each of the pellets and pipetted up and down several time to lyse a portion of the pellet. The

samples were incubated for 10 min at 37˚C, pulse-sonicated several times with a sonicator

probe, and incubated again for 10 min at 37˚C. The lysed samples were then centrifuged at

16,000 g for 10 min to remove debris and the supernatant portions collected. BCA assay was

carried out to calculate the protein concentration and all samples were normalized by protein

amount to 200 μg each. Then 5 mM dithiothreitol was added and the proteins were incubated

at 37˚C for 15 min to reduce the cysteine residues, and then alkylated by incubation in 15 mM

iodoacetamide at room temperature for 45 min in the dark. The samples were diluted 3-fold
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with 50 mM triethylammonium bicarbonate and digested with Lys-C (Wako) at 1:100 (w/w)

enzyme-to-protein ratio for 3 h at 37˚C. The samples were further diluted 3-fold with 50 mM

triethylammonium bicarbonate and trypsin was added to a final 1:50 (w/w) enzyme-to-protein

ratio for overnight digestion at 37˚C. After digestion, the samples were acidified with trifluor-

oacetic acid to a pH< 3 and desalted using Top-Tip C18 tips (Glygen) according to manufac-

turer’s instructions. A 1% portion of each sample was used for direct proteomics analysis and

the remainder of each sample was used for phosphopeptide enrichment. The samples were

dried completely in a vacuum centrifuge and stored at -80˚C. The 99% portion of each sample

was used for phosphopeptides enrichment using PolyMAC Phosphopeptide Enrichment Kit

(Tymora Analytical) according to the manufacturer’s instructions.

Liquid chromatography with tandem mass spectrometry (LC-MS/MS)

analysis

The full phosphopeptide sample and 1 μg of the peptide sample each was dissolved in 10.5 μl

of 0.05% trifluoroacetic acid with 3% (v/v) acetonitrile containing spiked-in indexed Retention

Time Standard artificially synthetized peptides (Biognosys). The spiked-in 11-peptides stan-

dard mixture was used to account for any variation in retention times and to normalize abun-

dance levels among samples. Ten microliters of each sample were injected into an Ultimate

3000 nano UHPLC system (Thermo Fisher Scientific). Peptides were captured on a 2-cm

Acclaim PepMap trap column and separated on a heated 50-cm Acclaim PepMap column

(Thermo Fisher Scientific) containing C18 resin. The mobile phase buffer consisted of 0.1%

formic acid in ultrapure water (buffer A) with an eluting buffer of 0.1% formic acid in 80% (v/

v) acetonitrile (buffer B) run with a linear 90-min gradient of 6–30% buffer B at flow rate of

300 nL/min. The UHPLC was coupled online with a Q-Exactive HF-X mass spectrometer

(Thermo Fisher Scientific). The mass spectrometer was operated in the data-dependent mode,

in which a full-scan MS (from m/z 375 to 1,500 with the resolution of 60,000) was followed by

MS/MS of the 15 most intense ions (30,000 resolution; normalized collision energy—28%;

automatic gain control target [AGC] - 2E4, maximum injection time—200 ms; 60 sec

exclusion).

LC-MS data processing

The raw files were searched directly against the C. albicans database updated in 2019 with no

redundant entries, using Byonic (Protein Metrics) and Sequest search engines loaded into Pro-

teome Discoverer 2.3 software (Thermo Fisher Scientific). MS1 precursor mass tolerance was

set at 10 ppm, and MS2 tolerance was set at 20ppm. Search criteria included a static carbami-

domethylation of cysteines (+57.0214 Da), and variable modifications of phosphorylation of S,

T and Y residues (+79.996 Da), oxidation (+15.9949 Da) on methionine residues and acetyla-

tion (+42.011 Da) at N terminus of proteins. Search was performed with full trypsin/P diges-

tion and allowed a maximum of two missed cleavages on the peptides analyzed from the

sequence database. The false-discovery rates of proteins and peptides were set at 0.01. All pro-

tein and peptide identifications were grouped and any redundant entries were removed. Only

unique peptides and unique master proteins were reported.

Label-free quantitation analysis

All data were quantified using the label-free quantitation node of Precursor Ions Quantifier

through the Proteome Discoverer v2.3 (Thermo Fisher Scientific). For the quantification of

proteomic and phosphoproteomic data, the intensities of peptides were extracted with initial

precursor mass tolerance set at 10 ppm, minimum number of isotope peaks as 2, maximum
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ΔRT of isotope pattern multiplets– 0.2 min, PSM confidence FDR of 0.01, with hypothesis test

of ANOVA, maximum RT shift of 5 min, pairwise ratio-based ratio calculation, and 100 as the

maximum allowed fold change. The abundance levels of all peptides/phosphopeptides and

proteins/phosphoproteins were normalized to the spiked-in internal iRT standard. For calcu-

lations of fold-change between the groups of proteins, total protein or phosphoprotein abun-

dance values were added together and the ratios of these sums were used to compare proteins

within different samples. When the protein abundance could not be determined, pseudo value

(1) was given for logarithm.

Phosphoproteomic data analysis

Phosphopeptide abundance values were normalized by protein abundance values [86,87]. Fif-

teen-amino acid sequences around the phosphorylation site was extracted from the phospho-

proteome using a custom Microsoft Excel spreadsheet. rmotifx [88] package on R was used to

find overrepresented patterns from the 15-aa sequence set. Potential substrates of 6 kinases

(Cdc28, PKA, Yck2, MAPK, Cbk1, and Gin4) were predicted from the phosphoproteome

based on their consensus phosphorylation motifs. The following consensus motifs were

retrieved from the Scansite 4.0 database [89]; Cdc28 ([S/T]-P-x-K/R); PKA (R/K-R/K-x-[S/

T]); Yck2 ([S/T]-x-x-[S/T]); MAPK (P-x-[S/T]-P); Cbk1 (H-x-K/R-x-x-[S/T] or H-x-x-K/R-x-

[S/T]); Gin4 (R-S-x-[S/T]). We next utilized a gene set enrichment analysis algorithm, GSEA

[50,90], to infer kinase activity based on the substrate phosphorylation levels from the

phosphoproteome.

Supporting information

S1 Fig. Hyphal induction rate of the C. albicans strains. (A) The plot shows the percent of fil-

amentous cells in YPD medium at 30˚C (-control). (B) Graph indicating the percent of fila-

mentous cells after growth in GlcNAc medium. Cells were grown in liquid medium

containing 50 mM GlcNAc to induce hyphal growth at 37˚C for 2 h and then filamentous cells

were counted. (C) The percent of filamentous cells in YPD medium at 30˚C; green, weak fila-

mentation; yellow, intermediate filamentation; pink, strong filamentation. Deletions indicated

on the left are on chromosome 2 and they are heterozygous; the cells retain a wild-type version

of chromosome 2. (A, B, and C) Shown is the mean ± SD of at least 3 independent experiments

with at least 100 cells counted for each condition. Statistical analysis was performed using one-

way ANOVA with Dunnett’s multiple comparisons test comparing the strains with the WT or

parental strain; NS p> 0.05, �� p< 0.01, ��� p< 0.001.

(TIF)

S2 Fig. Expression levels of PKA subunits during hyphal induction. (A) Western blot detec-

tion of the negative regulatory subunit (Bcy1) and the catalytic subunit (Tpk2) of PKA. Cells

were grown at 37˚C in liquid galactose medium and then 50 mM GlcNAc was added for 2 h to

induce hyphae. The sizes of the protein standards (kDa) are indicated on the right of each blot.

Images shown are representative of three independent experiments. (B-D) Relative levels of

Bcy1 (B), Tpk2 (C), and Tpk2/Bcy1 ratio (D) compared to the WT 0-h samples. Shown is the

mean ± SD of 3 independent experiments. Expression levels were normalized to total proteins

on Coomassie-stained gels. Statistical analysis was performed using one-way ANOVA with

Dunnett’s multiple comparisons test comparing the strains with the WT; NS p> 0.05, �

p< 0.05, �� p< 0.01, ��� p< 0.001.

(TIF)
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S3 Fig. Gene-mapping analysis of the 10-kb region of chromosome 2 identified a role for

SRB9 and SPT5 in hyphal induction in the PR mutants. The single, double, and triple het-

erozygous deletion mutants of SRB9, SPT5, and SSL1 were created in KM20 strain background

(Chr2L 90kb!250kbΔ bcy1Δ/BCY1 cyr1Δ/Δ). The plot shows the percent of filamentous cells

in GlcNAc medium. Cells were grown in liquid medium containing 50 mM GlcNAc to induce

hyphal growth at 37˚C for 2 h and then filamentous cells were counted.; yellow, intermediate

hyphal induction; pink, strong hyphal induction. Statistical analysis was performed using one-

way ANOVA with Dunnett’s multiple comparisons test comparing the strains with the paren-

tal strain; NS p> 0.01, ��� p< 0.001.

(TIF)

S4 Fig. Correlation analysis and principal component analysis (PCA) of the normalized

RNA-seq dataset. (A) Representative null comparisons of the biological replicates show very

high reproducibility (r� 1.00) in the RNA-seq dataset. Each dot represents the transcript level

of individual gene in the scatter plots. We compared the biological replicates of WT−control

and WT+GlcNAc. rLog, regularized log transformation. (B) PCA plot shows clusters of biolog-

ical replicates based on their similarity in transcriptome.

(TIF)

S5 Fig. Deletion of Cdc28 cyclin (HGC1) and casein kinase 1 (YCK2) disrupt normal

hyphal growth. (A) Deletion of Cdc28 cyclin (HGC1) and casein kinase 1 (YCK2) disrupt nor-

mal hyphal growth in WT and PR13 backgrounds. (B) The plot shows the percent of filamen-

tous cells in YPD medium at 30˚C (-control) and after 2-h growth in GlcNAc medium at 37˚C

(+GlcNAc). Shown is the mean ± SD of at least 3 independent experiments with at least 100

cells counted for each condition. Statistical analysis was performed using one-way ANOVA

with Dunnett’s multiple comparisons test comparing the strains with the WT or parental

strain; ns p> 0.05, ���� p< 0.0001. (C) Phospho-mutants of Mob2 and Bni1 did not show an

obvious defect in hyphal growth. (A and C) The strains indicated at the top were grown in the

liquid medium indicated on the left, and then hyphal induction was assessed microscopically.

Cells were grown in liquid medium containing 15% serum or 50 mM N-acetylglucosamine

(GlcNAc) to induce hyphal growth. Cells were incubated at 37˚C for 2 h and then photo-

graphed. Scale bar, 10 μm.

(TIF)

S6 Fig. Protein-to-mRNA ratios of hyphal regulator TFs during GlcNAc induction in

PR13. The relative change in protein-to-mRNA ratio for the selected 11 hyphal regulators TFs

is shown in yellow, relative changes in mRNA expression are shown in blue. The protein-to-

mRNA ratio of RIM101 and RFG1 increased dramatically (log2 fold change> 4) during

hyphal induction while mRNA levels did not.

(TIF)

S1 Table. Genome analysis summary. a 23-bp telomere repeat sequence, CACCAAGAAGT-

TAGACATCCGTA.

(DOCX)

S2 Table. Potential phosphorylation substrates of Cdc28 and Yck2 during hyphal induc-

tion. a Descriptions and deletion phenotypes were obtained from Candida Genome Database.

(DOCX)

S3 Table. C. albicans strains used in this study.

(DOCX)
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