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Abstract

Genetic variation in the human gut microbiome is responsible for conferring a number of crucial phenotypes like the ability to digest

food and metabolize drugs. Yet, our understanding of how this variation arises and is maintained remains relatively poor. Thus, the

microbiome remains a largely untapped resource, as the large number of coexisting species in the microbiome presents a unique

opportunity to compare and contrast evolutionary processes across species to identify universal trends and deviations. Here we

outline features of the human gut microbiome that, while not unique in isolation, as an assemblage make it a system with unpar-

alleled potential for comparative population genomics studies. We consciously take a broad view of comparative population

genetics, emphasizing how sampling a large number of species allows researchers to identify universal evolutionary dynamics in

addition to new genes, which can then be leveraged to identify exceptional species that deviate from general patterns. To highlight

the potential power of comparative population genetics in the microbiome, we reanalyze patterns of purifying selection across�40

prevalent species in the human gut microbiome to identify intriguing trends which highlight functional categories in the microbiome

that may be under more or less constraint.
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Introduction

The human microbiome is a complex ecosystem composed of

hundreds of interacting species. Although the diversity of the

microbiome has been extensively studied at a species level,

each species harbors genetic diversity that is quite varied

across hosts as well as within a host over time (Zhu et al.

2010, 2019; Faith et al. 2013; Schloissnig et al. 2013). This

genetic diversity can confer a number of crucial traits to

microbes as well as their hosts, such as the ability to digest

food, metabolize drugs, and evade antibiotics. However, our

understanding of how these genetic variants arise and segre-

gate via population genetic forces—for example, random ge-

netic drift, mutation, recombination, selection, and

migration—across the hundreds of species that call our guts

home, is relatively nascent (Garud and Pollard 2020).

Our knowledge of how evolution proceeds in a community

context is similarly underdeveloped. Much of our intuition

about the evolution of microorganisms come from studying
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individual species in isolation of one other (Herron and

Doebeli 2013; Lieberman et al. 2014; Tenaillon et al. 2016;

Good et al. 2017; Xue et al. 2017; Bruger and Marx 2018). By

contrast, the microbiome is composed of hundreds of inter-

acting species and strains in which both ecological and evo-

lutionary forces simultaneously act (Good and Hallatschek

2018; Garud and Pollard 2020). Specifically, changes in the

genetic composition of resident lineages via the evolutionary

processes of random genetic drift, mutation, selection, and

recombination can occur on the same timescale as changes in

strain frequencies via ecological processes. These simulta-

neous ecological and evolutionary processes within the hu-

man gut microbiome affords a unique opportunity: rather

than studying one species at a time, we can study the popu-

lation genetics and ecology of many (�40) species almost

simultaneously. Thus, the human gut microbiome is a model

system for studying comparative population genetics across

coexisting species in a natural environment.

Comparative population genetics is a rich area of study

that has yielded insights into novel functional elements and

population genetic processes in macroscopic organisms rang-

ing from mammals (Davydov et al. 2010; Pollard et al. 2010;

Lindblad-Toh et al. 2011; Romiguier et al. 2014) to Drosophila

melanogaster (Clark et al. 2007; Lawrie and Petrov 2014).

Now with the availability of hundreds of thousands of new

genomes from the deep sequencing of commensal microbes

(Almeida et al. 2019; Nayfach et al. 2019; Pasolli et al. 2019),

similar comparative analyses can be made across microbial

species and populations. However, unlike typical macroorgan-

isms, the microbiome provides a rich opportunity to under-

stand how ecological interactions between species modulate

evolutionary dynamics within individual species.

A Model System for Comparative
Population Genetics: The Human Gut
Microbiome

The human gut microbiome is a compelling system for com-

parative population genetics for several reasons. First, the

short time scales on which evolutionary dynamics occur in

the microbiome makes it possible to witness evolution in ac-

tion as well as how evolution interacts with ecology (Garud et

al. 2019; Poyet et al. 2019; Zhao et al. 2019; Roodgar et al.

2020; Yaffe and Relman 2020). Second, the meta-population

structure of human microbiomes lends itself to treating meas-

urements in spatially distant hosts as biological replicates,

from which we can identify general principles. Third, given

the massive amounts of data now available from thousands of

individuals from around the world (Almeida et al. 2019; Pasolli

et al. 2019), the time is ripe for the study of evolution in the

microbiome. Fourth, the ability to experimentally manipulate

this system (Roodgar et al. 2020) as well as its members

(Barroso-Batista et al. 2014; Zhao et al. 2019; Ramiro et al.

2020) enables validation of computational predictions and

discovery of new principles. Finally, the strong relevance of

the microbiome to our health makes it a medically important

system (Ley et al. 2005; Jakobsson et al. 2010; Duvallet et al.

2017; Thomas et al. 2019). Thus, comparative population

genetic studies in the microbiome will not only elucidate gen-

eral principles about the microbiome, but also the broader

field of population genetics. Here we elaborate on these fun-

damental facets of the microbiome that make it an ideal sys-

tem to study comparative population genetics in a naturally

complex ecosystem.

Rapid Evolution on Short Timescales

With relatively short generation times of �1–10 days in the

human gut (Korem et al. 2015), microbes have the potential

to rapidly evolve. This enables temporally resolved analyses

that are almost impossible to replicate in macroscopic organ-

isms. A sense of the evolutionary timescale of the human

microbiome is best illustrated through a back-of-the-

envelope calculation: given the low end of the range of gen-

eration times for the gut microbiome of �1 day (Korem et al.

2015; Milo and Phillips 2016), by the time a host reaches

reproductive age, the microbiome can evolve on a timescale

similar to that of the entire human species, roughly �10,000

generations (Moorjani et al. 2016; Scerri et al. 2018).

The ability to sample populations over a large number of

generations can alter how evolutionary biologists approach

their questions. Instead of relying predominantly on phyloge-

netic reconstruction from static data, researchers can effec-

tively observe evolution in real time. Over the course of just a

few months, new genotypes can emerge and recombine (Lin

and Kussell 2017; Garud et al. 2019; Poyet et al. 2019; Zhao

et al. 2019; Yaffe and Relman 2020; Zheng et al. 2020), and

over extended time scales ultimately become lost or fixed.

However, the necessary temporal resolution of sampling

remains subject to the researcher’s question, as short-term

adaptation in response to a temporary environmental pertur-

bation (e.g., a host consuming antibiotics over a few weeks)

may require denser sampling than in a constant environment.

Replication across Hosts

That the human gut microbiome can be viewed a quasi-

closed system holds implications for the investigation of evo-

lutionary dynamics. Specifically, the physical separation of the

guts of different hosts means that each host can be treated as

a replicate evolution experiment, an observation that has

been summarized by the captivating moniker “seven billion

microcosms” (Lieberman 2018). This level of replication can

be leveraged to identify targets of positive selection that re-

currently accumulate fixation events in independent hosts

(i.e., parallel evolution; Xue et al. 2017; Bertels et al. 2019;

Lieberman et al. 2014; Zhao et al. 2019; Poyet et al. 2019 ). By

combining large cohort sizes with temporally resolved sam-

pling we can also examine how these signatures of parallelism

Shoemaker et al. GBE

2 Genome Biol. Evol. 14(1) doi:10.1093/gbe/evab116 Advance Access publication 24 May 2021



change over time, allowing us to dissect the temporal dynam-

ics of adaptation (Barroso-Batista et al. 2014). For example,

targets of rapid adaptation typically harbor a disproportionate

number of sites with strong beneficial fitness effects, leading

to the fixation of multiple mutations within a short period of

time (i.e., “coupon collecting”; Good et al. 2017).

Alternatively, if the fitness effects of sites in a gene depend

on whether prior mutations have fixed elsewhere in the ge-

nome, then the time between fixation events will be large

(i.e., historical contingency; Gould 1990; Blount et al. 2008

). The benefits of large cohorts are not limited to detecting

adaptation. With large cohorts, we can also observe deleteri-

ous alleles segregating at extremely low frequencies that are

likely subject to purifying selection (Lawrie and Petrov 2014).

Combined with exciting recent theoretical developments

(Neher and Shraiman 2012; Nicolaisen and Desai 2012;

Cvijovi�c et al. 2018; Good 2020), the replication across hu-

man gut microbiomes lends itself naturally to examining the

evolutionary dynamics of purifying selection.

We note that whether replicate observations can, or need

to, be treated as independent samples likely depends on the

researcher’s question. If a researcher is examining evolution-

ary dynamics where identity-by-descent is a cofounding var-

iable, they may wish to exclude species where the assumption

of independence is unlikely to hold (e.g., extensive gene flow

eroding spatial structure). For other analyses, high rates of

gene flow among a set of species may serve as a benefit,

providing replicate observations from which migration can

be inferred.

Ecology and Evolution Frequently Interact

It is becoming increasingly clear that mutations in many mi-

crobial populations do not fix or become extinct, and instead

remain at intermediate frequencies for extended periods of

time (Good et al. 2017; Good and Hallatschek 2018). This

“strain” level structure constitutes a form of ecology that

exists below the taxonomic level of species, and is commonly

found within hosts for most gut microbiota (Truong et al.

2017; Garud et al. 2019). The sheer prevalence of strain struc-

ture in the human microbiome and the fact that they can

differ on the order of a few nucleotides (Goyal et al. 2021)

suggests that ecological and evolutionary dynamics occur on

similar timescales in microbial systems, contrary to the histor-

ical belief that evolutionary timescales are longer than ecolog-

ical timescales (Slobodkin 1980). For example, strain

frequencies can fluctuate on the same time scale on which

they acquire new genetic adaptations (Garud et al. 2019;

Zhao et al. 2019). This observation, along with the relative

ease with which a large number of species can be sampled

across hosts, suggests that the human gut microbiome is a

system with unmatched potential for the exploration of eco-

evolutionary dynamics.

The presence of overlapping ecological and evolutionary

timescales in the microbiome has spurred empirical and the-

oretical efforts to characterize eco-evolutionary interactions

within the gut. A prime example is a recent mathematical

model that describes how the frequency of a strain can

change over time due to the acquisition of de novo mutations

that affect the consumption of environmentally supplied

resources and overall fitness (Good et al. 2018). Thus, evolu-

tion can affect ecological competition between strains with

resource consumption as a mediating factor, which can ulti-

mately alter community composition and structure. However,

it is unlikely that eco-evolutionary interactions within the gut

can be sufficiently captured by accounting for environmen-

tally supplied resources alone. Rather, microorganisms often

secrete secondary metabolic compounds, supplying addi-

tional resources that can be consumed by other species (i.e.,

cross-feeding; Fritts et al. 2021; Carlson et al. 2018 ). This

metabolic dependency promotes species coexistence and

becomes increasingly likely in communities with many species,

an ecological bedrock that supports subsequent coevolution

(D’Souza et al. 2018; Lilja and Johnson 2019). The widespread

nature of this phenomenon may explain empirical patterns

where it appears as though the arrow of causation between

evolution and ecology is reversed, a prominent example being

that the evolutionary diversification rate of a species is corre-

lated with the number of species in its community (Madi et al.

2020).

Experimental Manipulation

Although a natural system enables researchers to study com-

plex phenomena that cannot be recapitulated exactly in the

laboratory, some degree of experimental manipulation is nec-

essary to validate predictions and generate new insights. Over

the last few years, substantial progress has been made toward

characterizing the evolutionary dynamics of adaptation in lab-

oratory microbial populations. For example, lineage tracking

via mass barcoding has allowed the distribution of fitness

effects of individual de novo mutations to be inferred in cer-

tain species (Levy et al. 2015). As for the long-term dynamics

of adaptation, theoretical progress has primarily been driven

by contributions from statistical physics (Tsimring et al. 1996;

Rouzine et al. 2003; Desai and Fisher 2007; Fisher 2013),

where adaptation can be modeled as a distribution of fitness

values that increase over time as existing variants fix and de

novo mutations arise (i.e., the staircase model; Good and

Hallatschek 2018). This theoretical progress was leveraged

alongside lineage tracking to demonstrate that the traveling

wave is an appropriate model of microbial adaptation over an

extended timescale (Nguyen Ba et al. 2019), a conclusion that

may be pertinent for understanding the adaptive dynamics of

strains within the human gut microbiome.

The utility of these experimental tools is not restricted to

the ecology-free single-species cases. For example, gene
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deletion via transposon mutagenesis libraries have been par-

ticularly effective for identifying loci that confer a growth ad-

vantage in environments with different resources (Cain et al.

2020) and different sets of cooccurring species (Thibault et al.

2019). These experiments have also been useful for species

isolated from the gut (Ruiz et al. 2013) and in the gut micro-

biome of model organisms (Powell et al. 2016; Zimmermann

et al. 2019; Barreto et al. 2020; Barroso-Batista et al. 2020;

Ludington and Ja 2020). Thus, gene deletion experiments can

serve as a compliment to traditional comparative population

genetic analyses, allowing us to test hypotheses formed from

metagenomic observational studies. Although all these stud-

ies fall short of true in vivo manipulation of human guts, they

are useful approximations that allow for high-throughput

manipulations to be performed and evolutionary and ecolog-

ical hypotheses to be tested.

Relevance to Health

The human microbiome is tightly associated with human

health. The species composition of the gut microbiome is

known to be essential for proper immunological (Belkaid

and Hand 2014), neurological (Yano et al. 2015), and meta-

bolic development (Rowland et al. 2018), and is associated

with a number of human diseases including colorectal cancer,

diabetes (Vallianou et al. 2018), and obesity (Ley et al. 2005,

2006). Although the connection of the human microbiome to

host health has been primarily studied at the species level,

genetic variants in the microbiome play a crucial role for

health as well. Specifically, microbiome genetic variants can

confer a number of critical traits to human hosts, including the

digestion of new foods (Hehemann et al. 2010; Kenny et al.

2020), antibiotic resistance (Gautam et al. 2018), and the

metabolization of drugs (Spanogiannopoulos et al. 2016). A

comparative genomics approach will enable the discovery of

new microbiome genetic variants (Sberro et al. 2019), which

may ultimately be useful for the future development of effec-

tive microbiome therapies.

Lessons from Comparative Population
Genetics in the Microbiome

Although our understanding of the microbiome and the dis-

cipline of comparative population genetics have rapidly ex-

panded since the emergence of next-generation sequencing

almost two decades ago, their intersection is relatively recent.

Therefore, the potential of comparative population genetics in

the microbiome is still being realized. Here we present three

goals for the future of comparative population genetics: the

need to identify 1) previously unknown functional elements of

microbial genomes, 2) evolutionary dynamics common to all

species in the gut microbiome, and 3) individual species and

genomic features that deviate from general patterns.

Inference of Functionality

Currently, the annotation of genes in the microbiome and our

understanding of their functionality is severely lacking, with

an estimated 40% being “hypothetical” (Almeida et al.

2019). Comparative population genetics has the potential

to shed light on the functions of existing hypothetical genes

and assist with the identification of new ones. Much of the

utility of comparative population genetics derives from the

neutral theory of molecular evolution, which predicts that if

mutations in functional regions of genomes tend to be dele-

terious, those regions will evolve at a slower rate than effec-

tively neutral nonfunctional regions (Kimura 1983). This

constraint allows for conserved elements of the genome to

be identified between highly diverged species; a

“phylogenetic footprint” (Lawrie and Petrov 2014). Using

this basic assumption, comparative genomic analyses across

groups of macroorganisms as diverse as Drosophila and mam-

mals have yielded insight into novel proteins (Clark et al.

2007; Lawrie and Petrov 2014). Now, recent efforts have

been made to apply this approach to the microbiome

(Fremin and Bhatt 2020). Specifically, Sberro et al. (2019) re-

cently performed a comparative analysis on shotgun micro-

biome metagenomic data and discovered thousands of novel

small genes. Among their discoveries was a novel small

ribosome-associated protein that seems to be transcribed

and translated at high levels. Despite the fundamental func-

tional significance of this protein, it may have been missed

due to the historical focus on model organisms such as E. coli

and common pathogens.

However, there is additional justification to claim that

microorganisms harbor a substantial number of unannotated

functional elements. Population genetic theory coupled with

cellular energetics predicts that the vast majority of unanno-

tated genes within the gut microbiome likely play some func-

tional role (Lynch and Marinov 2015; Martinez-Gutierrez and

Aylward 2019). For example, a single nonfunctional nucleo-

tide within a microbial genome is visible to purifying selection

(Lynch and Marinov 2015), a stark contrast to macroorgan-

isms where junk DNA is highly prevalent (Lynch 2007).

Coupled with the higher gene density in microorganisms

due to overlapping open reading frames (Johnson and

Chisholm 2004), this prediction suggests that the gut micro-

biome is a particularly apt system for researchers who wish to

leverage statistical evidence provided by comparative popula-

tion genomics to confirm the purported functionality of a

given gene. Indeed, researchers are likely already acting on

this prediction, as recent efforts combined comparative geno-

mics with RNA-seq to identify �2,000 novel structural RNAs

in the microbiome (Fremin and Bhatt 2020). With hundreds of

species harboring genomes with high gene density across

billions of hosts, the gut microbiome is still very much a pro-

verbial “gold rush” for the discovery and characterization of

novel proteins and RNAs.
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Robust Evolutionary Patterns

Arguably, it is necessary to gain some degree of knowledge

regarding the typical evolutionary dynamics of a species in a

given system before comparisons between species can be

performed. At first glance, it would appear as if the goal of

identifying general evolutionary patterns in the human gut

microbiome is hopeless. There are few cases where popula-

tion geneticists would say that we have sufficient knowledge

of the evolutionary dynamics of one species, much less hun-

dreds or thousands of species that interact in the same envi-

ronment. Operating under this assumption, we would

conclude that the complexity of the microbiome is irreducible.

This is not entirely an unjustified claim, since if one is inter-

ested in the evolutionary dynamics of an individual species,

how can those dynamics be sufficiently characterized if you

cannot examine an isolated species in vivo?

The fault here is the idea that we need to understand the

dynamics of individual species to understand the general dy-

namics of the system. Instead, progress can be made by tem-

porarily abandoning the Cartesian framework that is

ubiquitous in traditional biology (Levins and Lewontin 1987)

and embracing an alternative approach, where we exchange

determinism for a statistical property, the average over an

ensemble of species. This rationale is essentially what physi-

cists realized in the 19th century (Pathria and Beale 2011) and

has been applied in recent years to examine the ecological

dynamics of microorganisms, through the development of

mathematical models (Barbier and Arnoldi 2017; Advani et

al. 2018) as well as the investigation of empirical data

(Descheemaeker and de Buyl 2020; Grilli 2020; Ji et al.

2020). It stands to reason that comparative population genet-

ics could learn from such an approach. Although our argu-

ment here is primarily statistical, a spiritually similar argument

has been made regarding the use of effective models that

coarse-grain over taxonomic details to identify quantitative

patterns in microbial ecology and evolution (Good and

Hallatschek 2018).

Ultimately it is necessary to take stock of the set of patterns

that remain robust across phylogenetically diverged species

within the human gut, allowing us to identify the evolutionary

dynamics that universally occur. Here, we will briefly examine

a few notable evolutionary patterns that have been observed

across species.

Population Structure

The genetic composition of commensal bacteria varies con-

siderably from host to host (Schloissnig et al. 2013; Costea et

al. 2017; Truong et al. 2017), suggesting that bacteria do not

rampantly migrate between hosts. Instead, for each species,

hosts are typically colonized by a handful of strains that seem

to be unique to each host (Schloissnig et al. 2013; Garud et al.

2019). The typical number of strains within a species is vari-

able, likely reflecting the degree that strains can diverge and

evolve sufficient ecological differences necessary to coexist

(Good et al. 2018). Though this within-host population struc-

ture does not seem to necessarily have bearing on across-host

population structure, as the global biogeography of genetic

variants can vary considerably across species. For example, the

genetic diversity of Eubacterium rectale mirrors the genetic

diversity of hosts (Nayfach et al. 2016; Costea et al. 2017;

Truong et al. 2017; Tett et al. 2019; Karcher et al. 2020),

whereas species such as B. vulgatus seem to show little or

no geographic structure. The mechanisms responsible for var-

iation in the global biogeography of species remains unclear.

Vertical transmission from parents to infants may contribute,

as strains from certain species are more likely to colonize and

persist in infant guts, the genera Bacteroides and

Bifidobacterium being noted examples (Lou et al. 2021).

Though the benefit of being the first to colonize a host is

likely temporary, as the majority of strains are replaced over

several decades (Garud et al. 2019). Alternative mechanisms

for varied levels of biogeography include traits that promote

airborne transmission being restricted to certain lineages

(Brown 2000) which may explain the variation in transmission

rates among species (Brito et al. 2019), the interaction of the

microbiome with the genetics of its host (Goodrich et al.

2016), and even the presence of spatial structure itself

(Tropini et al. 2017), which may promote the preservation

of genetic variation (Pearce and Fisher 2019), though these

hypotheses remain to be fully tested.

Recombination

Although all bacteria reproduce clonally, the degree to which

bacteria recombine varies widely (Smith et al. 1993; Vos and

Didelot 2009). The recombination rate of a species determines

whether populations evolve primarily via changes in genotype

frequencies over time or as changes in the frequencies of

individual alleles that are effectively independent (Neher and

Shraiman 2011), which can have consequences for whether

gene-specific versus genome-wide selective sweeps are more

common (Shapiro et al. 2012; Bendall et al. 2016; Shapiro

2016; ). To quantify recombination in bacteria, researchers

have begun to characterize the statistical association of alleles

at different loci (i.e., linkage disequilibria), where the degree

of association can be viewed a function of the recombination

rate. For several species found in the gut, as well as environ-

mental samples and pathogens, linkage disequilibria tends to

decay as the genetic distance between a pair of loci increases,

which suggests that recombination may be common (Lin and

Kussell 2017; Garud et al. 2019; Crits-Christoph et al. 2020;

Sakoparnig et al. 2021). Such rampant recombination sug-

gests that although microbes reproduce clonally, the label

“asexual” is a misnomer. Instead, microorganisms are increas-

ingly being deemed as “quasi-sexual,” where a large number

of loci evolve independently instead of as genotypes despite

the clonal nature through which they are reproduced (Smith

Comparative Population Genetics in the Human Gut Microbiome GBE
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et al. 1993; Rosen et al. 2015; Shapiro 2016). However, ob-

served levels of linkage disequilibrium tend to be higher than

what is expected under free recombination for many species

(Garud et al. 2019). Some species may be truly clonal (Smith

et al. 1993; Vos and Didelot 2009), whereas others are likely

subject to additional evolutionary forces that can generate

correlations between sites, such as demographic history and

selection. Selection seems to play a particularly prominent

role, where recent developments in population genetic theory

provide the groundwork necessary for subsequent empirical

investigation (Arnold et al. 2020; Good 2020). These forces

will need to be disentangled to understand the full extent of

recombination in the microbiome.

Short-Term Evolution within Hosts

Recently, it was found that evolutionary changes can occur in

the human gut microbiome on short timescales of just a few

months and even days (Ghalayini et al. 2018; Garud et al.

2019; Poyet et al. 2019; Zhao et al. 2019; Roodgar et al.

2020; Yaffe and Relman 2020), and that strain replacements

are generally rare over that timescale. These evolutionary

changes modify the haplotypes of existing lineages and

seem to derive from a mixture of de novo mutations and

horizontal gene transfer via recombination. The

recombination-seeded events are a unique mode of adapta-

tion that highlight how a complex community can maintain a

reservoir of adaptive genetic material, which may be partic-

ularly useful in rapidly fluctuating environments where evolu-

tion via de novo mutations may take a long time. Thus,

complex communities may be able to modulate the mode

and tempo of evolution of focal species (Fraz~ao et al. 2019;

Madi et al. 2020). At longer time scales, these evolutionary

changes tend to give way to ecology, as strain replacements

become common. These seemingly contrasting dynamics will

ultimately require researchers to intuit what evolutionary and

ecological dynamics are relevant on a given timescale and,

ultimately, construct models that bridge separate dynamics.

Purifying Selection

By comparing haplotypes of a given species from different

hosts, we can focus on patterns that are the outcome of

evolutionary dynamics that have operated over an extended

timescale. One such pattern is how the ratio of nonsynony-

mous to synonymous divergences (dN=dS) changes as synon-

ymous divergence (dS) increases, which would indicate in

what direction selection tends to dominate over an extended

timescale. Looking at empirical data from the microbiome, it is

clear that dN=dS tends to decrease with increasing dS, sug-

gesting that purifying selection tends to dominate as lineages

diverge (fig. 1a; Garud et al. 2019). Surprisingly, the shape of

the relationship can be captured by an effective model of

selection composed of two parameters: a single selection

coefficient and the fraction of sites subject to selection

(Garud et al. 2019). Some species clearly have values of dN=

dS that are further from this prediction than others, an obser-

vation that we will return to below. But as a first approxima-

tion we can say that purifying selection explains genome-wide

patterns of genetic divergence across species within the gut

(fig. 1a).

Identifying Deviations from General Trends

It may not be clear how a researcher can leverage universal

evolutionary patterns to identify genes and species of interest.

Indeed, interest in identifying exceptional species and targets

of evolution is likely why many researchers compare species in

the first place (Leffler et al. 2012; Lawrie and Petrov 2014;

Huber et al. 2020). Here, we will re-examine the relationship

between dS and dN=dS in figure 1a to illustrate how starting

with a strong universal pattern can provide a backdrop

against which we identify deviations from the overall trend.

We see that certain species tend to fall above or below the

prediction of an effective model of purifying selection (fig. 1a).

To identify species that are subject to stronger or weaker pu-

rifying selection than expected by chance, we first coarse-

grain genes by their annotated metabolic pathways, providing

a set of variables shared across species. We can then permute

species-level observations within a given pathway and estab-

lish 95% confidence intervals, a nonparametric test that

allows us to identify species with exceptional dN=dS (fig. 1b).

Though we coarse-grained genes by necessity, it allowed

us to perform additional analyses in which we leverage infor-

mation across multiple species. First, we can see that certain

pathways typically have lower dN=dS than others, suggesting

that they are subject to stronger purifying selection (fig. 1c).

We can then identify pathways that are subject to stronger or

weaker purifying selection than expected by chance by per-

muting values of dN=dS across pathways within each species

and establishing confidence intervals (see supplementary in-

formation, Supplementary Material online). The results of this

test align with our biological intuition: essential pathways tend

to be under stronger purifying selection (e.g., glycolysis, nu-

cleotide biosynthesis, Krebs cycle, etc.), whereas pathways

that rely on specific resources (e.g., sulfur metabolism) tend

to be under relatively relaxed selection—an observation con-

sistent with prior analyses using polymorphism data

(Schloissnig et al. 2013).

Because we have observations from many species, we can

continue our comparative population genetic analyses and

examine the statistical properties of dN=dS across pathways.

First, we can determine whether the relative spread of dN=dS

remains similar across pathways by examining whether the

ratio of the standard deviation to the mean (i.e., the coeffi-

cient of variation) remains constant. We find that this is the

case, as the mean dN=dS of a pathway ( dN=dSh i) across spe-

cies is linear with respect to its variance (r2
dN=dS

; fig. 1b). This
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observation is reminiscent of Taylor’s Law (Taylor 1961), a

pattern often found in ecological systems (Grilli 2020).

Similar to Taylor’s Law, we find that the slope of this relation-

ship is not significantly different from two

(t � test ¼ 0:684; P ¼ 0:248), which we can interpret as

the mean being equal to the standard deviation across path-

ways (coefficient of variation ¼ r2
dN=dS

= dN=dSh i2 ¼ 1). This

observation suggests that the relative dispersion of dN=dS

remains constant as the overall level of constraint within a

pathway is relaxed. Though values of dN=dS across pathways

are not independent, as the correlation in dN=dS across path-

ways for a given pair of species tends to decay with phyloge-

netic distance (b ¼ �0.104, P < 10�6), suggesting that the

strength of purifying selection within a given essential path-

way is moderately conserved through evolutionary time.

However, this does not provide an explanation of why certain

pathways are subject to stronger purifying selection than

others, or why the strength of selection varies across lineages,

(a)

(b) (c)

FIG. 1.—(a) The relationship between synonymous divergence on the x axis (dS) and the ratio of nonsynonymous and synonymous divergences (dN=dSÞ
on the y axis follows the form predicted by purifying selection across species (Eq. S8 from S1D in Garud et al. 2019). Though by color coding individual

species, we see that data points tend to be grouped by species identity, where certain species fall above or below the prediction. (b) By grouping genes by

their pathways and generating an appropriate null distribution via permutation, we can identify pathways that, under the assumptions of the model, are

under stronger or weaker purifying selection than expected by chance. We can then examine how the mean dN=dS ( dN=dSh i) of a given pathway relates to

its variance (r2
dN=dS

), where the variance increases slightly faster than the square of dN=dSh i, suggesting that the coefficient of variation is greater than one

(inset figure in b). (c) By inverting our permutation scheme, we can identify the set of species that are subject to stronger or weaker purifying selection than

expected by chance.
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a question that can likely only be answered by incorporating

additional biological details about the pathways and species

themselves (Bielawski and Yang 2004; Aguileta et al. 2009).

Rather, it illustrates how investigating deviations from an em-

pirical pattern can lead to novel findings.

Future Directions for Comparative
Population Genetics in the Microbiome

The study of comparative population genetics in the human

microbiome is nascent and full of potential. There are multiple

avenues of progress in the microbiome field that will benefit

comparative population genetics as a discipline.

First, advances in sequencing technology will allow us to

refine our estimates of important quantities. For example,

long-read technologies, such as nanopore metagenomic se-

quencing, will allow researchers to quantify linkage between

physically distant sites (Yaffe and Relman 2020; Zlitni et al.

2020; Bharti and Grimm 2021; Karst et al. 2021), providing

higher resolution to uncover fundamental evolutionary pro-

cesses of recombination, mutation, and adaptation within

and across species. These advances, coupled with decreasing

costs of library preparation (Baym et al. 2015), will allow

researchers to sample large cohorts over time and observe

how genotypes dissipate into alleles and reemerge via recom-

bination over their sojourn times, enabling us to build more

detailed evolutionary models.

Second, the physical environment of the human gut cre-

ates unique evolutionary pressures that are interesting ave-

nues of study in their own right. Temperature differences

between the inside of the gut and the outside environment

(Groussin and Gouy 2011) as well as spatial structure (Tropini

et al. 2017; Bradburd and Ralph 2019) can affect the evolu-

tionary dynamics of microbial species. Even deceptively simple

features of the gut such as its physical resemblance to a che-

mostat (Locey and Lennon 2019) or the peristaltic mixing that

arises due to digestion can produce complex ecological and

evolutionary dynamics (Cremer et al. 2016).

Finally, there is arguably as much a need to examine the

phenotypic effects of molecular evolution as there is to char-

acterize molecular evolutionary dynamics. The genes that

contribute to adaptation in the microbiome ultimately encode

physical aspects of microbes that may impact human pheno-

types. This means that subsequent experiments will be nec-

essary to gain a more concrete understanding of the dynamics

of adaptation in the gut and their phenotypic relevance (Lynch

et al. 2014; Lynch and Trickovic 2020).

Future computational, statistical, theoretical, and experi-

mental advances in the already exciting field of comparative

population genetics in the human microbiome will generate

insights that span multiple disciplines, generate fundamental

theory that may be relevant to comparative genomics in other

systems, and may even ultimately have the potential to inform

human health.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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