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Abstract: Weather change such as raining is a crucial factor to cause traffic congestion, especially in
metropolises with the limited sewer system infrastructures. Identifying the roads which are sensitive
to weather changes, defined as weather-sensitive roads (WSR), can facilitate the infrastructure
development. In the literature, little research focused on studying weather factors of developing
countries that might have deficient infrastructures. In this research, to fill the gap, the real-world
data associating with Jakarta, Indonesia, was studied to identify WSR based on smartphone sensor
data, real-time weather information, and road characteristics datasets. A spatial-temporal congestion
speed matrix (STC) was proposed to illustrate traffic speed changes over time. Under the proposed
STC, a sequential clustering and classification framework was applied to identify the WSR in terms
of traffic speed. In this work, the causes of WSR were evaluated based on the variables’ importance
of the classification method. The experimental results show that the proposed method can cluster the
roads according to the pattern changes in the traffic speed caused by weather change. Based on the
results, we found that the distances to shopping malls, mosques, schools, and the roads’ altitude,
length, width, and the number of lanes are highly correlated to WSR in Jakarta.

Keywords: weather-sensitive road; smartphone sensor data; traffic congestion; spatial-temporal;
clustering; classification; intelligent transportation system

1. Introduction

Weather is an essential causing factor of traffic congestion, especially in metropolises
of developing countries. Due to the limited infrastructure, such as flawed mass transport,
deficient sewer systems, and relatively narrow roads, in developing countries, such as
Vietnam or Indonesia [1–3], traffic is vulnerable when it rains. Meanwhile, the astronomical
economic loss caused by the congestion highlights the urgency of the solutions. For exam-
ple, traffic congestion leads to US$5 billion lost in Jakarta [4], US$11.4 billion in Dhaka [5],
and US$18 billion in Metro Manila [6] annually. The tremendous economic loss underlines
the importance of solving traffic congestion in the metropolises of developing countries.

Without a doubt, upgrading the infrastructure to improve traffic congestion is costly
and time-consuming. In the literature, researchers have proposed alternative and short-
term solutions to remind drivers about traffic congestion, such as understanding the traffic
patterns on different weather conditions [7–9]. In intelligent transport system (ITS) research,
the traffic prediction models try to predict future traffic congestion in terms of location
and time. For example, in Taipei City, Taiwan, many traffic bulletin boards were installed
on major roads to announce real-time information regarding the roads’ traffic situation
and prediction under different weather conditions. Based on the real-time announcement,
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drivers can choose different routes when necessary to avoid traffic congestion [10]. Other
ITS applications also include adaptive street lighting control [11] to predict the traffic flow
using camera devices installed on Strinella Street in L’Aquila city, Italy. In this research [11],
the traffic prediction model was used to provide information about traffic congestion and
provide a more efficient energy consumption of traffic lighting devices. In the ITS research
domain, researchers assessed the impact of weather on vehicles’ speed drop in major
metropolises of developed countries which have relatively well-established infrastructures,
such as Paris [12], Chicago [13], London [14], Beijing [15], Shenzhen [16], and Seoul [17].
However, in the literature, few studies have been reported for municipalities with poor or
limited infrastructures, especially in developing countries.

This paper aims to fill the research gap in the traffic study by investigating how
weather change affects Jakarta’s traffic condition, Indonesia’s largest metropolis but with
the limited infrastructure of sawing and mass transportation system. In 2019, Jakarta’s
population reached 11 million, with a population density of 16,882 people/km2 [18].
According to the Traffic Index ranking by TomTom®, Jakarta was ranked 10th in the
world’s worst traffic in 2019 [19]. With the unbalanced annual growth of 8% and 0.01% of
private cars and road lengths, respectively, Jakarta city expects to face heavier traffic in
the future. On account of the severe traffic condition, the Jakarta Smart City Department
considers roads with an average speed of 10 km/h is a traffic-free road, which is equal to
the common jogging speed for most adults [20].

Figure 1 illustrates how weather change causes traffic congestion at Jalan Pegangsaan
Dua, Jakarta, Indonesia. Figure 1a,b show the traffic condition on dry and rainy days,
respectively. This road is a representative example of many roads in Jakarta with no or
inadequate sewer systems. As shown in Figure 1a, the road has mild traffic congestion on
a dry day. However, many puddles are generated when it rains, as shown in Figure 1b.
These puddles will eventually develop as potholes and create slippery roads. As a result,
drivers tend to slow down to avoid a potential traffic accident, which ultimately creates
traffic congestion on the road.
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Figure 1. Pegangsaan Dua Road’s traffic condition in Jakarta, Indonesia, on dry (a) and rainy days (b).
To avoid the bias, both photos were taken at the similar time. The photo (a) was taken on Thursday,
16 July 2020, at 2:30 p.m. while photo (b) was taken on Thursday, 13 August 2020, at 2:33 p.m. on
exactly the same spot. No particular event was hosted nearby. The main difference between (a) and
(b) is the weather condition.

In this work, the real-world traffic speed data collected from citizens’ smartphones in
Jakarta and daily weather data, especially for raining information, were utilized for traffic
speed study. This paper also proposes the spatial-temporal congestion speed change matrix
(STC) to identify the weather-sensitive roads (WSR) in Jakarta, whose traffic congestion
dramatically suffers from weather changes, such as rain. The data analysis framework
was presented under the proposed STC based on sequential clustering and classification
methods [21] to identify and analyze the WSR. First, the K-means algorithm [22] was
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applied to cluster roads with similar STC patterns. Then, the random forests (RF) [23] were
used to train the classifier for identifying the STC level, which measures the level of the
traffic speed drop over time due to the weather change. The best number of clusters k was
selected based on Pareto front [24], and the root causes of WSR were determined by using
the RF method.

The experimental results show that using the data analysis framework under the
proposed STC can identify the WSR in Jakarta. The results also present the significant
driving factors regarding WSR: the spatial information of the road (the distances to public
areas, such as shopping malls, mosques, or schools), road altitude, length, width, and
the number of lanes. By utilizing the proposed framework, this work demonstrates the
capability of tracing or investigating traffic conditions caused by weather change.

The rest of this paper is structured as follows. Section 2 discusses the related literature.
Section 3 delivers the methodology. Section 4 shows the experimental results, and Section 5
concludes this study.

2. Literature Review
2.1. Weather Impact on Traffic Congestion

When evaluating the effect of weather change on vehicles’ speed drop, the popular
method used in the literature is regression and trend analysis [7,15,25,26]. Camacho et al. [7]
modeled the traffic speed of 15 major freeways in northern Spain using regression analysis
based on several indicators: number of trucks, visual visibility, wind speed, precipita-
tion intensity, and snow thickness. The results showed that the tested indicators were
significantly affecting the traffic speed drop, mainly the precipitation intensity and the
wind speed. Zhang et al. [15] applied the regression analysis to investigate the impact of
rainfall on the traffic flow intensity in major expressways in Beijing, China. They found
that different rainfall intensity affects traffic flow, as summarized in Table 1. The regression
and analysis approaches were also used by Mitsakis et al. [25] and Stamos et al. [26].

Moreover, Billot et al. [12] proposed a multilevel assessment using microscopic, meso-
scopic, and macroscopic approaches. The mesoscopic approach focused on understanding
the drivers’ behavior under the adverse weather condition. Based on the insight at the
microscopic level, they observed the platooning effect at the mesoscopic level. The global
view to the weather effect on the traffic density and speed drop was carried out at a macro-
scopic level. Other researchers also applied the regression analysis method [8,14] and other
statistical methods, such as the Gaussian mixture model [27], to study the weather impact
on traffic flow or speed. Besides the statistical methods, researchers also applied a variety
of machine learning methods for traffic studies, such as the k-means clustering method [28],
neurowavelet models [29], long short-term memory network [30], Bayesian networks
model [31], deep belief networks [32], and decision tree [9]. The work above demonstrates
the promising performance of the machine learning method for the traffic problem.

Table 1 summarizes the relevant studies in the literature regarding the effect of rainy
weather on vehicle speed reduction. As can be seen in Table 1, most of the literature stud-
ied traffic conditions in Western countries, such as the United States [13,33], France [12],
Spain [7], Greece [25,26], Australia [31], and Sweden [34]. A few studies reported on
the main metropolises in Asia, such as Hong Kong [8], Beijing [15], Shenzhen [16], and
Seoul [17]. All of the mentioned works were conducted based on modern cities in devel-
oped countries. Very few studies pay attention to the weather impact on the developing
country, whose traffic condition is more vulnerable due to the poor infrastructure.

Additionally, in terms of the road type, most of the works in Table 1 studied the high-
speed vehicular traffic roads, such as freeways [7,12,33], highways [13,31], motorways [14],
and expressways [15,16]. The speed of vehicles on high-speed vehicular traffic roads
can be easily measured by loop detectors, road-side cameras, and on-board equipment.
However, measuring vehicle speed in an urban area might need different technologies,
such as wireless sensor networks. Although some researchers also focused on traffic studies
on urban roads, all of those works considered the developed countries’ road condition,
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such as in South Korea [17], Sweden [33], the United States [35], Athens, Greece [25], and
Thessaloniki, Greece [26]. In summary, each work mentioned above shows various weather
impact with different precipitation and characteristics. For example, in Seoul, the study
shows that weather change can reduce the traffic speed up to 50% [17]. Other results of the
studies above are summarized in Table 1.

Moreover, considering urban roads’ condition in developing countries where various
transportation modes—cars, trucks, motorcycles, pedestrians, and even wild animals—can
be present on roads, measuring the roads’ traffic speeds is extremely difficult. In this
research, the traffic data collected from citizens’ smartphones in Jakarta, Indonesia, was
used to represent the traffic speed of a developing country’s urban roads. The weather
data associated with Jakarta City was also collected for this research work. More details
regarding the collected dataset will be presented in the following sections.

2.2. Machine Learning Method in Traffic Studies

In the literature, researchers have applied the k-means clustering algorithm [22]
widely, especially in the traffic field. Liu [36] implemented the k-means clustering method
to obtain the optimal system design of sensors in a complex coordination control in ITS.
The ITS problem studied by [36] combines the issues of coordinating the traffic signal
lamp, balancing the traffic flow, and reducing the travel time. Pattanaik et al. [37] used the
k-means clustering method to cluster the severity of congestion in a New Delhi study. They
found that their methodology can segment the roads according to the congestion severity.
Similar to Pattanaik et al. work [37], Hongsakham et al. [38] applied the k-means clustering
method to cluster the congestion levels on a particular road section in Bangkok, Thailand.
Motivated by the studies of Pattanaik et al. [37] and Hongsakham et al. [38], in this work,
the k-means clustering method was used to cluster the congestion severity based on the
traffic speed data collected from smartphones in Jakarta, Indonesia.

Table 1. Recent studies on the effect of rainy weather on vehicle speed reduction.

Author Year Study Location Road Type Precipitation
(mm/h)

Speed Drop by
Weather Factor

Billot et al. [12] 2009 Paris, France Freeway 0–2
2–3

8%
12.6%

Camacho et al. [7] 2010 Northwestern Spain Freeway 1–2
2–5

0.8–3.0 km/h
1.4–4.6 km/h

Hou et al. [13] 2013 Irvine, United States Highway
<2.5

2.5–7.5
>7.5

6.13%
11.38%
18.60%

Hou et al. [13] 2013 Chicago, United States Highway <7.5 11.90%

Hou et al. [13] 2013 Salt Lake City, United
States Highway 2.5–7.5 5.88%

Hou et al. [13] 2013 Baltimore, United States Highway <7.5 6.01%

Lam et al. [8] 2013 Hong Kong, China Urban roads
0–0.5

0.5–6.5
>6.5

3.5–4.2%
∼5.7%

6.8–10.1%

Mitsakis et al. [25] 2014 Athens, Greece Urban roads 18–27 Up to 35.4%

Hooper et al. [14] 2014 London, United
Kingdom Motorway Wet conditions * 2.1%

Lin et al. [33] 2015 Buffalo, United States Freeway Wet conditions * 20%
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Table 1. Cont.

Author Year Study Location Road Type Precipitation
(mm/h)

Speed Drop by
Weather Factor

Jägerbrand and Sjöbergh [34] 2016 Sweden Urban roads Wet conditions * <1.4%

Kim and Wang [31] 2016 Brisbane, Australia Highway Wet conditions * Up to 60%

Stamos et al. [26] 2016 Thessaloniki, Greece Urban roads 0–5
5–10

0–4 km/h
4–8 km/h

Zhang et al. [15] 2018 Beijing, China Expressway
<2.4

2.4–6.0
>6.0

3.07%
5.29%
6.64%

Kurte et al. [35] 2019 Chicago, United States Urban roads <5 8–20%

Ji and Shao [16] 2019 Shenzhen, China Expressway 0-10
>10

19%
>19%

Choo et al. [17] 2020 Seoul, South Korea Urban roads 1–1.5
>1.5

<50%
>50%

* No precipitation information provided.

In the traffic study, the RF method has been widely utilized in finding the contributing
factors of a traffic accident. Essentially, the RF method combines many decision tree predic-
tors where each tree carries out a random subset of features (feature bagging technique) to
reduce the model variance without increasing the model bias at the same time [39]. With
this superiority, RF is a popular method to rank the importance of predictive model vari-
ables. For instance, Wang et al. [40] identified that the weather and ramp geometry were
the significant factors in crashes that happened on the expressway ramp in Florida, USA.
Similar to Wang et al.’s work, Lee et al. [41] used the RF to investigate critical variables of
traffic crashes. They found that the speed limit, collisions, and pavement condition were
the significant factors influencing Florida’s traffic crash. Motivated by the studies in the
literature, this study utilized RF methods to investigate the important factors regarding
the WSR.

3. Methodology

This research proposed the STC matrix to measure and visualize the severity of the
traffic speed drop caused by weather change across different periods. Then, the WSR
analyses can be carried out under the STC matrix. Section 3.1 explains the proposed STC
calculation, and Section 3.2 presents the proposed framework for analyzing WSR.

3.1. STC Matrix

Figure 2 illustrates the process of constructing the STC matrix. Essentially, two datasets
are required: the traffic speed dataset as in Figure 2a and the weather dataset as in Figure 2b.
Both datasets are summarized daily into an N × T matrix, where N is the road ID number
and T is the number of time-window slots. The traffic speed and weather matrices contain
the average traffic speed and precipitation at the corresponding day and time-window
slots, respectively.

Figure 2c,d illustrates how to aggregate the traffic speed on dry and rainy days on the
same time window based on the summarized traffic speed and weather datasets. Here,
without losing the generality, the number of the aggregated matrices can be determined
based on the variety of the collected weather data. Let Xi be the aggregated traffic speed
matrix with dimension N × T, based on the weather state i. If more weather states, such
as dry, rainy, snowing, etc. are defined, a more aggregated traffic speed matrix Xi can be
obtained. In this work, in order to study the impact of dry and rainy seasons on traffic
speed, the weather condition with two states, dry and rainy, were used (i = {1, 2}).
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vi
ndt is defined as the average traffic speed of road n = {1, 2, . . . , N}, at time-window

t = {1, 2, . . . , T} and day d = {1, 2, . . . , D}, and on weather state i. Then, the average
traffic speed across D days, can be defined as xi

nt shown in Equation (1) to be the elements
of matrix Xi.

xi
nt =

1
D

D

∑
d=1

vi
ndt (1)

Finally, the STC matrix, illustrated in Figure 2e, can be calculated to present the speed
drop scale caused by weather change. Based on Equation (2), STC is calculated by the
scaled difference between X1 and X2 where X1 and X2 are traffic speed matrices under
dry and rainy weather, respectively. Obviously, STC ranges from 0 to 1 because X1 > X2,
and both are positve values. Here, 0 indicates 0% traffic speed drop caused by the weather
change. It also means the traffic speed is invulnerable to the weather. On the contrary,
1 means the road traffic completely stuck due to the raining condition.

STC =
X1 − X2

X1 (2)

Figure 3 shows an example of the STC matrix to illustrate the temporal traffic speed
drop caused by weather change on Jakarta’s 25 representative roads. Basically, the x-axis
and y-axis represent the time-window and road ID, respectively. The heat map colors
changing from green, yellow, to red are used to indicate the relative minimum, average, and
maximum vehicle speed drop caused by weather difference (dry vs. raining) under different
timing. As can be seen in Figure 3, the “green” regions indicate that the weather changes
from dry to rainy cause relatively minimal traffic speed drop during the nonworking hours
(before 10 a.m. and after 6 p.m.). During the working hours (between 10 a.m. and 6 p.m.),
the “yellow-red” regions show the severe traffic speed drop caused by rain. Through the
proposed STC matrix, the roads which have a longer time with the extended speed drop
can be detected. For example, road #5528 has a longer traffic speed drop period than the
others (10 a.m. to 8 p.m.). Road #1209 and #1210 almost experienced no or minimal speed
drop across all time windows. Based on the STC matrix, the impact of weather can be
easily analyzed and used for the prediction model.
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3.2. The Proposed Framework for Analyzing WSR Based on Sequential Clustering and
Classification Analysis

This section explains the proposed framework for analyzing WSR based on sequential
clustering and classification analysis. Sequential clustering and classification analysis are
often used for data exploration or data analytics tasks, mainly when the classification task
labels are unavailable [21]. In such a case, the clustering method is performed to generate
the labels for the classification task. Then, the labels obtained from the clustering method
might be the “clues” of labeling the classification task’s data afterward. Here, the problem
of analyzing WSR is mainly the same as the mentioned data analytics task.

First, the clustering method can be performed to cluster the roads based on their speed
drop severities. In this research, STC matrix was used as the dataset to perform K-means
clustering method. By using the K-means, the roads with similar speed drop of a similar
time will be clustered together. We can then further investigate the associating factors of
the traffic speed drop patterns on a particular WSR cluster. Since STC matrix only considers
weather change, another set of data such as road altitude above sea level, the distance to
an important facility nearby, etc. can be considered for the analysis. The feature selection
and data classification method can be applied to the road feature dataset combined with
the cluster labels.

Figure 4 illustrates the proposed framework of identifying WSR by utilizing the STC
mentioned above and the roads’ characteristics dataset [42]. As mentioned earlier, the traffic
and weather datasets can be used to generate STC data. After performing K-means on
STC, the generated cluster labels are appended with the road characteristic dataset. Then,
the classification model is built to classify the cluster label by the road characteristics. The
detailed information of clustering and classification are shown in the following sections.
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• Clustering

After obtaining the STC matrix, the data clustering was conducted based on the
STC matrix. The clustering method can be defined as a function L, dr, da = φ(STC),
where the clustering function φ processes the STC matrix as the input and resulting in
three outputs: (1) labels for WSR (L), (2) the sum of squared distances between all cluster
centers (dr), and (3) the sum of squared distances of roads to their cluster center (da).
Given a set of roads (X = {x1, x2, . . . , xN}) where each road is a T-dimensional real vector
xi = {xi1, xi2, . . . , xiT}, k-means clustering aims to group elements in set X into K sets
(S = {S1, . . . , SK}), where K ≤ N. The K-means clustering’s procedure is as the following.

(1) Sample k roads without replacement from set X randomly.
(2) Assign the roads to set {S1, . . . , SK}, and set the initial clusters’ centroid equal to the

assigned roads.
(3) Draw a road without replacement from set X randomly (xn).

(4) Find the nearest set to xn, cn, where cn is equal to 1 if
argmin

k ||xn − µk||2, else 0. cn

also represents the assignment of road xn to sets Sk, ∀k ∈ {1, . . . , K}.
(5) Update the cluster centroids, µk := ∑N

i=1{cn=k}xn

∑N
i=1{cn=k} .

(6) Repeat steps 3–5 until convergence. Generally, the K-means clustering algorithm aims
to minimize ∑K

k=1 ∑N
i=1||{cn = k}xn − µk||2.

The K-means method can group the roads based on the predetermined number
for clusters K. It is worth mentioning that the selection of K can be determined by the
multiobjective optimization, which will be addressed later.

• Classification

The classification method can be defined as a function L̂ = Ω(Z
∣∣L) , where L̂ are the

predicted labels obtained from the classification function Ω based on the input data Z given
the pregenerated L from the clustering method. Following the previous work, this study’s
performance metric is the Hamming loss, as this loss function is standard for the multilabel
classification problem [43]. Hamming loss converts the class labels into unique binary
strings and calculates the loss generated based on exclusive disjunction (XOR) operation
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between the actual and predicted class labels’ binary strings. The Hamming loss follows
Equation (3), where A, N, M, ⊗, yij, ŷij are the model accuracy, number of instances, length
of the binary strings, XOR operation, actual and predicted class label j in data instance
i, respectively.

A = 1− 1
|N|·|M|

L

∑
i=1

M

∑
j=1
⊗
(
yij − ŷij

)
(3)

The proposed framework considers the RF method for the classification task [39].
The RF model is an ensemble model of B classification trees (CT). Essentially, RF method
generates the prediction based on majority prediction results of the CT. The training of RF
algorithm for the WSR study is shown as the following.

(1) Sample B observations from Z with replacement.
(2) Sample randomly m of the p independent variables.
(3) Find the split sQ among all possible split’s location for the Q-th variable, Q = 1, 2, . . . , m,

to classify the given road label and identifies the cut point p′.
(4) Split the data at the node sQ, assign the data to the left descendant of the decision tree

if xbQ . . . p′, and to the right descendant if xbQ > p′, where b = 1, 2,≤, B.
(5) Repeat steps 2–4 until the tree grows maximally.

• Multiobjective Optimization

As mentioned earlier, how to determine the number of clusters for K-means is a chal-
lenging question. Smaller K might not represent the variety of the WSR, and larger K (lager
number of labels) might escalate the problem complexity, especially for the classification
task. In terms of objective functions, different K will generate different results of the clus-
tering problem (dr and da) and the classification problem (A). Therefore, the multiobjective
optimization method is used in the proposed framework to find the nondominated K to
maximize dr, reciprocal of da, and A.

Here, we applied the Pareto front method [24] for solving the above-mentioned
multiobjective optimization. Given a set of possible solutions Sd, which is the number of
classes for clustering (see the dots in the Pareto plot in Figure 4), and d is the number of
considered objectives. Given two vectors in the objective space, s1 ∈ Sd and s2 ∈ Sd. The
vector s1 is said to dominate s2 if and only if s1

i ≥ s2
i , ∀i ∈ {1, . . . , d}, ∃j ∈ {1, . . . , d}. In

other words, the solutions in vector s1 do not dominate each other in s1, and they dominate
the solutions in vector s2. The solutions in vector s1 are known as nondominated solutions.
Based on the process of finding the nondominated solutions s1, the multiple K can be
selected from vector s1. The optimal K can be further chosen based on the comparison
among the criteria. The experiment of the real-world data analysis shown in Section 4 will
provide a detailed example of choosing K from the nondominated solutions.

4. Results
4.1. Dataset

This paper considers three datasets for studying WSR: Dataset #1 is a traffic speed
dataset based on smartphone sensors data, Dataset #2 is a weather dataset, and Dataset
#3 contains roads’ characteristics. In this research, Dataset #1, provided by the Jakarta Smart
City Department, a research unit under the Government of Jakarta, Indonesia, contains
the traffic speed data in Jakarta, collected from November 2017 to October 2018. The
traffic speed data contains the GPS information, which includes the real-time information
coordinate and vehicle speed information from citizens’ smartphone sensors in Jakarta
while they are traveling using cars and motorcycles. The size of Dataset #1 is 600 Gigabytes
with more than two billion traffic speed records. Table 2 shows the example of the processed
Dataset #1, and more detailed information of the preprocessing data can be found in the
previous work [3]. Four main attributes in Dataset #1 were used to build Jakarta’s traffic
speed: the time information, location latitude, location longitude, and the recorded speeds.
The traffic speed used in this case is motor vehicle speed (motorcycles and cars) only. We
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reconstruct the attributes into geographic information systems (GIS) data representation by
matching the attributes with the GIS information of roads in Jakarta in OpenStreetMap [42].

Table 2. Examples of Dataset #1.

Longitude Latitude Speed (km/h) Level Time

106.782318 −6.198835 2.91 3 17 November
2017 00:18:56

106.899734 −6.218775 1.32 4 16 November
2017 23:34:48

106.782875 −6.333290 3.44 3 17 November
2017 00:04:58

106.825172 −6.187048 2.31 3 17 November
2017 00:02:35

106.738625 −6.126846 3.51 3 17 November
2017 00:11:52

Dataset #2, collected from WorldWeatherOnline® [44], is the weather information of
Jakarta City between November 2017 and October 2018. Since the effect of rain against the
traffic speed is the main research topic, we consider only two weather states: dry and rainy.
Dataset #2 contains the rain intensity and the associated date and time information. The
examples of Dataset #2 can be seen in Table 3.

Table 3. Examples of Dataset #2.

Date Month Time Weather Temperature Precipitation Year

Tue 01 Aug 0:00 Patchy rain
possible 29 0 2017

Tue 01 Aug 3:00 Partly cloudy 30 0 2017
Tue 01 Aug 6:00 Cloudy 33 0 2017
Tue 01 Aug 12:00 Sunny 38 0 2017
Tue 01 Aug 18:00 Clear 35 0 2017

Dataset #3, obtained from OpenStreetMap [42], contains the roads’ characteristic
information in Jakarta, as shown in Table 4. The obtained information regarding a particular
road and its surroundings includes the length, width, number of lanes, types, the altitude
of the streets, and distances to the nearest public areas, such as schools, mosques, and
shopping malls. The distance between a particular road segment and the site (shopping
malls, mosques, schools) is measured based on the Euclidean distance of the corresponding
coordinates. We later used these features in Table 4 as the RF method’s predictor variables
to predict the speed drop.

Table 4. Characteristics of the road segments.

Name Description

isBridge 1—If the road is a bridge, 0—otherwise
isOneway 1—If the road applies the one-way policy, 0—otherwise
isPrimary 1—If the road is the main road, 0—otherwise

isSecondary 1—If the road is the secondary road, 0—otherwise
isTertiary 1—If the road is the tertiary road, 0—otherwise

Length Length of the road in meter unit
Width Width of the road in meter unit

Number_lanes Number of lanes
Type_road Three types: primary, secondary, tertiary
Altitude The road’s altitude (meter) above the sea

Distance_school Distance (meter) to the nearest school to the road segment
Distance_mosque Distance (meter) to the nearest mosque to the road segment

Distance_mall Distance (meter) to the nearest mall to the road segment
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In this paper, the study region, a 5 × 5 km-square area of nonresidential roads in west
Jakarta, as marked in red-box in Figure 5a, is used to represented a case study. Figure 5b is
the zoom-in of the red-box on the left-hand side. The reason of using this area is because
the selected location can represent the condition in Jakarta’s roads in general. In the chosen
5 × 5 km-square area, there are 906 roads, three large shopping mall complexes, business
districts, three local universities, the entrance and exit gates of a highway toll road, a
commuter station, and plenty of wide and narrow streets. In fact, this 5 × 5 km-square
area is the core area of Jakarta city, representing a common urban area in a metropolis of a
developing country without losing the generality. The traffic data were aggregated into
fifteen-minute intervals from 6 a.m. to 10 p.m.
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Figure 5. The case study area in west Jakarta.

Please note that this research particularly emphasizes urban traffic on weekdays;
therefore, we omitted the traffic data on holidays and weekends. To anticipate the error
in the GPS reading, based on the research work suggestion in [45], we included all of the
traffic data within 10 m in calculating the average traffic speed. In this research, only the
traffic speed lower than 10 km/h was used for investigation because the speed greater than
10 km/h was considered the normal traffic based on the Jakarta government’s definition.
We assumed all factors except in Table 4 that can create traffic congestion, such as traffic
incident, as the implicit factors in the WSR analysis.

We tested the significance of the average traffic speed based on the paired t-test
between the dry and rainy days. Our preliminary results show that in 58,890 combinations
(906 roads times 65 window slots), 90% of combinations are statistically significant with a
significance level of 0.05. It also means that most of the STC matrix data showing the speed
on a dry day is higher than it on a rainy day has been statistically verified. The remaining
10% are nonsignificant results are mainly due to the lack of traffic data during the night
time and on the less traveled road.

4.2. Selection of K for Clustering

This section reports the process of selecting K based on Pareto front optimization of
dr, reciprocal of da and A, where the three objectives were obtained from the following
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experiments. As explained earlier in Section 3, the Pareto front method determines the best
K with considering the optimization of the objectives of both clustering and classification
methods: dr, reciprocal of da and A. This paper assumes that finding the best-fit K from the
nondominated solutions based on objective functions can lead to a better WSR result.

We simulated K-means clustering algorithm with K from 2 to 30 and recorded the
results of dr and da. For each K, the prediction accuracies of the RF method A were stored
together with the dr and da. Then, the selection of best K was conducted based on the Pareto
Front method. Figure 6 visualizes the solutions under Pareto surface of the reciprocal of
da (x-axis), dr (y-axis), and A (z-axis). The grey surface in Figure 6 represents the Pareto
frontier area. The edges of the Pareto frontier are the nondominated solutions (red dots)
which are not dominating each other in the same solution set. The blue dots are the
solutions that are dominated by red dots. From Figure 6, the five nondominated solutions
are K = 2, 5, 12, 20, and 30.
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Figure 6. A three-dimension visualization of the Pareto surface associated with different K. The red
dots indicate the nondominated solutions, and the blue dots indicate the dominated solutions. The
grey surface is the Pareto frontier surface.

Table 5 lists the K, and the associated dr reciprocal of da, and A of the nondominated
solutions as in Figure 6. Among the five nondominated solutions, the K with relatively
higher A is preferred because lower A means the classifier has poor performance in
predicting the WSR label using the prediction variables in Table 4. It also means the lower
prediction accuracy A implies that the road characteristics cannot help on predicting the
speed drop level of WSR. Therefore, K = 2 and K = 5 are the preferred candidates with
relatively higher level of A, 0.822 and 0.817, respectively.

Table 5. The nondominated solutions on the Pareto surface.

k dr Reciprocal of da A

2 12.267 0.001 0.822
5 22.000 0.004 0.817
12 20.831 0.006 0.770
20 19.454 0.007 0.740
30 16.863 0.008 0.652
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When comparing the solutions with K = 2 and K = 5, the dr and the reciprocal of da
of solution K = 5 are 22.000 and 0.004, respectively, which are higher than it in solution
k = 2 (higher is better). Based on this comparison, this study considers the solution K = 5
as the best fit solution for representing WSR.

Figure 7 shows the clustering results using K = 5. In Figure 7, the blue, yellow, green,
red, and black colors indicate the roads in clusters #1, #2, #3, #4, and #5, respectively. Also,
the number of roads of each cluster was 92, 159, 573, 61, and 21 for cluster #1, #2, #3, #4,
and #5, respectively. Generally, #3 and #5 have relatively fewer roads than clusters #1, #2,
and #4, which acquire most of the roads in the experimented area.
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Figure 7. The road representation of the clustering results of the experimented area.

4.3. The WSR Analysis

• Speed Drop Pattern

Figure 8 shows the average speed drop in kilometers per hour (y-axis) of five clusters
of WSR over time (x-axis). Please note that the traffic speed drop is due to weather change
(dry vs rainy). Figure 8 uses the same color indicators shown in Figure 7 to represent the
road clusters, with additional shape indicators following by the blue diamond, orange X,
green rectangle, red triangle, and black circle.

In general, Jakarta roads experience at least a 4.7% speed drop when the weather
changes from dry to rainy. Obviously, each road cluster has different speed drop patterns
over time. For example, the average speed drop in cluster #3 is approximately closer to
5%. Except in cluster #3, we can observe the speed drop patterns of all clusters in four
time-frames: (1) from 6 a.m. to 12 p.m. (morning), (2) from 12 p.m. to 4 p.m. (early
afternoon), (3) from 4 p.m. to 8 p.m. (late afternoon), and (4) from 8 p.m. to 10 p.m. (night).
In the morning, the speed drop of cluster #2 steadily increases from 5% to 6.5% over time.
The speed drop of cluster #2 is stable at around 6.5% in the early afternoon and declines
until 4.9% during the late afternoon and night time.
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The speed drop pattern of cluster #1 is relatively unique compared to Clusters #2 and
#3. The speed drop of cluster #1 increases from 5.2% to 6.6% in the morning time and
declines to 5% in the early afternoon time. Interestingly, the speed drop increases for the
second time in the later afternoon to 5.8%, before it declines for the second time during the
night time to 4.8%.

In cluster #4, the speed drop is relatively constant at around 5.1% in the morning time.
The speed drop begins to increase to 7.1% in the early afternoon time. During the later
afternoon, the speed drop increases quickly to 8.3% at 5.30 p.m. and declines after that to
just 5.7% at 8 p.m. The speed drop keeps decreasing to 4.8% during the night.

Among all clusters, in general, cluster #5 has a higher traffic speed drop. The speed
drop of cluster #5 increases slowly from 5.2% to 5.7% during the morning time. During the
early afternoon, the speed drop jumps to 8.2% at 1.30 p.m. and stable at around 7.5%. The
speed drop increases to 8.35% at 4.45 p.m. and steadily decreases to 6.1% during the late
afternoon. The speed drop continues to decline to 4.75% during the night time. Between
12 to 6 p.m., the speed drop of cluster #5 is between 7% and 8.35%, and this is the highest
speed drop compared to other clusters, where the speed drops are mostly below 7%, except
the anomaly in cluster #4 between 5.30 p.m. and 6.30 p.m.

The further investigation on how the characteristics of these road clusters are asso-
ciated with the corresponding speed drop patterns caused by raining is presented in the
following subsection.

• Road Characteristics Associated with WSR

Figure 9 lists the road characteristics with their significance, obtained from RF classifier,
from top to bottom based on Table 4. As shown in Figure 9, the most crucial factor, shown
on the top, is the distance to the nearest shopping mall, with an importance score of
0.175 from RF method. Other essential variables are the distance to the nearest mosque and
school, the altitude, and the roads’ length with the importance score of 0.154, 0.151, 0.153,
and 0.152. The roads’ width and the number of lanes are also crucial, with the importance
score of 0.081 and 0.072, respectively.
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Figure 9. The characteristics of WSR.

It is interesting to associate the variables in Figure 9 with the road clusters to describe
the WSR. Table 6 shows the significant road characteristics in Figure 9 against the five
WSR clusters. Based on Table 6, cluster #3 has the highest average altitude compared to
other clusters. It can be the reason why the impact of weather changes on cluster #3 is
considerably stable, around 5%, from morning until night. Cluster #3 also has the smallest
average road length and width, which means the roads are relatively shorter and narrow
than other clusters. Intuitively, the number of vehicles in cluster #3 might be less than other
clusters; thus, the impact of weather change is relatively constant.

Table 6. Characteristics of WSR clusters.

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Distance_mall 975.1 1256.5 1069.8 966.5 650.8
Distance_mosque 149.3 178.7 146.2 127.9 192.7

Length 150.2 98.7 91.1 151.7 135.2
Width 6.26 6.68 6.23 7.00 8.33

Number_lanes 1.87 2.57 2.01 2.10 2.48
Altitude 10.29 10.32 10.69 8.68 10.02

Distance_school 232.3 203.3 192.3 174.1 240.4

Cluster #1 consists of relatively long roads, mostly single and two-lane roads, and
relatively far from schools. Unlike cluster #1, cluster #2 has shorter and broader roads with
higher altitudes. Cluster #2 roads are also relatively far from public areas, and have speed
drops peaks in the afternoon.

Cluster #4 has relatively low altitude and is very close to mosques and schools that are
essential facilities in Indonesia’s citizen life. The highest average speed drop on these roads
occurs during the late afternoon (5.30 p.m. to 6.30 p.m.). Based on the Maghrib prayer
schedule, the period of 5.30 p.m. to 6.30 p.m. is the typical prayer time in a day because it
is the only between sunset and the beginning of the night. As a result, the speed drop on
this cluster accumulating to be the highest between the prayer time.

The roads in cluster #5 are closer to shopping malls and relatively far from mosques
and schools than other clusters. Uniquely in Jakarta, shopping malls are the main tourist
sites and the primary destination for family recreation. Furthermore, people in Jakarta also
hang out at shopping malls [44]. The shopping malls in Jakarta usually open at 11 a.m. and
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close at 10 or 11 p.m. Therefore, these roads experience the highest average speed drop
during the shopping malls’ operational time (see Figure 8).

In short, based on the proposed data analysis framework, the speed drop between
the day and rainy weather conditions was used to present the traffic condition of roads in
Jakarta. Then, the sequential clustering and classification process was conducted to cluster
the roads and search for associating the characteristics of roads. The case study in real-world
data in Jakarta shows the framework is able to not only identify WSR with significant factors
regarding the speed drop but also provide insights useful for city traffic management.

5. Conclusions

WSR identification and analysis are crucial for city development. Setting the higher
priority of maintenance on WSR over the non-WSR can be more cost-effective in reducing
traffic congestion. Also, providing locations of WSR to road users can help drivers bypass
the WSR when it is about to rain. Especially for developing countries, such as southern
Asian countries where the mass transportation system is limited or under construction,
millions of motorcyclists can count on the information of WSR to enhance the mobility of
transportation on rainy days.

In this research, to fill the research gap, Jakarta’s traffic pattern was studied as a repre-
sentative example of the metropolis in the developing country. Because of the inadequate
sewer systems in Jakarta, rains often create a lot of sudden traffic on the roads that are
traffic-free in dry weather. This study focuses on identifying and analyzing the causes of
WSR using machine learning methods based on smartphone sensors, weather, and road
characteristics datasets. A framework consisting of sequential clustering and classification
tasks was proposed. We first introduced the STC matrix to representing the roads’ average
speed drop caused by the weather changed from dry to rainy. Then, the STC matrix was
clustered by using K-means clustering method. The clustering labels were used as the
prediction labels for the classification tasks. In this research, the RF method was used in
the classification tasks to investigate the associating causes of WSR based on the given
dataset. The Pareto front method was used to select the K, based on the objectives of both
the clustering and classification methods.

The experimental results show that K = 5 is chosen to represent the WSR in Jakarta.
Based on this study, the unique speed drop patterns of road clusters can be observed. For
example, roads in cluster #4 face a significant speed drop during the late afternoon, while
the opposite effect showed in cluster #1. Using the RF method, seven leading factors of
WSR in Jakarta were found out: the distances to (1) shopping malls, (2) mosques, (3) schools,
and the roads’ (4) altitude, (5) length, and (6) width, and (7) the number of lanes, with the
importance scores of 0.175, 0.154, 0.151, 0.153, 0.152, 0.081 and 0.072, respectively.

The main contribution of this work is to propose the framework which can be used to
assess the impact of weather change against the road traffic speed. Without losing the gen-
erality, the proposed analysis framework can be practically applied in many other weather
changes, such as fog and snow. Since the current dataset does not contain precipitation
information, in the future, investigating how precipitation affects the speed drop of WSR
could be the next task. Moreover, incorporating more parameters in the WSR study, such as
traffic incidents, is worth future study. Last but not least, other clustering and classification
methods, such as the fuzzy C-means clustering algorithm, can be integrated to extend the
proposed framework for finer clusters.
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