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and Novak D (2021) Automatic
Estimation of Interpersonal

Engagement During Naturalistic
Conversation Using Dyadic

Physiological Measurements.
Front. Neurosci. 15:757381.

doi: 10.3389/fnins.2021.757381

Automatic Estimation of
Interpersonal Engagement During
Naturalistic Conversation Using
Dyadic Physiological Measurements
Iman Chatterjee1, Maja Goršič1, Joshua D. Clapp2 and Domen Novak1*

1 Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States,
2 Department of Psychology, University of Wyoming, Laramie, WY, United States

Physiological responses of two interacting individuals contain a wealth of information
about the dyad: for example, the degree of engagement or trust. However, nearly all
studies on dyadic physiological responses have targeted group-level analysis: e.g.,
correlating physiology and engagement in a large sample. Conversely, this paper
presents a study where physiological measurements are combined with machine
learning algorithms to dynamically estimate the engagement of individual dyads. Sixteen
dyads completed 15-min naturalistic conversations and self-reported their engagement
on a visual analog scale every 60 s. Four physiological signals (electrocardiography,
skin conductance, respiration, skin temperature) were recorded, and both individual
physiological features (e.g., each participant’s heart rate) and synchrony features
(indicating degree of physiological similarity between two participants) were extracted.
Multiple regression algorithms were used to estimate self-reported engagement based
on physiological features using either leave-interval-out crossvalidation (training on 14
60-s intervals from a dyad and testing on the 15th interval from the same dyad)
or leave-dyad-out crossvalidation (training on 15 dyads and testing on the 16th). In
leave-interval-out crossvalidation, the regression algorithms achieved accuracy similar
to a ‘baseline’ estimator that simply took the median engagement of the other 14
intervals. In leave-dyad-out crossvalidation, machine learning achieved a slightly higher
accuracy than the baseline estimator and higher accuracy than an independent human
observer. Secondary analyses showed that removing synchrony features and personality
characteristics from the input dataset negatively impacted estimation accuracy and that
engagement estimation error was correlated with personality traits. Results demonstrate
the feasibility of dynamically estimating interpersonal engagement during naturalistic
conversation using physiological measurements, which has potential applications in
both conversation monitoring and conversation enhancement. However, as many of
our estimation errors are difficult to contextualize, further work is needed to determine
acceptable estimation accuracies.

Keywords: affective computing, conversation, dyads, hyperscanning, interpersonal interaction, physiological
computing, physiological synchronization, psychophysiology
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INTRODUCTION

Effective interpersonal communication is essential to many
aspects of social functioning and human growth. For example,
teacher-student engagement is critical to instruction (Lee, 2012;
Quin, 2017), therapist-client alliance is vital for mental health
intervention (Sharf et al., 2010; Flückiger et al., 2012), and a
clear understanding of the needs and desires of others is vital
for effective conflict resolution (Overall and McNulty, 2017).
By contrast, the disruption of communication due to, e.g.,
misunderstanding or lack of trust, can contribute to a range
of negative outcomes. However, as even trained professionals
sometimes have trouble recognizing the moods, needs and
desires of their conversation partner, there is a great need
for technologies that could automatically quantify the level of
interpersonal engagement in pairs or groups. Such technologies
could be used as a complement to self-report measures
and external observation when analyzing communication
scenarios and could potentially be used for real-time feedback:
providing communication participants with information about
others’ engagement levels, allowing them to intelligently adapt
their own behavior to improve engagement and overall
communication outcome (Schilbach, 2019; Järvelä et al., 2020;
Pan and Cheng, 2020).

Interpersonal engagement (i.e., the degree to which both
participants are interested in and actively participating in a
conversation) could be automatically quantified through analysis
of physiological data of both participants – for example, heart
rate and respiration. In the areas of affective computing and
psychophysiology, physiological data of individuals have already
been used to identify diverse mental states: for example, stress
and distraction in drivers and pilots (Healey and Picard,
2005; Haarmann et al., 2009), boredom and frustration in
computer game players (Liu et al., 2009; Chanel et al., 2011) or
engagement in patients undergoing rehabilitation (Rodriguez-
Guerrero et al., 2017). To identify these states, physiological
responses are combined with pattern recognition algorithms
(mostly based on supervised machine learning) that take multiple
physiological features (e.g., mean heart rate, heart rate variability)
as inputs, then output either a discrete psychological class (e.g.,
frustrated/bored/engaged) or a value on a continuous scale (e.g.,
boredom of 63 on a 0-100 scale) (Novak et al., 2012; Aranha
et al., 2019). In dyadic and group settings, a similar approach
could be used to quantify interpersonal engagement based on
physiological data from more than one participant.

In such dyadic and group situations, automatic quantification
of engagement would not need to be only based on individuals’
physiological responses. It could also leverage the concept
of physiological synchrony: a phenomenon in which the
physiological responses of two or more individuals gradually
converge as they interact. Synchrony occurs involuntarily as a
function of interpersonal dynamics (Pérez et al., 2017; Haataja
et al., 2018), and larger group-level studies have found that the
degree of synchrony is correlated with, e.g., perceived therapist
empathy and alliance in therapist–client interactions (Finset
and Ørnes, 2017; Bar-Kalifa et al., 2019; Kleinbub et al., 2019;
Tschacher and Meier, 2020) and overall engagement in teachers

and students (Dikker et al., 2017; Bevilacqua et al., 2018; Sun
et al., 2020; Zheng et al., 2020). As physiological synchrony can
be quantified using metrics such as correlation and cross-mutual
information (Helm et al., 2018; Schneider et al., 2020), it could
easily be combined with individual physiological features in a
pattern recognition algorithm, potentially providing additional
information about the dyad.

However, while there have been many studies targeting
group-level analysis of physiological synchrony (e.g., correlating
synchrony and engagement in a large sample), there has
been relatively little work on quantifying engagement or other
interpersonal states at the level of individual dyads (e.g.,
tracking interpersonal engagement of a specific dyad over time).
A handful of studies have used classification algorithms with
a single physiological modality (e.g., electroencephalography
alone) to discriminate between two states (e.g., engaged vs.
unengaged dyads) (Hernandez et al., 2014; Konvalinka et al.,
2014; Muszynski et al., 2018; Zhu et al., 2018; Brouwer et al.,
2019; Pan et al., 2020) with one study discriminating between
four affective states (Verdiere et al., 2019). A final study
used regression algorithms to map physiological synchrony
to self-reported arousal and valence on 1–9 scales using
electroencephalography during video watching (Ding et al.,
2021). To our knowledge, only one study has attempted to
combine multiple physiological signals to quantify interpersonal
engagement: our own previous work, done in a competitive
gaming context (Darzi and Novak, 2021).

In the current study, we measured multiple physiological
signals, extracted both individual and synchrony features,
and used this information together with multiple regression
algorithms to quantify the degree of self-reported interpersonal
engagement during continuous conversation. For purposes of
this study, engagement was defined as the degree to which
participants are actively participating in and interested in
the conversation, similarly to definitions of engagement in,
e.g., teacher–student dyads (Carroll et al., 2020) or human
interaction with technology (Zimmerli et al., 2013). The study
goes beyond the state of the art by performing dyad-level
automated engagement estimation rather than large group-level
analyses, potentially providing a method to dynamically estimate
dyadic engagement in conversation settings such as mental health
counseling. Furthermore, it goes beyond the state of the art
by combining information from multiple physiological signal
modalities rather than focusing on a single modality.

MATERIALS AND METHODS

Study Protocol and Self-Report
Measures
The study was approved by the University of Wyoming
Institutional Review Board. Data collection took place between
October and December 2020, with participants recruited among
students and staff of the University of Wyoming. Due to the
COVID-19 pandemic, participants were encouraged to volunteer
for the study in self-selected dyads (e.g., friends); however, if
individual participants volunteered for the study, they were
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paired with another available individual participant. No rules
were placed on valid pairs.

Each dyad took part in a single 1-h session. Upon arrival,
the purpose and procedure of the experiment were explained,
and participants provided informed consent. They then provided
demographic information and completed self-report measures
on four traits known to influence physiological synchrony
(McKillop and Connell, 2018; Steiger et al., 2019; Sachs et al.,
2020): cognitive and affective empathy with the Questionnaire
of Cognitive and Affective Empathy (QCAE) (Reniers et al.,
2011), social anxiety with the Brief Fear of Negative Evaluation
Scale (BFNES) (Leary, 1983), and depression with the Center for
Epidemiologic Studies Depression Scale (CESD) (Radloff, 1977).

Participants were then seated approximately 1.5 m apart,
facing each other, separated by a transparent plexiglass barrier,
with the experimenter sitting to their side (Figure 1). They
removed their face masks and self-applied physiological sensors
(see next section) while visually supervised by the experimenter,
who provided instructions and feedback. Physiological signal
quality was visually checked, and corrections were made as
necessary until good quality was obtained. We acknowledge
that the self-application process likely introduced greater signal
variability than the standard approach of having the experimenter
apply sensors, particularly in the electrocardiogram (which has
more possible ways to place the electrodes). However, such self-
application was a requirement by the Institutional Review Board
to maintain social distancing during the COVID-19 pandemic.

Following sensor attachment, participants rested quietly
for 2 min with eyes closed to obtain baseline physiological
measurements. They then engaged in approximately 15 min of
conversation; they were instructed by the experimenter to begin
by discussing each other’s career goals and aspirations, but were
allowed to switch topics as desired. After 60 s, the experimenter
silently raised their hand, which served as a visual cue for
participants to mark their engagement level over the previous
60 s on a visual analog scale ranging from “none” to “very high.”
Ratings for each 60-s period were recorded on a separate piece of
paper that participants then set aside to avoid potential influences
on subsequent ratings. Participants were instructed to self-
report engagement as “the degree to which they were interested
in and actively participating in the conversation.” They were
asked in advance to self-report engagement without breaking
up conversation if possible; for example, by looking down and
making a mark quickly while continuing to talk or listen. The
experimenter visually watched to see when participants had
finished reporting engagement, and then restarted a 60-s timer to
indicate the start of a new interval. The conversation continued
until 15 60-s intervals had been completed. Ratings on all visual
analog scales were converted to numerical engagement scores
(0–100) for analysis.

At the end of the study, participants filled out the Self-
Assessment Manikin (SAM) (Bradley and Lang, 1994), which
measures individual valence, arousal and dominance, as well as
the Interpersonal Interaction Questionnaire (IIQ) (Goršič et al.,
2019), which assesses the amount, balance and valence of dyadic
conversation. Both questionnaires were completed with respect
to the overall 15-min conversation. Participants then removed

the physiological sensors and were reimbursed $15 for their
involvement in the study.

Throughout the study protocol, audio and video of both
participants were collected using a Yeti X microphone (Blue
Microphones, United States) and two consumer-grade webcams.
After the session, a member of the research team (co-author
Goršič) watched the videos and rated dyad engagement for each
60-s interval. This coder did not have access to participants’
self-report ratings or physiological data prior to assigning codes.

Physiological Sensors
Two g.USBamp biosignal amplifiers (g.tec Medical Engineering
GmbH, Austria) and associated sensors were used to
collect four physiological signals from each participant. The
electrocardiogram (ECG) was measured using four disposable
electrodes placed on the trunk in a configuration recommended
by g.tec: one electrode on the left part of the chest, one on the
right part of the chest, one on the left part of the abdomen,
and a ground electrode on the upper left part of the back. Skin
conductance was measured using the g.GSRsensor2 sensor,
which includes two dry electrodes placed on the distal phalanges
of the index and middle fingers of the non-dominant hand.
Respiration was measured using a thermistor-based respiration
airflow sensor placed below the nose and in front of the mouth.
This sensor is essentially a thin white wire and was chosen
to minimize occlusion of the face and thus effect on dyad
engagement. Finally, peripheral skin temperature was measured
using the g.Temp sensor, which includes a single dry electrode
placed on the distal finger of the non-dominant hand.

All signals were sampled at 600 Hz, and an analog 60-Hz
notch filter was applied to them. The ECG was additionally
filtered with an analog 0.1-Hz highpass filter while the other
three signals were additionally filtered with an analog 30-
Hz lowpass filter. The amplifiers were synchronized to each
other via a synchronization cable and MATLAB/Simulink model
provided by g.tec. Video from the cameras and microphones
was synchronized to physiological amplifiers via simultaneous
manual button press in both video and physiology interfaces.

Physiological Feature Extraction
Each dyad’s physiological signals were segmented into individual
intervals: the 2-min baseline interval and 15 60-s conversation
intervals. The brief engagement self-reporting periods between
the 60-s intervals were not included in analysis. The skin
conductance, respiration, and skin temperature signals were
filtered with fourth-order Butterworth lowpass filters with cutoff
frequencies of 5 Hz. Peak detection algorithms were used
to identify peaks in the ECG corresponding to individual
R-waves (heartbeats) as well as peaks in the respiration signal
corresponding to individual breaths. All detected peaks in the
ECG were visually inspected, and both false positives and false
negatives were manually corrected as needed. If the researcher
was not able to identify the precise location of an R-wave due to
noise, one was interpolated halfway between two neighboring two
valid R-waves. This occurred in approximately 1–2% of R-waves.
Finally, a peak detection algorithm was used to identify individual
skin conductance responses (SCRs) in the skin conductance
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FIGURE 1 | Two participants in the study protocol, sitting facing each other separated by a plexiglass barrier. The experimenter sits to the side with the data
collection laptops.

signal. SCRs were defined as brief transient increases in skin
conductance whose peak occurs less than 5 s after the beginning
of the increase and whose amplitude (from beginning to peak) is
at least 0.05 microsiemens (Boucsein, 2012).

After filtering and peak detection, multiple features were
extracted from each 60-s conversation interval and from the
baseline interval. These features can be divided into individual
physiological features (calculated from a single participant’s
physiological signal) and synchrony features (calculated from
both participants’ corresponding signals – e.g., respiration of
both participants).

The individual physiological features on each interval were:

– ECG: The mean heart rate and three time-domain
metrics of heart rate variability (the standard deviation of
interbeat intervals, the root-mean-square (RMS) value of
successive interbeat interval differences, and the percentage
of successive interbeat intervals that differ by more than
50 ms). These metrics are standard and well-defined in
the literature (Task Force of the European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology, 1996).

– Skin conductance: The mean skin conductance level, the
difference between the initial and final skin conductance,
the number of SCRs, and the mean SCR amplitude.

– Respiration: the mean respiration rate and the standard
deviation of respiratory periods.

– Peripheral skin temperature: the mean skin temperature
and the difference between the initial and final skin
temperature.

The synchrony features were calculated from instantaneous
heart rate and instantaneous respiration rate signals (i.e.,
heart/respiration rate as a function of time, calculated from
raw ECG and respiration using the same procedure as in our

previous work; Darzi and Novak, 2021) as well as from raw skin
conductance and skin temperature signals. They were:

– Dynamic time warping distance, using the same procedure
as Muszynski et al. (2018). This approach uses dynamic
programming to quantify the similarity between two
signals, and allows some temporal flexibility with regard
to, e.g., temporal delays between events in individual
participants’ signals (Hernandez et al., 2014).

– Non-linear interdependence, using the same procedure
as Muszynski et al. (2018). This feature measures the
geometrical similarity between the state space trajectories
of two dynamical systems, and involves applying time-
delay embedding to the two measured signals to reconstruct
trajectories analogous to shape distribution distance
(Muszynski et al., 2018).

– Coherence, using the same procedure as our previous
work (Darzi and Novak, 2021). Coherence is a standard
signal processing method that finds the co-oscillation of
two signals in one or multiple frequency bands, and was
calculated in different frequency ranges for different signals.
For example, respiration coherence was calculated in the 0–
2 Hz band while heart rate coherence was calculated in 0.1–
0.15 Hz and 0.15–0.4 Hz bands (Darzi and Novak, 2021).

– Cross-correlation, using the same procedure as our
previous work (Darzi and Novak, 2021). This is essentially
a Pearson correlation between the two participants’ signals,
and is thus a very simple measure that is vulnerable to, e.g.,
temporal delays and non-linearity (Hernandez et al., 2014;
Schneider et al., 2020).

Instantaneous heart rate and respiration rate signals
were used since they are expected to better synchronize
between participants than raw ECG and respiration signals
(Darzi and Novak, 2021). However, no such extracted signals
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are defined in the literature for skin conductance or skin
temperature, and raw signals were used in those cases.

Estimation of Interpersonal Engagement
In this section, we first describe the overall framework
of engagement estimation (see section “Overall Problem
Framework”), followed by a description of two primary
analyses: dyad-specific (see section “Dyad-Specific Engagement
Estimation”) and dyad-non-specific (see section “Dyad-Non-
Specific Engagement Estimation”) engagement estimation.
Additionally, we describe two secondary analyses to determine
whether removing some data types decreases estimation
accuracy (see section “Secondary Analysis: Engagement
Estimation Without Synchrony or Participant Characteristics”)
and whether personality has an effect on estimation accuracy
(see section “Secondary Analysis: Effect of Personality on
Engagement Estimation”).

Overall Problem Framework
The collected data consist of multiple physiological features
(see previous section), multiple participant characteristics (age,
gender, personality traits), and each participant’s self-reported
engagement on a scale of 0–100. There are 16 data points
per dyad: the baseline and 15 60-s conversation intervals. The
overall goal of automated engagement estimation is to determine
engagement in a particular interval based on physiological
features from that interval.

As each conversation interval includes two self-reported
engagement values from the two individual participants, we first
calculated dyad engagement in each interval as the mean of the
two individual values. This dyad engagement was then used as
the variable to be estimated. The underlying assumption is that
both participants are rating the same phenomenon (conversation
engagement) and are able to rate it accurately. We acknowledge
that this is not necessarily suitable for situations where the two
participants have different impressions of current engagement,
and discuss this further in the section “Discussion.”

Since dyad engagement is on a scale of 0–100, the
engagement estimation represents a regression problem rather
than classification problem (Novak et al., 2012; Aranha et al.,
2019), and can be solved with many possible regression
algorithms. Whatever the algorithm, its ‘error’ for an individual
interval would be determined as the difference between the
engagement value estimated by the algorithm and the ‘reference’
value self-reported by the participants. The performance of the
algorithm over multiple conversation intervals can be determined
by averaging the error over those intervals. For purposes of
this study, we used two averaging methods: the mean absolute
(MA) difference between estimated and reference engagement
values (MA error) and the RMS value of the difference between
estimated and reference engagement values (RMS error). Both are
standard error metrics in regression problems, with RMS giving
a relatively higher weight to large individual errors. However,
both RMS and MA errors should be contextualized with regard
to other approaches: e.g., in our case, non-physiological methods
of engagement estimation.

In affective computing, regression algorithms are commonly
trained using previously recorded and labeled data – i.e.,
supervised machine learning (Novak et al., 2012; Aranha et al.,
2019). Our study used three supervised machine learning
methods as engagement estimators: a binary decision tree, least-
squares boosting, and random forest. All were implemented
using standard functions in MATLAB 2020b (Mathworks,
United States): fitrtree, fitensemble, and treebagger. They were
chosen due to their ability to handle non-linear problems, as
the relationship between physiological features and engagement
was expected to be strongly non-linear. For full disclosure: two
additional machine learning methods (multilinear perception
and stepwise linear regression) were also evaluated, but both
achieved systematically worse results than the three above
methods and are thus not discussed further.

In affective computing, algorithms for psychological state
estimation are commonly either trained using existing data from
the same individual (“person-specific”) or using data from other
individuals (“person-non-specific” or “person-independent”)
(Novak et al., 2012; Aranha et al., 2019). Both approaches have
advantages and disadvantages: training using data from the same
individual may allow more personalized estimation, but may
not be practical in situations where each person only interacts
with a machine once or sporadically. We thus conducted two
primary analyses focusing on dyad-specific estimation and dyad-
non-specific estimation.

Dyad-Specific Engagement Estimation
The analysis examined whether the engagement of a dyad
can be estimated given training data from the same dyad.
Thus, engagement estimation algorithms were trained for
each dyad separately using the principle of leave-interval-out
crossvalidation: they were trained on 14 conversation intervals,
then tested on the remaining interval. This was repeated 15 times,
with each conversation interval serving as the ‘test’ interval once,
and RMS and MA errors were then calculated over the 15 test
intervals. This approach is commonly used in single-user affective
computing when multiple measurements are available from each
participant and there are a limited number of participants or
significant variability between participants (Novak et al., 2012;
Aranha et al., 2019).

In addition to the machine learning methods, a ‘baseline’
method was also used: to obtain engagement for the test interval,
simply take the median value of reference engagement in the
other 14 intervals. This does not take physiological data into
account and allows us to contextualize the accuracy of the
machine learning methods with respect to a basic method.

Dyad-Non-Specific Engagement Estimation
In the second primary analysis, we used the principle of leave-
dyad-out crossvalidation: engagement estimation algorithms
were trained on all data from all but one dyad and then tested
on all 15 intervals of the remaining dyad. The procedure was
repeated as many times as there were dyads, with each dyad
serving as the ‘test’ dyad once, and RMS and MA errors were
then calculated over all test dyads. All physiological features
from the 15 intervals were ‘normalized’ by subtracting the value
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of that feature from the baseline period; this is a common
approach to reduce intersubject variability in single-user affective
computing (Novak et al., 2012; Aranha et al., 2019). Leave-dyad-
out crossvalidation is expected to yield a lower accuracy than
dyad-specific estimation due to larger variability and lack of
training data from the analyzed dyad (Novak et al., 2012; Aranha
et al., 2019).

In addition to physiological features, dyad-non-specific
algorithms also included each participant’s age, gender (coded
as 0 = male, 1 = female, 2 = non-binary), and four personality
traits (social anxiety, depression, cognitive empathy, affective
empathy) as additional inputs. Our hope was that they may
help the regression algorithms better compensate for inter-dyad
differences, as seen in our previous single-user work (Darzi et al.,
2019); they were not included in dyad-specific estimation since
they are the same for all 15 intervals of the same dyad.

A ‘baseline’ method was again used: to obtain engagement
for all 15 intervals of a dyad, simply take the median value of
reference engagement across all other dyads. Furthermore, as
a second basis for comparison, we evaluated the ability of the
external coder to accurately estimate engagement. This was done
by calculating the same MA and RMS errors between reference
(self-reported) engagement and the engagement ratings provided
by the external coder based on audio and video recordings.
This was considered a reasonable comparison to the dyad-non-
specific rather than dyad-specific estimation since the external
coder would also not have access to engagement ratings from
the current dyad.

Finally, we used predictor importance algorithms in the three
MATLAB functions to identify the most important features
for engagement estimation using the three machine learning
methods. As dyad-non-specific estimation involved as many
models as there were dyads, the most important features were
identified for each individual model and then averaged across
the models to obtain the overall most important features.
This was done only for dyad-non-specific rather than dyad-
specific estimation since the large number of models (number
of dyads × 15 intervals) was expected to result in too much
variability in predictor importance.

Secondary Analysis: Engagement Estimation Without
Synchrony or Participant Characteristics
In both primary analyses, we used all available data to
estimate engagement. However, physiological synchrony features
require more computation to obtain compared to individual
physiological features, and personality traits must be collected
using potentially long self-report measures. Thus, they should
only be included if they improve the estimation accuracy.

In this secondary analysis, we first repeated dyad-specific
engagement estimation (see section “Dyad-Specific Engagement
Estimation”) with physiological synchrony removed from
the input dataset. We then repeated the dyad-non-specific
engagement estimation (see section “Dyad-Non-Specific
Engagement Estimation”) with physiological synchrony (but
not participant characteristics) removed from the input dataset,
and finally with participant characteristics (but not synchrony)
removed from the input dataset. Each of these is expected to

lead to lower accuracy due to fewer available features. If no
decrease in accuracy is observed, this would indicate that the
removed features do not contain additional information or that
the number of features is too high for the machine learning
algorithms to handle, leading to overfitting.

Secondary Analysis: Effect of Personality on
Engagement Estimation
Finally, since the measured personality traits (cognitive empathy,
affective empathy, social anxiety, depression) are known to
influence physiological synchrony (McKillop and Connell,
2018; Steiger et al., 2019; Sachs et al., 2020), they may
also influence the degree to which engagement can be
estimated from physiological measurements. For each dyad,
we thus calculated the mean value of each trait among
both participants in the dyad and the difference between
the values of each trait among both participants in the
dyad. Spearman correlations were then calculated between
these trait values and the RMS and MA errors obtained
with the most accurate machine learning method in both
primary analyses.

RESULTS

Participants
Eighteen dyads volunteered and all completed the study protocol.
Upon manual inspection of self-reported engagement, two
dyads were found to generally disagree on engagement ratings
and were thus removed – since reference dyad engagement
is the mean of the engagement values reported by the
individuals in the dyad, it was considered unreliable for these
two dyads. This left 16 valid dyads. For these 16 dyads, all
physiological features, self-reported engagement, and personality
data were available.

Of the 16 dyads, 13 self-described as friends, 1 as being in a
relationship, and 2 as strangers. There were two female–female
dyads, nine male–male dyads, four male–female dyads, and one
dyad where both participants identified as non-binary. Their age
was 20.4 ± 2.5 years (mean ± standard deviation), with the
range being 18–28 years. Their personality scores were: 55.5 ± 9.6
for cognitive empathy (possible range 19–95), 32.3 ± 4.7 for
affective empathy (possible range 12–60), 36.9 ± 8.2 for social
anxiety (possible range 12–60), and 17.0 ± 10.6 for depression
(possible range 0–60). In all cases, higher scores indicate higher
empathy/anxiety/depression.

We first characterize dyads’ conversations by presenting
engagement values and IIQ and SAM results in section
“Summary of Conversations.” Results of the two primary
analyses are presented in sections “Dyad-Specific Engagement
Estimation” and “Dyad-Non-Specific Engagement Estimation,”
followed by results of secondary analyses in sections “Secondary
analysis: Engagement Estimation Without Synchrony or
Participant Characteristics” and “Secondary analysis: Effect of
Personality on Engagement Estimation.” As most results did not
follow a normal distribution, they are presented in the form of
median (25th percentile – 75th percentile).
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Summary of Conversations
Self-reported engagement values across all dyads and intervals
were 76 (64–90). Within each dyad, the engagement range
(difference between maximum and minimum value reported by
the dyad) was 31 (22–39). As mentioned, each self-reported
engagement value for an interval (used in further analysis) is
the mean of the two values given by the two individuals in the
dyad for that interval. The absolute difference in self-reported
engagement for a given interval between the two individuals
in the dyad, across all dyads and intervals, was 13.5 (7–23).
The intraclass correlation (ICC) for concordance of engagement
ratings made by dyad members across all assessment periods was
also examined. ICCs provide a more stringent test of consistency
than standard Pearson correlations in that estimates account
for both the covariation and absolute agreement of continuous
scores. A one-way, random-effects model for ratings in these
data returned an ICC = 0.46, consistent with acceptable levels of
agreement within dyads (Cicchetti, 1994).

On the SAM, participants rated their valence over the 15-min
period as 3 (2–3), arousal as 4 (2.75–4.25), and dominance as 3
(2–4); all three have a range of 1–9, with 1 indicating highest
valence/arousal/dominance. On the IIQ, participants rated the
overall amount of conversation over the 15-min period (mean of
questions 1 and 2 on IIQ) as 4 (3.5–4.25) on a 1–5 scale, with
5 indicating constant conversation. Participants rated the overall
conversation valence as 5 (4–5) on a 1–5 scale, with 5 indicating
very high valence.

Dyad-Specific Engagement Estimation
Table 1 shows RMS and MA errors for the different machine
learning methods and the ‘baseline’ estimator (median
engagement of other 14 intervals).

Dyad-Non-Specific Engagement
Estimation
Table 2 shows RMS and MA errors for the different machine
learning methods and the ‘baseline’ estimator (median
engagement of other 15 dyads). The top five most important
features for each of the three machine learning methods are listed
in Table 3.

In this analysis, we also planned to compare how accurately
self-reported engagement could be estimated by the external
coder based on audio and video recordings. Due to a technical
issue, recordings from 4 dyads were lost, and this part of
the analysis was only done with 12 dyads. The external coder
achieved an RMS error of 15.2 (11.5–17.3) and MA error of 13.6
(9.7–15.7). For comparison, when calculating errors only over
these 13 dyads, the least-squares boosting algorithm achieved an
RMS error of 11.8 (10.9–15.1) and MA error of 9.7 (8.7–12.6)

while the baseline (median-based) estimator achieved an RMS
error of 14.0 (13.8–14.2) and MA error of 11.6 (11.4–11.8).

Secondary Analysis: Engagement
Estimation Without Synchrony or
Participant Characteristics
If physiological synchrony features are removed from the input
dataset, the most accurate algorithm in dyad-specific estimation
is the binary decision tree, with an RMS error of 8.1 (6.4–11.1)
and MA error of 6.5 (5.0–8.6). The most accurate algorithm in
dyad-non-specific estimation is the random forest, with an RMS
error of 13.7 (11.0–18.6) and MA error of 12.0 (9.7–16.3).

If participant characteristics are removed from the input
dataset, the most accurate algorithm in dyad-non-specific
estimation is the random forest, with an RMS error of 14.0
(12.3–15.3) and MA error of 12.4 (10.6–15.3).

Secondary Analysis: Effect of Personality
on Engagement Estimation
As the least-squares boosting exhibited the lowest errors in both
dyad-specific and dyad-non-specific estimation (Tables 1, 2),
RMS and MA errors obtained with this method were used to
calculate Spearman correlations with regard to both dyad-specific
and dyad-non-specific estimation.

Table 4 shows correlations between personality traits and
RMS and MA errors obtained in dyad-specific estimation while
Table 5 shows correlations between personality traits and RMS
and MA errors obtained in dyad-non-specific estimation. In
dyad-specific estimation, significant correlations can be seen
between RMS error and affective empathy and depression as well
as between MA error and affective empathy. In dyad-non-specific
estimation, a significant correlation can be seen between RMS
error and depression.

To verify whether these correlations may be simply due to
higher engagement or range of engagement in dyads with certain
personality traits, Spearman correlation coefficients were also
calculated between the same personality traits and median self-
reported engagement within each dyad as well as the engagement
range (maximum – minimum) within each dyad. A significant
correlation was found between the difference in depression values
and the engagement range (ρ = 0.54, p = 0.03). All other
correlations had p > 0.1.

DISCUSSION

Primary Analyses
In dyad-specific engagement estimation (Table 1), all machine
learning methods achieved similar RMS and MA errors to

TABLE 1 | Medians and interquartile ranges of root-mean-square (RMS) and mean absolute (MA) errors for the baseline estimator (median of other 14 intervals) and for
three machine learning methods in dyad-specific engagement estimation.

Baseline (median) Binary decision tree Least squares boosting Random forest

RMS error 8.1 (6.3–11.2) 8.1 (6.4–10.3) 8.1 (6.5–10.6) 8.5 (6.6–10.3)

MA error 6.6 (4.9–7.9) 6.5 (5.2–8.0) 6.4 (5.0–8.2) 6.3 (5.3–8.2)
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TABLE 2 | Medians and interquartile ranges of root-mean-square (RMS) and mean absolute (MA) errors for the baseline estimator (median of other 17 dyads) and for
three machine learning methods in dyad-non-specific engagement estimation.

Baseline (median) Binary decision tree Least squares boosting Random forest

RMS error 14.0 (13.8–14.2) 13.1 (10.5–18.4) 12.3 (11.3–15.8) 12.6 (10.1–14.7)

MA error 11.6 (11.5–11.7) 10.0 (8.8–13.2) 10.2 (8.8–13.5) 10.7 (8.4–13.2)

TABLE 3 | The top five most important features for dyad-non-specific engagement estimation using each of the three machine learning methods.

Binary decision tree Least squares boosting Random forest

1 Mean heart rate of P1 Mean heart rate of P1 Mean heart rate of P1

2 Respiration coherence Respiration coherence Heart rate cross-correlation

3 Heart rate cross-correlation RMSSD of P2 Respiration coherence

4 pNN50 of P1 Respiration discrete time warping distance pNN50 of P1

5 SD of respiratory periods of P1 RMSSD of P1 Mean respiration rate of P2

P1, participant 1; P2, participant 2; RMSSD, root-mean-square of successive interbeat interval differences; pNN50, percentage of successive interbeat intervals that differ
by more than 50 ms, SD, standard deviation.

TABLE 4 | Correlations between engagement estimation errors and the means and differences in four personality traits in dyad-specific estimation.

SA mean SA diff AE mean AE diff CE mean CE diff D mean D diff

Correlations of personality traits with root-mean-square error

ρ −0.01 0.05 0.56 −0.39 0.43 −0.19 0.00 0.52

p 0.96 0.84 0.02 0.13 0.09 0.48 0.99 0.04

Correlations of personality traits with mean absolute error

ρ −0.05 0.07 0.51 −0.42 0.46 −0.25 −0.01 0.49

p 0.83 0.80 0.04 0.10 0.07 0.35 0.97 0.06

Presented as Spearman correlation coefficients (ρ) and p-values. SA, social anxiety; CE, cognitive empathy; AE, affective empathy; D, depression; diff, difference.

TABLE 5 | Correlations between engagement estimation errors and the means and differences in four personality traits in dyad-non-specific estimation.

SA mean SA diff AE mean AE diff CE mean CE diff D mean D diff

Correlations of personality traits with root-mean-square error

ρ 0.38 0.01 0.42 0.25 0.05 0.38 0.50 0.04

p 0.14 0.96 0.099 0.36 0.85 0.14 0.049 0.88

Correlations of personality traits with mean absolute error

ρ 0.43 0.06 0.40 0.46 −0.11 0.48 0.38 −0.08

p 0.096 0.83 0.12 0.07 0.68 0.056 0.14 0.76

Presented as Spearman correlation coefficients (ρ) and p-values. SA, social anxiety; CE, cognitive empathy; AE, affective empathy; D, depression.

the baseline error estimator. In dyad-non-specific estimation
(Table 2), all machine learning methods then achieved slightly
lower RMS and MA errors than the baseline estimator.
Additionally, in the 12 dyads where external engagement ratings
were available, the dyad-non-specific machine learning methods
achieved lower errors than the external coder.

These results indicate that interpersonal engagement can be
estimated from physiological responses on the level of individual
dyads with some accuracy. We consider the dyad-non-specific
scenario to be more realistic, as it does not assume that any
data are available from the current dyad. Conversely, the dyad-
specific scenario assumes that data are not only available from
the current dyad, but also in the same conditions (e.g., exact same
sensor placement). Thus, the dyad-non-specific results are more
likely to transfer to scenarios where participants either have not
extensively used the system or have not carefully calibrated it.

By demonstrating the ability to perform engagement
estimation in individual dyads, our study goes beyond the
state of the art, where the connection between physiological
responses and interpersonal engagement has only been made
on the group level (e.g., with correlation analyses) (Dikker
et al., 2017; Finset and Ørnes, 2017; Bevilacqua et al., 2018;
Bar-Kalifa et al., 2019; Kleinbub et al., 2019; Sun et al.,
2020; Tschacher and Meier, 2020; Zheng et al., 2020). Given
known data about a specific dyad, physiological responses
could thus be used to, for example, dynamically track the
dyad’s engagement over time during conversation or provide
real-time feedback about interpersonal engagement to the
dyad (see section “Potential Implementation of Real-Time
Automated Engagement Feedback”), which may have benefits
in applications such as education, mental health counseling, and
conflict resolution.
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How Accurate Is Enough?
The main limitation of the primary analyses is that it is difficult
to gauge the degree to which these results may be practically
useful. The baseline error estimator makes use of known past
and future engagement values, so we may argue that achieving
approximately the same accuracy (as in Table 1) is already
impressive. At the same time, given that the training data are
labeled with known engagement values, they also make use of this
information, and we could conversely argue that the physiology
and machine learning are only worthwhile if they achieve a
higher accuracy than the baseline estimator. In dyad-non-specific
estimation, errors with machine learning methods were lower
than those achieved by the baseline estimator, but only slightly
(RMS error 12.2 vs. 13.7, MA error 10.4 vs. 11.4), and a follow-up
paired t-test did not find significant differences.

Alternatively, we could argue that the estimator should be
able to achieve a higher accuracy than an independent human
observing the conversation. In dyad-non-specific analysis, we
indeed found that the estimation algorithms were more accurate
than the external coder (RMS error 11.2 vs. 15.2, MA error
9.0 vs. 11.8) and thus may be valuable. There are several
caveats to this result. First, ratings were established by a single
coder, introducing the possibility of systematic coding error.
Second, the coder was told only to rate the dyads’ engagement
according to their own opinion, and was not asked to mimic
what the dyads were likely to self-report. Third, the coder
did not have access to engagement data from the other dyads
(while the algorithms did), and was thus not able to, e.g.,
estimate the expected range of reported engagement. At the
same time, as the coder had access to video and audio of
the conversation and had experience in interpreting human
interaction, it could nonetheless be considered impressive that
the algorithms were able to achieve better accuracy based on
physiological data.

Even if we agree that the algorithms are more accurate
than, e.g., the external observer, we must then ask whether
the difference in accuracy (in that case, RMS error difference
of 4.0 and MA error difference of 2.8) is large enough to be
meaningful. Similar issues with contextualizing the accuracy
of regression algorithms have been observed in single-user
affective computing: for example, both our previous work (Novak
et al., 2015) and others’ work (Rodriguez-Guerrero et al., 2013)
have had difficulty determining whether obtained regression
accuracies are acceptable, and this has been mentioned as a
grand challenge in the state of the art of affective computing
(Fairclough and Lotte, 2020). In future regression studies, a
simplified approach could be to define a range of ‘acceptable’
errors (e.g., all individual errors below 10.0 are ‘acceptable’)
and calculate the percentage of errors that fall outside this
range, thus obtaining a regression accuracy that could be
analyzed with tools such as receiver operating characteristic
curves. However, this requires us to be able to define an
‘acceptable’ error, which is likely application-specific. Ultimately,
engagement estimation accuracy will likely need to be evaluated
by determining whether it provides actual benefits to the
user, as done both in our previous single-user work (McCrea
et al., 2017), our previous work on physiological synchrony in

competitive gaming (Darzi and Novak, 2021), and others’ work
with single-user scenarios (Rodriguez-Guerrero et al., 2013;
Fairclough et al., 2015).

Potential Implementation of Real-Time
Automated Engagement Feedback
We envision one possible application of our automated
engagement estimation methods that would allow us to
practically estimate their usefulness: we could provide dyads
with information about conversation engagement as they interact
with each other, allowing them to potentially notice drops in
engagement that would otherwise not be visible. Dyads could
then take steps to try to increase engagement by, e.g., changing
conversation topics or shifting the balance of conversation from
one person to the other. Such real-time feedback has been
proposed by multiple researchers, and very simple versions of
it have been implemented – for example, displaying the other
participants’ heart rates, respiration rates or brain waves and
allowing the viewer to make their own interpretations (Frey,
2016; Liu et al., 2017; Salminen et al., 2019). By fusing information
from multiple physiological signals into an overall engagement
estimate, our approach may allow both more accurate and more
easily interpretable feedback.

Such real-time feedback, however, would have additional
technical and design challenges. For example, as all our analyses
were performed ‘offline’ after data collection, we were able
to manually remove artifacts such as inaccurate ECG peak
detection. This would be harder in real time, and even a single
artifact may lead to major errors in estimated engagement.
Furthermore, engagement could be presented in different ways
(e.g., graphical, numerical), which may have a major effect on
how users react to it (Liu et al., 2017). Nonetheless, we believe
that these challenges are solvable, and that implementing real-
time feedback based on automated engagement estimation would
allow researchers to better quantify acceptable accuracies and
potential benefits of such engagement estimation.

Secondary Analyses
Engagement Estimation Without Synchrony or
Participant Characteristics
Removing synchrony features from the dataset had little effect
on dyad-specific estimation, but did somewhat increase errors
in dyad-non-specific estimation (RMS error 13.7 vs. 12.3, MA
error 12.0 vs. 10.0). Synchrony features were also among
the top three most important features for all three machine
learning methods (Table 3). Removing participant characteristics
also increased errors in dyad-non-specific estimation (RMS
error 14.0 vs. 12.3, MA error 12.4 vs. 10.0). Since this
decrease in accuracy was not large, we may ask whether it is
worth including physiological synchrony metrics, which require
additional computation, or personality traits, which require
additional self-report questionnaires. We believe that at least
participant traits are worth including since the questionnaires
are not very long and the answers are likely to remain stable
over time. However, discussion on this topic again runs into
the limitation from the previous section that it is difficult
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to gauge the degree to which differences in accuracy are
practically meaningful.

Effect of Personality on Engagement Estimation
Root-mean-square and MA errors are correlated with dyads’
personality traits in both dyad-specific and dyad-non-specific
engagement estimation (Tables 4, 5), indicating that the difficulty
of estimating a dyad’s engagement depends on their personality
traits. In dyad-specific estimation, there are positive correlations
between estimation error and cognitive/affective empathy, which
appears to indicate that dyads with higher empathy are harder to
‘read.’ Additionally, in dyad-specific estimation, there is a positive
correlation between estimation error and the difference between
participants’ depression values, indicating that dyads are harder
to ‘read’ if there is a discrepancy in depression between members
of the dyad. In dyad-non-specific estimation, there is a positive
correlation between error and depression; this would indicate
that depressed dyads are harder to ‘read.’

The correlation with depression may simply be because dyads
with a bigger difference in depression values have a higher range
of engagement, increasing the possible error; however, this was
not observed for the other personality traits. Thus, if these
observations are accurate, they may have important implications
for practical usage of automated engagement estimation from
physiology, as they would indicate that such estimation is likely
to be more accurate for certain types of dyads. However, given
the small sample size and secondary nature of the analysis, these
results may also be due to statistical noise.

Alternative Study Protocols
The current study protocol was one possible approach to
automatic engagement estimation in conversation. In this
section, we describe alternative possibilities that could involve
either modifications to the current approach (see section
“Modified Single-Session Regression Scenario”) or an entirely
different approach (see section “Classification and Multi-
Day Scenarios”).

Modified Single-Session Regression Scenario
Based on experience from the current study, we can suggest some
modifications to improve the quality of the 15-min uninterrupted
conversation scenario. First, we took the mean of the two
participants’ engagement value to obtain dyad engagement. This
does not account for the possibility that one participant may
consider the conversation to be much more or less engaging
than the other participant – for example, individual ratings
of 0 and 100 would not be distinguishable from individual
ratings of 50 and 50. Such large disagreements occurred in two
of our dyads, which we then removed from the dataset (see
section “Participants”); however, in the future, we may consider
determining different scenarios based on individually reported
engagement rather than simply averaging.

Second, the currently used engagement scale was a single
visual analog scale ranging from “none” to “very high,” with
the markings converted to 0–100 values. It is unlikely that
participants can distinguish variation in engagement on a very
granular level – e.g., between 90 and 95. We may instead consider,

e.g., a scale with numbers between 1 and 10, with anchors at 1,
3, 5, 7, and 10 to improve reliability and consistency. We could
also consider a multi-item scale, such as the IIQ (Goršič et al.,
2019) or the Flow Short Scale used in another recent automatic
engagement estimation study (Carroll et al., 2020), but this would
make it difficult to maintain free-flowing conversation.

Third, we could choose to omit self-reported engagement
entirely and focus only on externally rated engagement,
as suggested by some non-dyadic psychophysiology studies
(Schwerdtfeger, 2004). In this case, we would recruit two or three
coders and train them more extensively in engagement rating
until they have reached a certain consistency, as done in our
previous study on IIQ questionnaire validation (Goršič et al.,
2019) and in other studies of physiological linkage (McKillop and
Connell, 2018). In this case, we would obtain more consistent
engagement ratings, though we may not be able to identify any
internal processes that may affect physiological responses but are
not externally visible to the coders.

Fourth, physiological processes do not necessarily instantly
react to changes in conversation engagement. Thus, we could
consider estimating engagement not only based on physiological
features from the same 60-s interval, but also based on
physiological features from an adjacent interval, as suggested
by other researchers (Muszynski et al., 2018). While this may
violate causality (by estimating current engagement from future
measurements) and not be suitable for real-time feedback, it may
have additional fundamental insights.

Finally, to potentially enhance dyad-non-specific estimation,
we could consider different or additional baseline intervals. For
example, some dyadic studies have had participants face their
partner with eyes open rather than closed (Pan et al., 2020), and
some have used multiple baselines where participants first face a
wall and then each other (Bevilacqua et al., 2018).

Classification and Multi-Day Scenarios
In the current study, we used a protocol with uninterrupted, free-
flowing conversation, as this would more closely approximate
real-world scenarios. We acknowledge that this resulted in a
limited range of engagement within each dyad (see section
“Summary of Conversations”), making it relatively easy to
obtain a high accuracy with the baseline estimator (taking
the median of training engagement values). We nonetheless
believe that our study is valuable and that the proposed
methods would generalize to scenarios with a broader range
of engagement. However, in the future, we will also explore
an alternative study protocol where dyads will go through
multiple artificially induced conversation scenarios (e.g., told to
argue with each other), and classification methods will be used
to assign physiological data to one of the possible scenarios.
While less natural than the current protocol, this is likely to
provide more balanced data, and classification algorithms are
more common than regression algorithms in both studies of
physiological synchrony (Hernandez et al., 2014; Konvalinka
et al., 2014; Muszynski et al., 2018; Zhu et al., 2018; Brouwer
et al., 2019; Verdiere et al., 2019; Pan et al., 2020; Darzi and
Novak, 2021) and general affective computing (Novak et al., 2012;
Aranha et al., 2019).
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Unrelated to the above classification approach, we may also
consider a multi-day protocol where engagement estimation
algorithms are trained on data from one session, then tested on
data from another session. While more time-consuming, this
would demonstrate the stability of physiology-based engagement
estimation over time. For example, if the estimation error
significantly increases when testing on a different session (as
opposed to the same session), this would indicate that the
estimation algorithms need to be recalibrated in each session,
significantly decreasing their usefulness.

Additional Measurements
In the current study, we used a set of physiological measurements
that are relatively easy to self-apply. This decision was taken due
to the COVID-19 pandemic, which precluded the use of more
complicated measurements such as electroencephalography. We
believe that the focus on these measurements is realistic, as
they are relatively simple and thus more likely to be used in
an applied context; furthermore, they are common in group-
level analyses of physiological synchrony (Hernandez et al., 2014;
Finset and Ørnes, 2017; McKillop and Connell, 2018; Muszynski
et al., 2018; Bar-Kalifa et al., 2019; Steiger et al., 2019; Tschacher
and Meier, 2020). Still, in the future, we may explore two
additional physiological measurements: electroencephalography,
which is common in studies of physiological synchrony
(called hyperscanning in the domain of brain measurements)
(Konvalinka et al., 2014; Dikker et al., 2017; Pérez et al., 2017;
Bevilacqua et al., 2018; Ding et al., 2021), and functional near
infrared spectroscopy, which is similarly common in synchrony
studies (Sun et al., 2020; Zheng et al., 2020). We may also explore
the addition of non-physiological measurements, such as gesture
synchronization and analysis of voice patterns.

CONCLUSION

This paper presents the use of machine learning algorithms
combined with physiological measurements to estimate
interpersonal engagement during a 15-min conversation. These
machine learning algorithms were able to estimate self-reported
engagement with an accuracy similar to a baseline estimator in
dyad-specific estimation, and with an accuracy slightly higher
than the baseline estimator in dyad-non-specific estimation.
Additionally, in dyad-non-specific estimation, they achieved a
higher accuracy than a human observer. However, these results
are difficult to contextualize, as it is unclear whether such an
accuracy would be practically acceptable, and would need to be
evaluated for usefulness in a more practical setting.

In secondary analyses, we showed the effects of removing
physiological synchrony features and participant characteristics
from the dataset. Additionally, we showed that the engagement
estimation error is correlated with personality traits, indicating
that some types of dyads are harder to ‘read.’

Overall, this paper presents the feasibility of dynamically
estimating a dyad’s interpersonal engagement during a
naturalistic conversation. Similar approaches could be used as
a complement to self-report measures and external observation
when analyzing communication scenarios. They could also be
used as a basis for real-time feedback: providing dyads with
information about interpersonal engagement, allowing them to
take steps to increase it. However, further work is needed to
identify acceptable accuracies in such situations.
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Copyright © 2021 Chatterjee, Goršič, Clapp and Novak. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 757381

https://doi.org/10.1016/j.neuroimage.2019.116512
https://doi.org/10.1109/TAFFC.2019.2958657
https://doi.org/10.1109/TAFFC.2019.2958657
https://doi.org/10.1007/s00406-019-00998-y
https://doi.org/10.1007/s00406-019-00998-y
https://doi.org/10.1037/a0021175
https://doi.org/10.1016/j.ijpsycho.2019.06.015
https://doi.org/10.1016/j.bandc.2019.105513
https://doi.org/10.1016/j.bandc.2019.105513
https://doi.org/10.1080/10503307.2019.1612114
https://doi.org/10.1093/scan/nsaa016
https://doi.org/10.1093/scan/nsaa016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Automatic Estimation of Interpersonal Engagement During Naturalistic Conversation Using Dyadic Physiological Measurements
	Introduction
	Materials and Methods
	Study Protocol and Self-Report Measures
	Physiological Sensors
	Physiological Feature Extraction
	Estimation of Interpersonal Engagement
	Overall Problem Framework
	Dyad-Specific Engagement Estimation
	Dyad-Non-Specific Engagement Estimation
	Secondary Analysis: Engagement Estimation Without Synchrony or Participant Characteristics
	Secondary Analysis: Effect of Personality on Engagement Estimation


	Results
	Participants
	Summary of Conversations
	Dyad-Specific Engagement Estimation
	Dyad-Non-Specific Engagement Estimation
	Secondary Analysis: Engagement Estimation Without Synchrony or Participant Characteristics
	Secondary Analysis: Effect of Personality on Engagement Estimation

	Discussion
	Primary Analyses
	How Accurate Is Enough?
	Potential Implementation of Real-Time Automated Engagement Feedback
	Secondary Analyses
	Engagement Estimation Without Synchrony or Participant Characteristics
	Effect of Personality on Engagement Estimation

	Alternative Study Protocols
	Modified Single-Session Regression Scenario
	Classification and Multi-Day Scenarios

	Additional Measurements

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


