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Stereopsis is a fundamental visual function that has been studied
extensively. However, it is not clear why depth discrimination
(stereoacuity) varies more significantly among people than other
modalities. Previous studies have reported the involvement of
both dorsal and ventral visual areas in stereopsis, implying that
not only neural computations in cortical areas but also the anatomical
properties of white matter tracts connecting those areas can impact
stereopsis. Here, we studied how human stereoacuity relates towhite
matter properties by combining psychophysics, diffusion MRI (dMRI),
and quantitative MRI (qMRI). We performed a psychophysical
experiment to measure stereoacuity and, in the same participants,
we analyzed the microstructural properties of visual white matter
tracts on the basis of two independent measurements, dMRI
(fractional anisotropy, FA) and qMRI (macromolecular tissue volume;
MTV). Microstructural properties along the right vertical occipital
fasciculus (VOF), a major tract connecting dorsal and ventral visual
areas, were highly correlated with measures of stereoacuity. This
result was consistent for both FA and MTV, suggesting that the
behavioral–structural relationship reflects differences in neural tissue
density, rather than differences in the morphological configuration of
fibers. fMRI confirmed that binocular disparity stimuli activated the
dorsal and ventral visual regions near VOF endpoints. No other occip-
ital tracts explained the variance in stereoacuity. In addition, the VOF
properties were not associated with differences in performance on a
different psychophysical task (contrast detection). These series of ex-
periments suggest that stereoscopic depth discrimination perfor-
mance is, at least in part, constrained by dorso-ventral communication
through the VOF.
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Stereopsis is a fundamental human visual function that has
been studied over two centuries (1–7). Traditional visual

neuroscience has focused on the properties of neural response
toward important cues for the stereopsis, such as binocular dis-
parity, to understand the neural computation achieving the
perception of the 3D world (8–10). A series of studies have
revealed a number of cortical areas involved in binocular dis-
parity processing (9–15) and demonstrated that dorsal and ven-
tral visual areas have complementary roles in processing
different aspects of stereoscopic information (16–19).
However, there is one key question that remains unanswered:

Why does the ability to discriminate depth (stereoacuity) vary
among people. In fact, a number of psychophysical studies have
reported a broad and often bimodal distribution of human
stereoacuity, which is much less evident in other visual modalities
(20–23). The neurobiological origin of such large differences in
perceptual performance is unknown.
Given that several visual areas in both dorsal and ventral

streams are known to be involved in stereo perception and each
stream has complementary aspects for stereopsis, the anatomical
properties of the white matter tracts connecting those areas
should also be crucial. Vertical occipital fasciculus (VOF) (24–
26), which connects dorsal and ventral visual cortices, can be one
of the candidates for the tracts responsible for this interstream
communication. Here, we have combined modern structural

neuroimaging techniques (diffusion and quantitative MRI; dMRI
and qMRI) with psychophysical measurements to assess human
stereoacuity and tried to clarify how the tissue properties of visual
white matter tracts may relate to the stereoacuity. In addition, we
have evaluated the relationship between the endpoints of the
tracts and areas activated by the same stereo stimuli using fMRI.
Furthermore, we tested how these tissue properties relate to the
contrast detection threshold to test whether the observed rela-
tionship between structural and psychophysical measurements are
specific to stereoacuity.

Results
Psychophysical Experiment on Stereoacuity. We measured the
stereoacuity of 19 healthy human participants using a psycho-
physical experiment in which they judged a perceived depth on
the basis of binocular disparity (Fig. 1A). Participants viewed a
random dot stereogram (RDS) (2) that consisted of a central
disk and surrounding ring (SI Appendix, Fig. S1A) shown at one
of four positions (Up-Right, Up-Left, Down-Right, Down-Left;
the center was 3° away from the fixation point). The surrounding
ring was always presented at zero disparity, whereas the central
disk was presented at a range of disparities across trials. Partici-
pants judged the depth of the central disk (“near” or “far”) with
respect to the surrounding ring. Stereoacuity was estimated by
fitting a psychometric function to each participant’s responses
(27). Fig. 1B shows examples of the psychometric functions and
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estimated depth discrimination threshold that corresponded to an
84% correct response rate. We succeeded in estimating the ster-
eoacuity of 14 participants; five participants had <84% correct re-
sponses over the full range of tested disparities (±7.68 arcmin), and
we were unable to determine stereoacuity from their psychometric
functions. However, all participants discriminated depth from
RDSs with a longer duration (500 ms) and larger disparities
(15.36 arcmin) significantly better than chance, indicating that
none were stereoblind (SI Appendix, SI Materials and Methods).
We pooled trials across all stimulus locations to estimate ster-
eoacuity because there was no notable difference in stereoa-
cuity between left and right visual fields (SI Appendix, Fig.
S2A). We confirmed that stereoacuity varied by more than one
order of magnitude across participants (Fig. 1C), consistent
with previous psychophysical studies (4, 22, 23).

Microstructural Properties of VOF Explain Individual Variabilities in
Stereoacuity.We collected two independent structural MRI datasets,
dMRI and qMRI, from the participants who took part in the psy-
chophysical experiment. We performed tractography on the dMRI
dataset to identify the trajectory of major visual white matter tracts
(left and right inferior longitudinal fasciculus, ILF; left and right
optic radiation, OR; forceps major of the corpus callosum; and left
and right VOF) following the anatomical prescriptions in previous
studies (SI Appendix, SI Materials and Methods). We evaluated the
tissue properties along these visual white matter tracts using the
widely used dMRI measure, fractional anisotropy (FA) (28), and
recently proposed qMRI measure, macromolecular tissue volume

(MTV), which quantifies the nonproton neural tissue density (29).
Finally, we examined how the variation of FA or MTV in these
visual white matter tracts correlates with the stereoacuity for each
participant (see SI Appendix, Fig. S3 for whole-brain comparison
between FA and MTV).
First, we examined white matter tracts that explained the

variability in stereoacuity by comparing the performance of
multiple linear regression models that predict stereoacuity from
the tissue properties (MTV or FA) of the examined tracts. This
analysis was performed on data from the 14 participants whose
stereoacuity was quantitatively estimated (an analysis using the
data of all 19 participants is also presented below). Next, we
selected the best linear regression model using the Bayesian in-
formation criterion (BIC). BIC model selection for the MTV of
visual white matter tracts revealed the best regression model
using a single tract, the right VOF (Fig. 2A). This was the sig-
nificant model for predicting the stereoacuity [R2 = 0.36, F(1,12) =
6.71, P = 0.024; Fig. 2B and SI Appendix, Table S1]. In addition,
the MTV of the left ILF was a significant predictor of stereoa-
cuity [R2 = 0.30, F(1,12) = 5.22, P = 0.041; SI Appendix, Table S1].
No other models using single, or combinations of, visual tracts
were significantly correlated with the stereoacuity (SI Appendix,
Table S1). In summary, the microstructural properties of the
right VOF best predicted the variability in stereoacuity.
The BIC model selection using FA, a conventional measure of

dMRI, provided similar results: The best model to explain vari-
ations in human stereoacuity included a single tract, the right VOF
[R2 = 0.30, F(1,12) = 5.22, P = 0.041; SI Appendix, Fig. S4A and
Table S1; see SI Appendix, Fig. S5 A and B for results in axial and
radial diffusivity]. No other models, including the model using the
FA of the left ILF [R2 = 0.12, F(1,12) = 1.57, P = 0.23], significantly
predicted stereoacuity (SI Appendix, Table S1). These results,
across two independent measurements using different pulse se-
quences, suggested that the observed correlation was related to
neural tissue volume along the right VOF, rather than the mor-
phological factors specifically affecting FA (e.g., crossing fibers).
We further examined how MTV and FA differed between the

good stereoacuity (low disparity-threshold) and poor stereoa-
cuity (high disparity-threshold) groups, by incorporating datasets
from all participants (n = 19), including the five participants
whose stereoacuity could not be estimated from the psycho-
metric function analysis (Fig. 1B). First, we classified the par-
ticipants with quantitative estimates of stereoacuity (n = 14) into
different subgroups by applying a two-step clustering algorithm
to the stereoacuity data and selecting the best clustering based
on BIC (SI Appendix, SI Materials and Methods). The analysis
revealed two subgroups, which correspond to good (n = 10) or
poor (n = 4) stereoacuity groups. Then the five participants
without quantitative estimates of stereoacuity were included in
the poor stereoacuity group (n = 9 in total, Fig. 1C). We found
that the good stereoacuity group had a significantly higher MTV
(Fig. 2C; d′ = 1.27, t17 = 2.77, P = 0.013) and FA (SI Appendix,
Fig. S4B; d′ = 1.14; t17 = 2.48; P = 0.024) along the direction of
the right VOF compared with the poor stereoacuity group.
These differences in MTV and FA between the two groups were
consistent with the results of the regression analysis of the mi-
crostructural properties of the right VOF and stereoacuity (Fig.
2B for MTV and SI Appendix, Fig. S4A for FA). We also found a
significant group difference in axial diffusivity (d′ = 1.07, t17 =
2.33, P = 0.032) but not radial diffusivity of the right VOF (SI
Appendix, Fig. S5 C and D). The spatial profile of the tract
properties suggested that the group difference was present along
the entire length of the right VOF, from dorsal to ventral (Fig.
2C for MTV and SI Appendix, Fig. S4B for FA), and not re-
stricted to a localized region. Thus, it is unlikely that the group
difference can be explained by a partial volume effect with other
short-range fibers (such as U-fibers). We did not find any significant
differences in MTV and FA between the two groups in any other
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Fig. 1. Psychophysical experiment measuring stereoacuity. (A) Schematic
illustration of the depth discrimination task using RDSs (see SI Appendix, Fig.
S1A for details). Each RDS was concentric bipartite. Participants were asked
to judge whether the central disk was nearer or farther than the sur-
rounding disk. (B) The psychometric functions of three representative par-
ticipants with different performances. The horizontal axis depicts binocular
disparity (arcmin; logarithmic scale), while the vertical axis depicts the cor-
rect rate. The performance on the crossed and uncrossed disparities was
averaged. Stereoacuity was estimated as the binocular disparity at which a
participant achieved 84% correct rate (Left and Middle). Right shows a
participant with a performance of <84% over the tested range of disparities;
therefore, we could not quantitatively estimate stereoacuity using the
identical criteria. (C) The stereoacuity of all participants (n = 19). The vertical
axis shows the disparity threshold at which performance reached 84% cor-
rect. The stereoacuity value is arbitrary for the five participants whose
stereoacuity could not be quantitatively estimated (performance < 84%;
labeled with diamonds). Note, these five participants were not stereoblind
(SI Appendix, SI Materials and Methods). We classified participants into good
(blue) and poor stereoacuity (green) groups.
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visual white matter tracts, such as the ILF or OR in both hemi-
spheres, forceps major, and left VOF (Fig. 2D). Furthermore, it
should be noted that the difference in stereoacuity between these
two groups was not accompanied by differences in refractive
power or pupillary distance of the eyes (SI Appendix, Fig. S1B) nor
age (d′ = 0, t17 = 0, P = 1; 25 ± 5.2 and 25 ± 3.7 y old for good and
poor stereoacuity groups, respectively).
We found significant associations between MTV/FA and

stereoacuity in the right, but not the left, VOF. We evaluated the
robustness of the lateralization across different statistical criteria
for rejecting VOF streamlines (SI Appendix, Fig. S6A). Although
the regression analysis did not reach significance (SI Appendix, Fig.
S6B), MTV along the left VOF showed marginally significant group
difference in relatively conservative outlier rejection criteria (d′ =
0.91, t17 = 1.99, P = 0.063; SI Appendix, Fig. S6C). We noted that a
significant effect in the right VOF was preserved in the conservative
criterion (d′ = 1.20, t17 = 2.62, P = 0.018). These results suggest that a
lack of statistical significance in the left VOF may be at least partly
explained by the relative difficulty in identifying coherent streamlines.
In the above analysis, we estimated stereoacuity by pooling

data from the left and right visual fields, which helped to im-
prove the reliability of the estimate by increasing the number of
trials. Given that the areas connected by VOF have retinotopic
representation (26), we also tested the relationship between
stereoacuity in left and right visual fields and the MTV of the
contralateral VOF. The correlation between the right VOF and
left stereoacuity was found to be marginally significant [R2 =
0.27, F(1,12) = 4.39, P = 0.058, SI Appendix, Fig. S2C], whereas
the correlation between the left VOF and right stereoacuity was
not significant [R2 = 0.058, F(1,12) = 0.74, P = 0.41, SI Appendix,
Fig. S2B]. Group difference analysis also showed the same ten-
dency (SI Appendix, Fig. S2 D and E). The lack of effect in the
left VOF can be explained by multiple possible factors, such as a
reduced reliability of stereoacuity estimates or difficulty in
identifying coherent streamlines, as mentioned above.

VOF Connects Cortical Regions Responding to Visual Stimuli with Binocular
Disparity. To test our hypothesis that the right VOF connects cortical
areas that are involved in binocular disparity processing, we per-
formed fMRI experiments to measure the cortical areas activated by

the same RDSs as used in the psychophysical experiment (Materials
and Methods). We observed significant BOLD responses to the
RDSs, compared with uncorrelated RDSs, in both dorsal (V3A/B,
IPS0) and ventral (hV4, VO1/2) extrastriate cortices that were con-
sistent with previous fMRI studies in humans (Fig. 3B) (16, 30–32).
Importantly, both dorsal and ventral VOF endpoints overlapped with
disparity-selective regions (Fig. 3 and SI Appendix, SI Materials and
Methods). These results agree with our hypothesis that discrimination
of stereoscopic depth involves an interaction between dorsal and
ventral cortices through the VOF. We note that we did not find any
significant interhemispheric differences in BOLD responses to RDSs
compared with uncorrelated RDSs (uRDSs) in the majority of reti-
notopic areas (V3, V3A/B, hV4, VO, LO) except for IPS0, which
showed a stronger BOLD response in the right hemisphere (d′ =
0.60, t5 = 2.58, P = 0.0495, paired t test, SI Appendix, Fig. S7).

Psychophysical Experiment on Contrast Detection Sensitivity. Finally,
we addressed whether the tissue properties of the right VOF are
also related to another visual performance that does not require
binocular integration. We measured the thresholds of participants’
contrast detection using Gabor patch stimuli (Fig. 4A). In contrast
to disparity thresholds, contrast detection thresholds did not show a
clear bimodal distribution (Fig. 4B), and were not significantly
correlated with stereoacuity (r = 0.08, P = 0.82). A simple linear
model that included the tissue properties of the right VOF did not
significantly predict the contrast detection threshold [R2 = 0.017,
F(1,17) = 0.29, P = 0.59 for FA; R2 = 0.031, F(1,17) = 0.55, P = 0.47
for MTV, Fig. 4C]. None of the other models using FA or MTV in
the other white matter tracts significantly explained the variabilities
of contrast detection threshold either (SI Appendix, Table S2).
Group difference analysis revealed no significant difference in the
tissue property of the right VOF between the good (low contrast
threshold, n = 12) and poor (high contrast threshold, n = 7) contrast
sensitivity groups (Fig. 4D; d′ = 0.21, t17 = 0.44, P = 0.66 for MTV;
d′ = 0.16, t17 = 0.34, P = 0.74 for FA). Taken together, the vari-
ability of FA and MTV values did not correlate with the perfor-
mance of the contrast detection that does not require binocular
integration. Relation of the VOF to other visual tasks such as
color or motion detection is an open question for future research.
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Discussion
In the current study, we examined the neurobiological correlates
of the large variability in stereoacuity. Advanced noninvasive
neuroimaging methods, such as dMRI and qMRI, are advanta-
geous when investigating the neurobiological origin of individual
variance in sensory abilities because neuroanatomical and be-
havioral measurements collected from the same participants can
be compared (33). We have used this advantage to compare
human stereoacuity and white matter properties. We found a
significant statistical relationship between stereoacuity and the
microstructural properties in the right VOF, a specific white
matter tract that connects the dorsal and ventral visual cortices
(25, 26). These data support classical and recent theories that
emphasize the importance of white matter tracts in under-
standing sensory and cognitive functions (34, 35). The behavior-
anatomy correlates were found using the MTV and FA, two
independent microstructural measurements, in both regression
and group comparison analyses. Furthermore, we confirmed that
the VOF had endpoints in disparity responsive regions of the
dorsal and ventral cortices, suggesting that the VOF connects
cortical regions that are involved in disparity processing. Finally,
we found that the tissue properties of the right VOF were not
related to contrast sensitivity.
A number of previous studies have used conventional diffusion

tensor metrics, such as FA, to examine the tissue properties of
white matter tracts relative to behavioral characteristics (33). In
contrast, few recent studies have used advanced qMRI metrics,
such as MTV (29), to assess the microstructural properties of
white matter tracts. FA is a reproducible metric with high sen-
sitivity for detecting the tissue structural differences in white
matter tracts (33, 36). However, the microstructural interpreta-
tion of differences in FA is challenging because FA measure-
ments can be associated with many biological factors, such as

axon diameter, axon density, myelin-sheath thickness, and
tightness of fasciculation due to crossing fibers (28, 36). Here,
we combined dMRI with qMRI, which can provide additional
information for inferring microstructural properties (29, 37). The
MTV is a robust qMRI-based metric that quantifies local tissue
volume within each voxel via quantification of proton density
(29). There is converging evidence indicating that MTV is a re-
liable approximation of lipid and macromolecular volume frac-
tions (38). While MTV has been used to quantify white matter
tissue properties, this study demonstrates the relevance of MTV
with behavioral measurements. Taken together, the relationship
between the right VOF and stereoacuity, as shown in both FA
and MTV analyses, may reflect a difference in lipid or macro-
molecule volume fractions, such as myelin thickness or axon
density, rather than the morphological configuration of axons,
such as the degree of fiber crossings.
Duan et al. (39) have investigated the microstructural prop-

erties of visual white matter tracts between amblyopia and con-
trol groups. They observed a difference in the diffusion property
(mean diffusivity) along the right VOF; however, this difference
is not supported by qMRI measurements. Additionally, Duan
et al. reported a difference in the diffusion property along the
optic radiation, which we did not find in this study. Our results
and those of Duan et al. (39) suggest that the microstructural
basis of stereoacuity is distinct from that of amblyopia.
Some visual neuroscience studies have emphasized the role of

the dorsal stream in stereopsis (40–42), which is consistent with
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experimental evidence showing the neural correlates of stereo-
scopic depth perception in dorsal areas (43); however, there are
converging lines of evidence showing that not only dorsal but also
ventral visual cortices are involved in binocular disparity processing,
including computations of relative disparity and disparity-defined
3D shapes (11, 13, 14, 16, 30, 44–51). Other studies have suggested
that the role of dorsal and ventral streams in stereopsis may be
complementary because they are sensitive to different types of
disparity information (7, 16–19, 52). Moreover, cortical represen-
tations that account for some aspects of binocular depth perception
are found in higher regions of both the dorsal and ventral visual
streams (31, 53), including cortical areas near the VOF endpoints
(26). Here, we found that stereoacuity is correlated with the
properties of the VOF (Fig. 2). In addition, we have confirmed that
the endpoints of the VOF overlap with disparity selective regions
(Fig. 3 B and C). Therefore, the VOF may transmit perceptually
relevant signals of disparity by connecting the dorsal and ventral
cortices involved in binocular disparity processing.
We consider that the behavioral–structural relationship in the

VOF may be explained by either or both of two potential factors:
strategies of stereo perception that altered white matter or white
matter plasticity altered stereo perception. Recent neurobio-
logical studies have demonstrated that plasticity in the white
matter microstructure, such as the degree of myelination, is de-
pendent on neural activity or behavioral experience (54, 55). We
speculate that the behavioral–structural relationship observed in
this study might reflect differences in development, such as dif-
ferent levels of usage of binocular disparity as a stereo cue, or
cue combination strategies across dorsal and ventral visual areas.
Alternatively, it is also feasible that development of white mat-
ter, which has a significant impact on the efficient conduction of
neural signals, will affect the accuracy of stereo perception.
However, it is not yet understood how such modulation in con-
duction velocity is related to the optimality of neural computa-
tion for sensory discrimination (55).
While we have shown a significant relationship between the

right VOF and stereoacuity, we did not find statistically signifi-
cant results for the left VOF. This asymmetry may result from a
difference in technical detectability of the VOFs in the two
hemispheres using tractography, probably because of a difference
in the geometry of the sulcus and gyrus patterns. An additional
analysis with multiple streamline exclusion criteria supports this
interpretation (SI Appendix, Fig. S6). Alternatively, this asymmetry
of the VOF may reflect a functional lateralization of cortical
processing of binocular disparity, as reported in previous neuro-
psychological or fMRI studies (4, 15, 30, 32, 56, 57). However, this
interpretation of right hemispheric dominance in stereopsis is
puzzling when one considers the fact that V3A/B and hV4 in both
hemispheres primarily cover the contralateral visual field and
there was no or little difference in disparity discrimination per-
formance (SI Appendix, Fig. S2A) and BOLD responses (SI Ap-
pendix, Fig. S7) between the left and right visual fields.
dMRI studies have focused on relatively long-range white matter

tracts known to exist from anatomical studies (35). However, one
might argue that fibers from other areas, such as V2 or MT, may
also explain the variability on human stereoacuity. We cannot ex-
clude this possibility. Measuring such relatively short fibers requires
a substantial improvement in data resolution, analysis methods, and
anatomical knowledge of the human visual system. Furthermore,
the resolution of our dMRI data did not allow us to reliably identify
subcomponents of VOF terminating in/near specific areas. Testing
those questions with improved measurement techniques is an im-
portant future research direction.
In summary, the microstructural properties of the VOF ex-

plain the variability in human stereoacuity. Stereoacuity may be
related to the microstructural properties of white matter pathway
that supports communication between the dorsal and ventral
visual cortices.

Materials and Methods
The code for reproducing psychophysical experiments and analyses is publicly
available in OSF.io (https://osf.io/qd8cj/). The full anonymized dataset, which
are collected from participants who provided a written informed consent on
the data sharing (22 of 23 participants as of September 4, 2018), will be
available upon request to the corresponding author (htakemur@nict.go.jp).

Participants. Twenty-three healthy volunteers (19males, 4 females;mean age,
26.1 y old) participated in the study. None of the participants had a history of
eye disease. All participants gavewritten informed consent to take part in this
study, whichwas conducted in accordancewith the ethical standards stated in
the Declaration of Helsinki and approved by the local ethics and safety
committees at the Center for Information and Neural Networks (CiNet),
National Institute of Information and Communications Technology.

Stereoacuity Experiment. Nineteen participants (16 males, 3 females; mean
age, 25.0 y old) took part in the experiment to determine their stereoacuity.
The stereoacuity experiment employed a haploscope. Each eye viewed one-
half of the monitor through an angled mirror and a front triangular prism
mirror. Each RDS was composed of a central disk (diameter: 3°) and sur-
rounding ring (width: 0.5°, outer diameter: 4°; see SI Appendix, Fig. S1A for
an example). The surrounding ring always had zero disparity, whereas the
binocular disparity in the central disk varied across trials (disparity
magnitudes: ±0.12–7.68 arcmin), which were chosen based on a typical
range of human stereoacuity (22). In each trial, an RDS was presented at one
of four different positions (Up-Right, Up-Left, Down-Right, and Down-Left),
whose center was 3° away from the fixation point. Participants judged
whether the central disk appeared nearer or farther than the surrounding
ring while fixating on the central fixation point (SI Appendix, Fig. S1A). We
defined stereoacuity as the magnitude of binocular disparity that corre-
sponded to the 84% correct rate in the task by fitting a cumulative Gaussian
psychometric function. See SI Appendix, SI Materials and Methods for fur-
ther technical details.

Contrast Threshold Experiment. Nineteen participants (15 males, 4 females;
mean age, 26.0 y old) underwent a contrast threshold experiment. Fifteen of
these participants also participated in the stereoacuity experiment. We
presented Gabor patch stimuli whose orientation was tilted 45° to the left or
right from vertical (Fig. 4A). Participants were asked to judge whether the
stimulus orientation was tilted toward the left or right. The stimulus posi-
tions were identical to those used in the stereoacuity experiment. The ex-
periment composed of two stages. An approximate threshold was measured
in the first stage, which was used to determine the contrast range that was
used at the second stage to estimate a precise threshold. See SI Appendix, SI
Materials and Methods for further technical details.

Structural MRI Experiment. All MRI data were acquired using a 3T SIEMENS
Trio Tim scanner at CiNet, National Institute of Information and Communi-
cations Technology, and Osaka University.

We collected dMRI data (2 mm isotropic) from all participants (n = 23)
using a 32-channel head coil. The diffusion weighting was isotropically dis-
tributed along the 64 directions (b = 1,000 s/mm2). Nondiffusion-weighted
(b = 0) images were acquired at the beginning and end of the dMRI session
(two b = 0 acquisitions per image set). Acquisition of the dMRI data took
∼20 min for each participant.

We collected qMRI data from all participants (n = 23) using a 32-channel
head coil. qMRI measurements (1 mm isotropic) were obtained using pro-
tocols described in a previous publication (29). Acquisition of the qMRI data
took ∼35 min for each participant.

Further details in structural MRI data acquisition and preprocessing
methods are described in SI Appendix, SI Materials and Methods.

Diffusion MRI Data Analysis. dMRI data preprocessing was performed using
mrDiffusion tools implemented in the vistasoft distribution (https://github.
com/vistalab/vistasoft). We identified visual white matter tracts in each
participant, from whole-brain streamline generated by probabilistic trac-
tography implemented in MRtrix3 (www.mrtrix.org/) (58) and selected by
Linear Fascicle Evaluation (LiFE; https://francopestilli.github.io/life/) (59).
Details are described in SI Appendix, SI Materials and Methods.

Quantitative MRI Data Analysis. qMRI data were processed using the mrQ
software package (https://github.com/mezera/mrQ) to produce the MTV
maps (29). Details are described in SI Appendix, SI Materials and Methods.
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Functional MRI Experiment. We collected fMRI data from eight participants
who participated in the stereoacuity psychophysical experiment (sevenmales,
one female; mean age, 26.6 y old). We used the posterior section of a 32-
channel coil. Data were acquired at a resolution of 2.0-mm isotropic voxels
with an interleaved T2*- weighted gradient echo sequence. Participants
viewed gray background, RDS, or uRDS through a polarized 3D system,
during which they performed a fixation task requiring vernier detection
(31). We excluded two participants with poor task performance during the
fMRI scan (<84% correct rate) from subsequent analyses. The disparity-
selective areas are defined as cortical gray matter voxels that responded
more strongly to RDS than uRDS (P < 0.05, one-sample t test). Acquisition
of fMRI data took ∼60 min for each participant. See SI Appendix, SI Ma-
terials and Methods for further technical details.

Tract Identifications and Evaluations.We identified seven white matter tracts
(left and right ILF, left and right OR, forceps major, and left and right VOF)
from dMRI dataset. We then evaluated the tissue properties of each tract

and summarized the profile of each tract with a vector of 80 values rep-
resenting the FA or MTV values sampled at equidistant locations along the
central portion of the tract. The relationship between tract properties and
psychophysical performance was evaluated in regression and group com-
parison analyses. Further details are described in SI Appendix, SI Materials
and Methods.
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