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ABSTRACT

The PlantMetabolomics (PM) database (http://www
.plantmetabolomics.org) contains comprehensive
targeted and untargeted mass spectrum metabolo-
mics data for Arabidopsis mutants across a variety
of metabolomics platforms. The database allows
users to generate hypotheses about the changes
in metabolism for mutants with genes of unknown
function. Version 2.0 of PlantMetabolomics.org cur-
rently contains data for 140 mutant lines along with
the morphological data. A web-based data analysis
wizard allows researchers to select preprocessing
and data-mining procedures to discover differences
between mutants. This community resource enables
researchers to formulate models of the metabolic
network of Arabidopsis and enhances the research
community’s ability to formulate testable hypo-
theses concerning gene functions. PM features new
web-based tools for data-mining analysis, visualiza-
tion tools and enhanced cross links to other data-
bases. The database is publicly available. PM aims
to provide a hypothesis building platform for the re-
searchers interested in any of the mutant lines or
metabolites.

INTRODUCTION

PlantMetabolomics.org stores the data from an NSF-
funded multi-institutional consortium that is developing
metabolomics as a functional genomics tool for elucidat-
ing the functions of Arabidopsis genes without visible
phenotype. The consortium has established mass
spectrometry-based metabolomics platforms that detect
�2000 metabolites, of which �1000 are chemically defined
(1). The consortium generates the Arabidopsis biological

material at a single location followed by distribution to the
analytical laboratories for targeted and untargeted ana-
lyses. Phase 1 focused on investigating the robustness of
the Arabidopsis metabolome and defining the conditions
that minimize the environmental and developmental
effects. Subsequently, the consortium profiled the metabo-
lome of specific T-DNA knockout alleles for these targeted
genes (2). These MSI-compliant metabolomics data (3,4)
are integrated with phenotypic data and data concerning
protein function, transcription and other studies to help
users generate hypotheses concerning the functions of the
targeted genes. The datasets complement the Arabidopsis
developmental (5) and ecotype (6) LC-MS datasets at
AtMetExpress.

The updated PlantMetabolomics.org database features
new datasets and morphological information for the plant
community along with new web-based analysis tools.
These tools include clustering and classification tools to
distinguish between different mutants as well as determin-
ing which metabolites best differentiate the mutant. New
visualization tools include ratio plots of metabolites and
CytoscapeWeb (7) pathway visualization of metabolites
on the AraCyc pathways (8). PlantMetabolomics (PM)
also offers web services for the concentration data and
annotation sharing.

DATABASE CONTENTS

PlantMetabolomics.org contains mass spectrometry-based
metabolomics concentration data for 140 novel single-
knockout gene mutant lines in Arabidopsis. Fifty-three
lines are novel since the last release and 35 were repeated
to increase the number of replications. Approximately 998
known metabolites and 2020 unknown metabolites
were detected using seven different MS-based platforms
for each of these mutant lines. The number of replicates
for each line was also increased from three replicates to
six replicates.
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The database has also added morphological image data
including features of the mutants’ leaves, cotyledons and
roots at 16 days after imbibitions (DAI) and mature
seeds using an Olympus stereomicroscope with reflected
and transmitted light sources and a high-resolution
digital color image and scanning electron microscope.
Digital camera images of the roots of all the Arabidopsis
thaliana tissue were collected at 6, 9, 13 and 16 days after
imbibitions (DAI) in pixels, and these were converted
from pixels to root length measurements using Image J
software (9). A user can select a gene and compare its
morphological images with the images from the wild-
type samples using a side-by-side image analysis tool in
the database, which is accessible when the user searches for
a gene of interest from the home page or uses the search
functionality to search for a gene.

New annotation links to LipidMaps (10) have been
added for metabolites. Structurally known metabolites
have been annotated with metabolic pathway information
from the AraCyc database (version 8.0) (8). This annota-
tion helps users understand how changes in a metabol-
ite might affect the metabolism of the entire organism.
Figure 1 shows an example of the new annotation and
the images.

Analysis tools for metabolomics

PlantMetabolomics.org includes new web-based data ana-
lysis tools to aid a researcher in generating hypothesis
about the metabolomics signature of a mutation. The
data analysis wizard provides various options to normal-
ize and preprocess data along with many choices of multi-
variate data analysis methods along with step-by-step
guidance on the analysis pipeline. Default choices are
provided at each step, and the downstream analyses are
made available only after the necessary preprocessing steps
have been successfully performed. All the analysis results
and figures are made available for download at the end of
the analysis. The data analysis tool is developed with PHP
and the R programming environment (11).

Data preprocessing. The data preprocessing steps involve
missing value imputation and normalization. For missing
value imputation, the user selects a threshold to eliminate
metabolites that have a higher percentage of missing
values than the threshold (e.g. for a threshold of 50%, a
metabolite with four or more missing values out of six will
be removed from further computation). For cases where
there are fewer missing values, the missing values will be
imputed by means of the concentration for that metabolite

Figure 1. (A) Log-ratio plot of a metabolite (PA 34:2), where each point shows the ratio of the concentration of the given metabolite in mutant
samples versus the wild-type samples. The highlighted mutant line (SALK_040250) looks interesting as it is away from the central vertical axis and
thus depicts difference between mutant samples and the wild-type samples. (B) The user can instantly access the stereomicroscopic images for this
mutant and compare them with wild-type samples. Seed images at �250 zoom of mutant’s seeds look a little distorted as compared to the wild-type
seeds (Seed image courtesy of Jennifer Robinson). (C) The user can also access the details of the metabolites including cross links to other databases.
(D) Clicking on any of the points in the log-ratio plot in (A) shows the log-ratio plot of all the metabolites for that mutant. For example, some fatty
acids including tetradecanoic acid look interesting for this mutant as they are away from the central vertical axis and show large fold change between
the wild type and mutant samples.
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over the remaining values. The next step is data normal-
ization. Data normalization weights the metabolites to
emphasize different attributes of the data. Common
choices described in (12), Range Scaling, Pareto Scaling
and Auto Scaling, help weight metabolites equally regard-
less of overall abundance. Log transformation is used to
correct for heteroscedascity andmakemultiplicative effects
additive. The equations and a discussion of each method
are accessible from the ‘?’ icon in the data analysis wizard.
After the preprocessing and normalization steps, a user
can choose one or more of the analysis tools to analyze the
data. Examples have been provided at each data mining
step to help users interpret their results.

Clustering analysis. Biologists can generate hierarchical
clustering plots to see which mutants are statistically close
to each other and have similar metabolic profiles. Multiple

choices for distance measure (Euclidean and Manhattan)
and for the linkage method (Ward, complete, single,
average, median and centroid) are available. The goal is
to group or segment a collection of samples (mutants) into
subsets or ‘clusters’, such that those within each cluster are
more closely related to one another than objects assigned
to different clusters. The result of clustering is presented as
a dendrogram that a user can download from the PMWeb
site. Figure 2A shows an example of a dendrogram using
hierarchical clustering analysis tool with average linkage
and Euclidean distance parameters.

Multidimensional scaling. A multidimensional scaling
(MDS) plot is a commonly used multivariate exploratory
data analysis tool.MDS is an exploratorymultivariate data
analysis method that is used in visualizing the structure of
relations between entities by providing a geometrical

Figure 2. (A) Hierarchical clustering of lipidomics data from the Welti Lab compares SALK_040250 (At1g61720) mutant line with wild-type samples
using Euclidean distance and average linkage method. (B) PCA loadings plot of the first 2 PCs shows that the wild type and mutant are not linearly
separable. (C) Important metabolites for the classification between wild type and the mutant line using the Random Forest tool shows that the most
important variables are glycerophospholipids with chain lengths of 34 and 36. (D) MDS plot of the mutant and wild-type samples using the
Manhattan distance measure that shows that the mutant and wild type are not separable and that there is an outlier in the data.
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representation of these relations in a lower dimensional
space (13). An MDS plot shows the similarities or
dissimilarities in data in two dimensions. In this case, the
MDS plot shows statistical distances among samples based
on their metabolome signatures (Figure 2D). Commonly
used distance measures (Euclidean and Manhattan) are
provided for this tool as well.

Principal component analysis. Principal component ana-
lysis (PCA) is one of the most commonly used methods
used in high-dimensional data analysis (14). PCA provides
a low-dimensional view of the multidimensional data by
mathematically transforming a number of correlated vari-
ables into a smaller set of uncorrelated variables which are
called principal components (PCs). A user can generate
PCA plot against the first two principal components and
also the scree plot that show the percentage of variability
explained by subsequent principal components. The PCs
are orthogonal and are ordered according to the variance
explained. Therefore, the first PC explains the maximum
variance. If the variance in the data reflects the true bio-
logical difference, then plotting first PC against the second
can be used to visualize the separation in the different
classes. The original variables that contribute the most
to the first few PCs are considered to be the most import-
ant. The PCs can be downloaded for further analysis.
Figure 2B shows an example of PCA loadings plot for
the first 2 PCs.

Random Forest classifier. Random Forests are used in
metabolomics for classifying mutants into different classes
(15). A Random Forest Classifier is an ensemble of clas-
sification trees (16). Random Forests work well for classi-
fication when the number of features is much greater than
the number of observations, and they have good predict-
ive performance even when most input variables are noisy
(17). Of importance to biologists is that the output is easy
to understand, because it does not transform the metab-
olite data and the output ranks variables that are respon-
sible for classification.

The classification trees are built using a bootstrap
sample of the data generated by using two-third of the
data for sample generation and keeping the remaining
one-third of the data for testing. A small subset of the
variables is used in building a tree. The random Forest
R package provides classification analysis between
two or more types of samples (e.g., wild type and a
mutant line) (18) and generates the variable importance
score plots of the key metabolites (Figure 2C). The list
of top 30 key metabolites is also made available along
with the annotations for the metabolites. One can click
on a metabolite name on this list and see its annotation
from various external databases such as KEGG, AraCyc
and Lipid Maps. The automatically generated ratio plot
shows the metabolite’s behavior in the other mutants
when compared with wild-type samples. The complete
list can be downloaded by clicking at the download
file link and used in other applications. The random
forest classifier can also be downloaded along with the
number of correctly classified and misclassified samples
in each class.

Download results. At the end of analysis, the user can
download all the results along with comma separated
data files and as well as the R code used at each step of
the analysis. Examples are also provided at each step to
help the users with the interpretation of their results.

Visualization tools for metabolomics

New data visualization plots were added, so that a user
can select a metabolite and see its behavior in 140 different
mutations in a single plot (as a ratio of mutant and
wild-type samples). Similarly, a user can select a gene
and see the behavior of all the metabolites (as compared
to the wild-type samples). After selecting a gene of interest,
a user is taken to gene details page where they are shown
the morphological data along with a log-ratio plot of the
data. In the log-ratio plot for a gene, each point shows
the log-ratio (to base-2) of a metabolite’s abundance in the
(mutant sample):(wild-type sample). The points are color
coded according to the number of missing values for each
metabolite and provide an instant data quality check.
Clicking on a point in the log-ratio plot takes the user
to a page where annotation of that metabolite with
the information about its participation in pathways and
links to other databases like KEGG (19), LipidMaps (10)
and PUBCHEM (20) are shown. The metabolites are
annotated with a local copy of the AraCyc database (21)
that was updated to the latest release of version 8.0 of
AraCyc.
Single metabolic pathways from AraCyc can also be

viewed using CytoscapeWeb (7) and PathwayAccess
tools (22). From the annotation page, a user can select a
pathway that contains their metabolite of interest and
view the pathway with their metabolomics data super-
imposed for any of the experiments in the database.

CONCLUSIONS AND FUTURE DEVELOPMENTS

This updated version of PlantMetabolomics.org provides
metabolomics mass spectrometry-based metabolomics
data from multiple analytical platforms. A user can
analyze this data using our web-based data visualization
and mining tools and generate the hypothesis about the
functions of gene of their interest. A user can also perform
a comparative analysis on a metabolite or metabolic
pathway of interest and see their behavior under different
mutations. We plan to enhance our coverage mutant lines
to 203 novel lines.
The next steps for this database are to create a viewer

for extracting the spectra of the measured metabolite from
the different platforms and replicates. This will create a
valuable resource for mass spectra across many different
platforms and gather information on measurement vari-
ability. This capability may allow PlantMetabolomics.org
to link to the spectral data in the LC-MS Arabidopsis
database, AtMetExpress (5) and the GC-MS Golm
Metabolomics Database (23). The flexibility of the path-
way viewer will also be enhanced to give the user more
ways to combine pathways into networks and select data.
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AVAILABILITY

The PlantMetabolomics.org database is available online
and free to all without restriction at: http://www
.plantmetabolomics.org/.
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